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Abstract: This paper investigates the detection of broken rotor bar in squirrel cage induction motors
using a novel approach of randomly positioning a triaxial sensor over the motor surface. This study is
conducted on two motors under laboratory conditions, where one motor is kept in a healthy state, and
the other is subjected to a broken rotor bar (BRB) fault. The induced electromotive force of the triaxial
coils, recorded over ten days with 100 measurements per day, is statistically analyzed. Normality
tests and graphical interpretation methods are used to evaluate the data distribution. Parametric and
non-parametric approaches are used to analyze the data. Both approaches show that the measurement
method is valid and consistent over time and statistically distinguishes healthy motors from those
with BRB defects when a reference or threshold value is specified. While the comparison between
healthy motors shows a discrepancy, the quantitative analysis shows a smaller estimated difference
in mean values between healthy motors than comparing healthy and BRB motors.

Keywords: squirrel cage induction motor; broken rotor bar detection; sensor random position;
parametric test; non-parametric test

1. Introduction

The induction motor (IM) is an alternating current (AC) electrical machine used to
drive various industrial utility components such as compressors, pumps, fans, elevators,
cranes, etc. There are two types of IMs: wound rotor induction motors (WRIMs) and
squirrel cage induction motors (SCIMs). As stated in [1], SCIMs account for ≈87% of the
total AC motor population in the industry.

Faults in SCIMs are divided into two categories: electrical and mechanical faults.
Electrical faults are further divided into stator (turn-to-turn, coil-to-coil, phase-to-phase,
phase-to-ground, and open circuit), rotor (broken rotor bar and broken end ring), and
power supply faults (phase imbalance and single phasing). Mechanical faults are divided
into stator (frame vibrations), rotor (unbalanced, bent rotor, static, dynamic, and mixed
eccentricity), and bearing faults (outer ring, inner ring, rolling elements, and loss of lubri-
cant) [2,3].

The distribution of the fault types analyzed in various studies is shown in Figure 1. The
studies shown in Figure 1 are the Electric Power Research Institute (EPRI) study, the Motor
Reliability Working Group (MRWG) study of the Institute of Electrical and Electronics
Engineers (IEEE), the 1995 study, and the Allianz study [4]. The EPRI study deals with
SCIMs, WRIMs, and synchronous motors (100 hp and above at low voltage levels 460 V
and 575 V, and medium voltage motors 2.3 kV, 4 kV, 6.6 kV, and 13.2 kV) [5]. The 1995
study [6] covers SCIMs of 10 kW and above. The IEEE MRWG study covers asynchronous,
synchronous, wound-rotor, and DC motors over 200 hp that are not older than 15 years [7,8].
The Alliance study covers medium-voltage motors with high power [9].
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domain (decomposition products of currents and voltages, differential measurement of 
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wavelet transform, etc.) [11,12]. 

Magnetic flux fault detection is based on the direct or indirect measurement of the 
magnetic flux or magnetic flux density. Depending on the location of the measurement, 
there is an external or internal detection method. Internal magnetic flux or air gap flux 
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the air gap of the electrical machine. Although air-gap flux detection was developed in the 
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environment of the electrical machine. Although the magnitude of the stray flux is much 
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stray flux available on the Web of Science dates back to 1971 [15]. In the paper, the authors 
investigated an unbalanced supply. The aim was to detect certain frequency components 
in the spectrum of the coil voltage and use this information to activate the protective de-
vice that disconnects the motor from the mains in the event of an unbalanced supply. The 
air-core coil was placed on the non-drive side of the motor. 

The motivation for extracting information about the motor state with random posi-
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The methods for detecting broken rotor bars are divided into model-based and signal-
processing methods. The model-based methods are further divided into methods based
on resistance estimation (they use the deviation of the estimated rotor resistance from
the known value as a fault indicator), methods based on estimation of other parameters
(estimation of stator current, rotor flux, rotor speed, etc.), and methods based on a digital
twin (they automatically measure and estimate motor parameters and variables based on
online data). The methods based on signal processing are divided into the time domain
(decomposition products of currents and voltages, differential measurement of the air-
gap magnetic field [10], etc.), the frequency domain (fast Fourier transform), and the
time–frequency domain (short-time Fourier transform, Chriplet transform, Wigner–Ville
distribution, Hilbert–Huang transform, continuous wavelet transform, discrete wavelet
transform, etc.) [11,12].

Magnetic flux fault detection is based on the direct or indirect measurement of the
magnetic flux or magnetic flux density. Depending on the location of the measurement,
there is an external or internal detection method. Internal magnetic flux or air gap flux
detection is based on the measurement of the magnetic flux or magnetic flux density in
the air gap of the electrical machine. Although air-gap flux detection was developed in
the 1970s to detect faults in the stator winding of synchronous generators, it is still an
active field of research [13]. This type of fault detection is considered invasive as it requires
access to the air gap or stator slots. This means that the work process must be stopped, the
electrical machine dismantled, and the sensor carefully positioned. Proper installation of
air gap sensors can be carried out during an overhaul or manufacturing process.

The external magnetic flux or stray flux is the magnetic flux that radiates into the
environment of the electrical machine. Although the magnitude of the stray flux is much
weaker than the air-gap flux, this physical quantity reflects the anomalies (asymmetries)
of the total magnetic field in the electrical machine [14]. The oldest paper on monitoring
stray flux available on the Web of Science dates back to 1971 [15]. In the paper, the authors
investigated an unbalanced supply. The aim was to detect certain frequency components in
the spectrum of the coil voltage and use this information to activate the protective device
that disconnects the motor from the mains in the event of an unbalanced supply. The
air-core coil was placed on the non-drive side of the motor.

The motivation for extracting information about the motor state with random position-
ing of the sensor is based on the review articles [12,16–18], the literature review presented
in the next section of this paper, and the assumption that the human factor plays a role in
the monitoring process. From the review articles and the literature review, it can be seen
that the research papers study BRB faults with a stationary position of the sensor, i.e., the
sensor is placed at a fixed position. This study is conducted under the assumption that
the operator has his own choice regarding the sensor position, e.g. because there are no
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guidelines or instructions for the sensor position. Because of this freedom of choice, the
authors refer to this approach as random.

Two objectives of this paper are to validate the measurement method and to investi-
gate BRB detection in a steady state using the magnetic stray flux method with random
positioning of the sensor over the surface of the motor. The validation of the measure-
ment method requires that the information about the state of the motor (healthy or BRB)
is time-independent, i.e., if the measurement is performed with random positioning at
different times for a given motor then all measurements must not show a statistically sig-
nificant difference if the motor has not changed its state. If the motor changes its state from
healthy to BRB at a certain point in time, the measurements before and after must show a
statistically significant difference. Appropriate statistical tests based on the distribution of
measurement data are used for the validation and detection of BRB.

The investigations carried out by the authors take place under laboratory conditions.

2. Literature Review

In this section, a brief description of papers related to SCIM broken bar detection using
stray magnetic flux is given. A common feature of all stated papers is the fixed positions
of the sensor. The fixed position of the sensor refers to a situation where the sensor is
once positioned for measuring, and it is not translated or rotated to a new position for a
new measurement during the overall measurement process. The information about the
motor state (healthy/BRB) is extracted and processed from the same position of the sensor.
There are three standard positions of the sensor: axial, radial, and radial–axial. These three
positions are a common feature of all the following articles. Figure 2 shows the standard
positions of the sensors and serves as a reference for all articles in this section.
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The articles presented in this section emphasize the fixed sensor position and serve
as a reference point regarding used methods in this field of research. Together with
review articles [12,16–18], they provide insight that random sensor positioning during the
measurement process and its potential for motor state information extraction have not
been investigated.

In [19], the authors used a laboratory-made air-core coil as a sensor. The analyzed
signal was the EMF of the air coil, and the faults were analyzed when the motor was
started. Tests were also performed on two induction motors and for three positions of
the sensor: radial, axial, and radial–axial. The short-time Fourier Transform (STFT) was
applied to transient EMF signals to show the evolution of the fault harmonics. A rotor fault
indicator based on the discrete wavelet transform (DWT) was introduced. The authors
conclude that misalignment and BRB can be detected with the STFT of the air coil signal.
The current analysis shows that the BRB fault can mask the misalignment on the time-
frequency map; the rotor fault indicator shows a significant difference compared to the
healthy motor; different sensor positions give different rotor fault indicator values, and the
largest difference to the healthy condition is reported for the axial position.

In [20], the detection of two adjacent broken bars, two broken bars within half a pole
pitch, and two broken bars with one pole pitch is investigated. The sensor used was an
air-core coil. The signal was analyzed by first performing an STFT with the motor in
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a steady state and extracting the four frequency trajectories. After the trajectories were
extracted, the Fast Fourier Transform (FFT) was applied. The fault detection is based on the
observation of the missing frequency component in the frequency spectrum of the healthy
motor compared to the fault scenarios. The presented method detects broken bars, adjacent
and non-adjacent, with half pole pitch and with one pole pitch. This method can be used
as a complement to Motor Current Signal Analysis (MCSA), as the latter provides a false
negative misdiagnosis for broken bars with half pole pitch and with one pole pitch.

In [21], the authors propose an algorithm based on a sorted spectrum subtraction of
healthy and faulty (different spatial combinations of two BRBs) motor states. The algorithm
was tested for the following combinations of broken bars: 1-2 (adjacent), 1-3, 1-4, 1-5, and
1-6. To quantify the distinction between healthy and faulty states, a fault indicator based
on autocovariance was introduced. For comparison, the authors calculated the ratios of the
indicators by dividing each indicator for a faulty condition by the indicator for a healthy
motor. The calculation was performed for axial and radial–axial coil position and the results
show quantitative differences and different sensitivity depending on the position of the
sensor. It is reported that the radial–axial position is more sensitive than the axial position.

In [22], the detection of a broken bar is investigated using two indicators. The first is
based on the frequency domain and is calculated as the sum of the average of the absolute
values of the bispectrum; the second indicator is based on the time domain and is calculated
as the squared value of the median of the autocorrelation function. The tests were carried
out during start-up and in a steady state. An air-core coil was used as the sensor. The
measurements with the coil were carried out in four positions: radial, axial, and radial–axial
(P1 and P4). When analyzing the frequency and time indicators for the steady state, it
is noticeable that all faulty values are lower than in the healthy state, with the exception
of sensor position P4 in both cases. The faulty value of the frequency indicator for the
start-up regime has a higher value than the value for the healthy state. The values of the
time indicator for the start-up process show that all faulty values are lower than the values
in the healthy state, with the exception of position P2.

In [23], the authors investigate the two-stage time-frequency analysis for detecting
broken bars in a steady state. The authors use STFT with Kaiser–Bessel window function.
The expression for the minimum window length is derived in the paper. The two-stage
analysis was used to study the 5th and 7th harmonics and their sidebands. The conclusion
of the paper is that broken rotor bars can be detected with the SFTF at a steady state and
with the minimum window length derived in the paper.

In [24], the authors investigated the influence of the axial air channels of the rotor on
the detection of broken rotor bars. The motivation for this research was the misdiagnosis
of the MCSA method. If the number of axial channels is equal to the number of poles, the
MCSA can generate a false positive or false negative alarm. The motor was tested with 0, 1,
and 2 (adjacent) broken bars. The sensor used was an air-core coil placed in a radial position.
The stator current and the radial flux (EMF of the coil) were measured for comparison.
FFT was used for signal analysis, and the spectral component (1-2s)f was analyzed. The
work showed that the detection of rotor fracture is independent of the presence of an axial
channel when magnetic stray flux analysis is applied.

In [25], the authors propose a method for automatic detection of a BRB based on a
multiple signal classification algorithm (MUSIC) and an artificial neural network (ANN).
An air coil was used as the sensor for the measurement of magnetic stray flux. The success
rate achieved with the proposed algorithm in detecting BRB faults shows the potential for
autonomous fault detection based on stray magnetic flux.

In [26], the authors proposed a method for the automatic detection of broken rotor
bars, misalignment, and combinations: BRB + misalignment. The proposed method is
based on STFT, statistical parameters, feature extraction, linear discriminant analysis (LDA),
dimensionality reduction, and feed-forward neural network (FFNN). The sensor used was
a triaxial stray flux sensor. The triaxial sensor consists of three Hall sensors whose axes
are perpendicular to each other, and which are all installed on one circuit board. They are
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arranged so that one sensor detects the axial flux, the second the radial flux, and the third
the radial–axial flux. The proposed algorithm can automatically detect the healthy state,
misalignment, and Misal. + 1 BRB and Misal. + 2 BRB. For all states, the authors report that
the effectiveness is more than 95%.

In [27], the authors investigated the detection of a BRB by monitoring the rotor rota-
tional frequency and the supply frequency sidebands. The authors investigated one BRB,
two BRBs (adjacent), and two non-adjacent BRBs separated by 90◦ (electrically). The faults
were investigated using three methods: MCSA, the internal magnetic flux (air gap), and
stray magnetic flux. For the stray magnetic flux method, an air-core coil in the radial–axial
position was used. The magnetic stray flux in the steady state and the fs − fr frequency
component, where fs is supply and fr is the rotor rotational frequency, can be used to iden-
tify all faulty conditions. The FFT and STFT analysis of the fs − fr frequency component
showed that the internal magnetic flux can detect all faulty states. The authors also showed
in experiments that the fs − fr frequency component of the internal and external magnetic
flux does not respond to an unbalanced load.

In [28], the authors investigated the effects of a BRB on the mechanical frequencies.
An air coil with a square cross-section mounted on the fan cover of the motor in a radial–
axial position (P1) is used as a sensor. The motor current was measured for comparison.
The measurements were carried out at the rated load of the motor. The analysis of the
mechanical frequencies in the steady state to detect rotor faults shows diagnostic potential.

In [29], the authors proposed the fifth harmonic of the rotor rotational frequency as
an indicator of rotor faults in induction motors: fs + 5fr. The fifth harmonic was chosen
because it does not contain sidebands that cause false indications and has a low sensitivity.
Stray flux analysis of the fs + 5fr component shows that all faulty states (one BRB and
two BRB—adjacent and non-adjacent) are detectable compared to the spectrum of the
healthy state and the defined threshold: −66.4 dB. The proposed indicator is immune to
the presence of an axial air channel. The indicator is not affected by an unbalanced load
and misalignment.

A diagnostic study conducted under real conditions is described in [30]. The diagnosis
took place in a pumping station. There was no prior knowledge of the parameters of the
mechanical system. The diagnosis was performed with MCSA, stray flux, and vibration
analysis with the motors in a steady state. The flux was monitored with two air coils in the
radial–axial position (P1). The work shows that the stray flux is not sensitive to mechanical
faults originating from the load. A second method was required to localize the fault (the
pump system studied is a complex electromechanical system—vertically mounted SCIM,
impeller, 15 m shaft, and 6 bearings). In this example, one method alone cannot provide
complete screening (fault detection and fault localization).

In [31], fault detection with stray flux in motors with soft starting is investigated. Four
soft starters were used. The signals of the air coils were determined for the radial, axial, and
radial–axial positions in the steady state and start-up condition. The steady-state signals
were analyzed with FFT, and the start-up signals with STFT. The variables in the tests were
the time setting and the initial torque/current setting. The faults investigated were as
follows: one BRB without load and with load and two BRBs (adjacent) without load and
with load. The authors proposed the following fault indicator: the highest value of the sf
component from the STFT analysis. Broken rotor bars can be detected when the motor is
operated with a soft starter. The transient stray flux, together with the steady-state stray
flux, provides reliable information about the rotor fault.

In [32], an automatic diagnostic system based on stray flux and current data is investi-
gated. The diagnostic system consists of the following steps: (1) stray flux and stator current
data at start-up, (2) STFT application, (3) division of the STFT map into regions and calcula-
tion of a proposed indicator for each region, (4) classification of the condition (healthy, one
BRB, two BRB, misalignment) by FFNN, and (5) final diagnosis for the end user via a user
interface. The sensor used for stray flux was a triaxial sensor consisting of three Hall sensors
on a board arranged perpendicular to each other. The results show 100% effectiveness in
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detecting two BRBs, 100% effectiveness in detecting one BRB, 95% effectiveness in detecting
misalignment, and 100% effectiveness in detecting a healthy motor.

In [33], the possibility of monitoring the tool condition in a CNC machine is investi-
gated. The monitored object was a cutting tool. The idea was to monitor the wear of the
cutting tool indirectly by monitoring the stray flux of the spindle motor. The proposed
method for tool wear estimation consists of the following steps: (1) Data acquisition from
triaxial sensors (3 perpendicular Hall sensors on a board) (2) DWT analysis of each obtained
signal (3) Calculation of indicator γDWT (4) Classification of cutting tool wear based on
indicator γDWT and depth of cut using FFNN. The proposed method is effective for the
automatic classification of tool wear conditions.

In [34], the automatic detection of BRB faults in SCIM with soft start is investigated.
The detection is tested with four different soft starters. The detection is based on current and
stray flux signals. The proposed method for automatic detection consists of the following
steps: (1) acquiring current and stray flux signals, (2) applying STFT, (3) dividing the STFT
map into a grid of m rows by n columns and calculating the proposed indicator for each
region of the map, (4) feature reduction by applying LDA, (5) automatic classification based
on FFNN. With the proposed method, automatic detection of BRB faults during soft start is
possible. An overall efficiency of 94.4% is achieved.

In [35], the automatic detection of BRB faults in SCIM with soft start is investigated.
The detection is tested with four different soft starters. The detection is based on stray flux
signals obtained from the air coil in the radial–axial position (P1). The proposed method for
automatic detection consists of the following steps: (1) acquisition of the transient stray flux
signal, (2) addition of white Gaussian noise to the signal, (3) application of the persistence
spectrum method, (4) adaptation of the images, (5) application of the convolutional neural
network. An accuracy rate of 99.89% was achieved.

In [36], the author proposed a method for detecting multiple faults in IM under peri-
odic low-frequency fluctuating loads. In the study, the following conditions are investigated
individually: healthy, partially broken bar, one broken bar, eccentricity due to unbalance,
and eccentricity due to misalignment. The proposed method consists of the following steps:
(1) data acquisition, (2) feature extraction (time domain), (3) application of Self-Organizing
Maps, (4) feature reduction by linear discriminant analysis, (5) application of a neural
network classifier. A triaxial sensor was used for data acquisition. The sensor itself is
fixed to the frame and consists of Hall-effect transducers that measure axial, radial, and
axial–radial flux. The authors report global classification rates of approximately 99.5% and
99% during training and testing, respectively.

Table 1 summarizes the articles from this section.

Table 1. Summary of literature review.

Reference Sensor Position
(Ref. to Figure 2)

Sensor—Type and
Dimensions

Fault Detection
Method Analysed Fault

Tested SCIM Rated
Power/Facility/
Motor Supply

[19] P1, P2, P3
Circular coil; N = 1000;
Inner φ = 3.9 cm; Outer
φ = 8 cm; Height 1 cm

STFT
DWT

Misalignment
Misal. + 1 BRB
Misal. + 2 BRB
(adjacent)

M1: 1.1 kW
M2: 0.75 kW Lab.
Start-up
Line supply

[20] P1

Circular coil; N = 1000
Inner φ = 3.9 cm
Outer φ = 8 cm
Height 1 cm

STFT
FFT

2 BRB (adjacent,
half pole pitch and
one pole pitch)

M: 1.1 kW
Lab.
Steady state
Line supply

[21] P1, P2

Circular coil; N = 1000
Inner φ = 3.9 cm
Outer φ = 8 cm
Height 1 cm

FFT
Spectral
subtraction
Autocorrelation

2 BRB (5
combinations)

M: 1.1 kW
Lab.
Steady state
Line supply
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Table 1. Cont.

Reference Sensor Position
(Ref. to Figure 2)

Sensor—Type and
Dimensions

Fault Detection
Method Analysed Fault

Tested SCIM Rated
Power/Facility/
Motor Supply

[22] P1, P2, P3, P4

Circular coil; N = 1000
Inner φ = 3.9 cm
Outer φ = 8 cm
Height 1 cm

Bispectrum
Autocorrelation 1 BRB

M: 1.1 kW
Lab.
Steady state
And Start-up
Line supply

[23] P1

Circular coil
Nc =1000
Inner φ = 3.9 cm
Outer φ = 8 cm
Height 1 cm

STFT 1 BRB
2 BRB (adjacent)

M: 1.1 kW
Lab.
Steady state
Line supply

[24] P1

Helmholtz coil
Nc =320
Inner φ = 121 cm
Outer φ = 155 cm

FFT 1 BRB
2 BRB

M1:5.5 kW
Lab.
Steady state
Line supply
M2,3: 280 kW, 6.6 kV,
Field test
Steady state
Line supply

[25] P1, P2, P3

Circular coil
Nc =1000
Inner φ = 3.9 cm
Outer φ = 8 cm
Height 1 cm

MUSIC
FFNN

1 BRB
2 BRB

M1: 1.1 kW
M2: 7.5 kW Lab.
Start-up
Line supply

[26] P1, P2

Triaxial stray flux sensor
Three hall sensors
perpendicular axis to
each other
Allegro—A1325

STFT
Statistical
parameters
LDA
dimensionality
reduction
FFNN

Misalignment
Misal. + 1 BRB
Misal. + 2 BRB
(adjacent)

M:0.74 kW
Lab.
Start-up
Line supply

[27] P1 Circular coil
Nc = 320

FFT
STFT

1 BRB
2 BRB
(adjacent)
2 BRB
(non-adjacent; 90◦

el. apart)

M: 7.5 hp
Lab.
Start-up and steady
state
Line supply

[28] P1

Square body
Nc = 1500
copper wire φ = 0.1 mm
Inner square length
40 mm
Outer square length
50 mm
Height 4.5 mm

FFT 1 BRB

M:4 kW
Lab.
Steady state
Line supply

[29] P1
Circular coil
Nc =300 (as stated in
text)

FFT

1 BRB
2 BRB adjacent
2 BRB
non-adjacent
Load unbalance
Misalignment
Eccentricity

M1:7.5 kW
M2: 5.5 kW
M3: 2.0 kW
M4: 5.5 kW
Lab.
Steady state
Line supply
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Table 1. Cont.

Reference Sensor Position
(Ref. to Figure 2)

Sensor—Type and
Dimensions

Fault Detection
Method Analysed Fault

Tested SCIM Rated
Power/Facility/
Motor Supply

[30] P1

Square body
Nc = 3500
Inner square length
40 mm
Outer square length
50 mm
Height 4.5 mm

FFT
Misalignment
Eccentricity
Bearing fault

M1:750 kW
M2: 750 kW
M3: 240 kW
M4: 240 kW
Field testing
Steady state
Line supply

[31] P1, P2, P3

Circular coil
Nc =1000
Inner φ = 65 mm
Outer φ = 80 mm
Height 15 mm

FFT
STFT

1 BRB
2 BRB (adjacent)

M: 1.1 kW
Lab.
Start-up and steady
state
4 soft-starters

[32] P1
Triaxial stray flux sensor
Three perpendicular
hall-effect sensors

STFT
FFNN

1 BRB
2 BRB (adjacent)
Misalignment

M1: 1 hp
M2: 1.47 hp
Lab.
Start-up
Line supply

[33] P1

Triaxial stray flux sensor
Three hall sensors
mounted perpendicular
on a PCB board

DWT
FFNN

Cutting tool wear
evaluation

M1: 3.7 kW
Line supply

[34] P1

The text description of
the coil does not match
the coil presented in the
paper

STFT
LDA
FFNN

1 BRB
2 BRB (adjacent)

M: 1.1 kW
Lab.
Start-up and
steady-state
4 soft-starters

[35] P1

Circular coil
Nc =1000
Inner φ = 6.5 cm
Outer φ = 8 cm
Height 1.5 cm

Persistence
spectrum
CNN

1 BRB
2 BRB (adjacent)

M: 1.1 kW
Lab.
Start-up and
steady-state
4 soft-starters

[36] P1
Triaxial stray flux sensor
Three perpendicular
hall-effect sensors

Self-Organizing
Maps
NN

1/2 BRB
1 BRB
Unbalance
Misalignment

M: 1.5 kW
Lab.
Fluctuating load
VFD supply

3. Materials and Methods

The test setup consists of a triaxial sensor, a data logger, a laptop, a servo machine test
system, and test objects. The triaxial coil consists of three copper coils that are perpendicular
to each other. Each coil was wound by hand and had 500 turns. The nominal diameter of
the single-coated enameled wire was 0.2 mm (class 200, grade 1). The body for the triaxial
coils was drawn in Autodesk Inventor Professional and 3D printed using UltiMaker S5.
The material used for the body was PLA NX2 (φ 2.85 mm, fill density 100%). Resistance
and inductance of each coil were measured with HAMEG Milliohm-Meter HM 8014 and
HAMEG LC-Meter 8018. The results are as follows: Coil 1: 43.3 Ω, 14.5 mH, Coil 2: 42.0 Ω,
13.3 mH, Coil 3: 44.1 Ω, 15.5 mH. The model with the dimensions of the body and the
finished triaxial sensor is shown in Figure 3.

The data logger used was National Instruments, model USB-6003, and the laptop
model was Acer Aspire 5 (11th Gen Intel(R) Core (TM) i5-1135G7 @ 2.40 GHz; 2.42 GHz.
Data was recorded using the MATLAB (R2020b) Analog Input Recorder application. The
duration of measurement was set to 20 s, and the sampling frequency to 5 kHz. Three
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channels were used: ai0, ai1, and ai2. After setting the sampling frequency and selecting
three channels, the application automatically sets the sampling frequency to 5.3125 kHz.
The displayed number of samples per measurement is 100,006.
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Figure 3. (a) Technical drawing of the sensor body; (b) cross-section of the sensor body; (c) photograph
of the finished triaxial.

The servo machine test system from the manufacturer Lucas-Nuelle consists of the
control module and the servo motor. The test system is of type CO3636-6V. The servomotor
was used as a brake, and the control module was used to set the load torque to a constant
value of 3.33 Nm for each measurement.

The test objects were two three-phase, totally enclosed, fan-cooled (TEFC) squirrel
cage IM with the same characteristics as shown in Table 2. All IMs were line-fed.

Table 2. Technical characteristics of IM1 and IM2.

Manufacturer: Siemens; Type: 1AV3082B 1LE10030DB222AB4

V Hz kW A PF RPM EFF-CL ETA %

400 Y 50 0.55 1.26 0.78 1440 IE3 80.8

The servomotor with its stand was attached to the table with two clamps and was not
removed from its fixed position during the entire measurement process. The induction
motors were mounted on the hollow metal supports and fixed to the table with three
clamps. When the first IM was placed, the position of the beams was marked on the table.
The height was leveled by placing a spirit level on the coupling between the servo motor
and the IM. The test setup is shown in Figure 4a.
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The fault of a broken rotor was simulated by drilling a 4 mm diameter hole in a rotor
bar. The generated fault is shown in Figure 4b.

The main idea of the measurement method was the randomness of the positioning
of the triaxial sensor on the IM. The randomness includes the random position and the
random orientation of the sensor itself. Since randomness can be understood in different
ways, the authors agreed on four guidelines before the measurement: (1) at least one vertex
of the sensor must be in contact with the IM, i.e., the sensor must always be in contact with
the IM; (2) divide the IM into 5 areas—left ribs, right ribs and upper ribs, drive end and
non-drive end (plastic fan cap); (3) change the area after each measurement; (4) position
the sensor randomly in the given area.

An example of the measurement in each area can be found in Figure 5. The green
rope seen in Figure 5 is used to prevent the hands from touching the coils. During the
measurement, there were no observable position changes in the sensor due to the vibration
of the motor.
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(plastic fan cap); (e) drive end.

The physical quantity measured is the induced electromotive force (emf) of each
coil. All measurements were taken when the motors had reached a steady state under a
load of 3.33 Nm. The measurements were performed on two IMs in the following way:
100 measurements per day with a duration of 10 days for each motor and each state of the
IM2; a total of 1000 measurements on the healthy motor, denoted IM1; 1000 measurements
on the IM2 in the healthy state, denoted IM2_H, and 1000 measurements on the IM2 in
the broken rotor bar state, denoted IM2_BRB1. The measurement interval of 10 days was
chosen by the authors to simulate daily or periodic monitoring of the health status of
the motor.

The method for detecting a broken rotor bar consists of a statistical analysis of the raw
data. The first step is to determine whether the data follows a parametric or non-parametric
distribution. The second step is to apply an appropriate statistical test to each set of
measurement data [37]. For example, each measurement set of motor IM1 is compared with
every other set of motor IM1. The same applies to IM2_H and IM2_BRB1. The detection of
a broken rotor bar is only performed for motor IM2. Motor IM1 was kept in a healthy state
throughout the investigation to determine if there is a statistically significant difference
between two healthy states of different motors, in this case, IM1 and IM2_H.

To comprehend more clearly the overall measurement and validation process flow
chart is shown in Figure 6. The details of the flow chart are presented in Sections 4–6 of
this paper.
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4. Data Analysis

The data visualization for each motor, each motor state and each day is shown with
histograms in Figure 7. The histogram of each day contains all data values obtained with the
data logger for all three coils. The number of bins chosen to represent the histogram is 100.
This number of bins was chosen for visualization purposes only, i.e., to show 10 histograms
in one figure that can be visually distinguished. The visualization is not intended to draw
conclusions about the data distribution. The abscissa in Figure 7 represents the emf of
the coils.
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To determine the statistical method for daily data comparison, i.e., which tests to use,
parametric or non-parametric, the data must be examined for normality. There are two
approaches to data testing, numerical tests, and graphical interpretation [38]. As stated
in [39], there are 55 tests for normality, but in this study, only the tests implemented in
MATLAB R2020b are used, i.e., One-sample Kolmogorov–Smirnov, Anderson–Darling, and
Jarque–Bera and Lilliefors.

When dealing with a large number of samples, normality tests may detect minimal
deviations from normality as significant. Therefore, graphical methods can be a helpful
tool for normality decisions [38]. In this paper, a graphical method, the quantile-quantile
(Q-Q) plot, is used. The results of the normality tests obtained from MATLAB R2020b are
shown in Table 3.

Table 3. Results of the normality tests.

Test Motor
p-Value

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10

One-sample
Kolmogorov–

Smirnov

IM1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
IM2_H <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
IM2_BRB1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Anderson-
Darling

IM1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
IM2_H <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
IM2_BRB1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Jarque-Bera
IM1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
IM2_H <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
IM2_BRB1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Lilliefors
IM1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
IM2_H <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
IM2_BRB1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

The results from Table 3 show that the p-value for every motor–day combination is
less than 0.001, which means the rejection of the null hypothesis that the data come from
a normal distribution. The Q-Q plot for each motor, motor state, and day is shown in
Figure 8.

The interpretation of the Q-Q plots in Figure 8 is as follows: The Q-Q plot in Figure 8a
shows deviations from the normality line, but not to the extent that suggests non-normal
data, leading the authors to conclude that the data from IM1 are subject to a normal
distribution; the Q-Q plots in Figure 8b,c show deviations from the normality line, leading
the authors to conclude that the data from IM2_H and IM2_BRB1 are subject to non-
normal distribution.
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The inconsistency between the results from Table 3 and the visual interpretation of
the Q-Q plot in Figure 8a, due to both the large sample size and the awareness that the
interpretation of Q-Q plots can be subjective [40], led to the decision to apply parametric
and non-parametric tests for the daily comparison of the data and the distinction between
healthy state and broken bar state.

5. Results
5.1. Normality Assumption

Because the measurements were conducted on SCIMs over 10 consecutive days
(100 measurements per day), meaning that measurements were repeated on the same
objects at more than two time points, repeated measures analysis of variance (RMANOVA)
as a method for determining the independence of the daily measurements was chosen.
RMANOVA is a statistical method used when differences between three or more correlated
groups are investigated [41]. The assumptions of the RMANOVA are approximately nor-
mally distributed dependent variable, no outliers in any of the repeated measurements,
and sphericity [42]. The studies conducted in [43] have shown that RMANOVA is a valid
statistical method even in the case of non-normal distribution if the sphericity assumption
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is met. The sphericity of the data is examined using the Mauchly test [44]. The results of the
Mauchly test for each motor and motor condition are shown in Table 4. The Mauchly test is
performed with the implemented MATLAB functions “rm = fitrm()” and “mauchly(rm)”.

Table 4. Results of the Mauchly test for each motor and motor state.

W ChiStat DF p-Value

IM1 0.99999 41.49 44 0.5798
IM2_H 0.99999 33.811 44 0.86671
IM2_BRB1 0.99999 36.867 44 0.76842

Statement of the null and alternative hypothesis for the daily measurement of each
motor and motor condition: H0 : µ1 = µ2 = . . . = µ10; H1 : at least one measurement µ differs
from another.

The results from Table 4 show that the p-value for each motor is greater than 0.05,
which means that the differences in all daily combinations have equal variances, i.e., the
sphericity assumption is met. The results of the RMANOVA analysis are shown in Table 5.
The RMANOVA is performed with the implemented MATLAB function “ranova(rm)”.

Table 5. Results of the RMANOVA analysis for each motor separately.

SumSq DF MeanSq F p-Value

IM1
(Intercept): day 0.0032546 9 0.00036162 1.0344 0.40934
Error(day) 9439.4 2.7 × 107 0.00034961

IM2_H
(Intercept): day 0.0037357 9 0.00041508 1.0644 0.38553
Error(day) 10,529 2.7 × 107 0.00038995

IM2_BRB1
(Intercept): day 0.0015375 9 0.00017084 0.41369 0.92853
Error(day) 11,150 2.7 × 107 0.00041296

The results from Table 5 show that the p-value for each motor is greater than 0.05,
which means that there is not enough evidence to reject the null hypothesis at a 5% sig-
nificance level, i.e., all mean values of the 10-day measurements are the same for a given
motor. The p-values for the daily comparison are determined using the MATLAB function
“multcompare(rm)”. The results of the multiple comparison with uncorrected p-values are
shown in Figure 9.

Figure 9 shows that not all daily combinations have p-values of more than 0.05. In
Figure 9a,b, the daily combinations with a p-value of less than 0.05 are 2-8, 4-8, 8-9, 1-2, and
1-8 (the daily combination 1-5 in Figure 9b has a value of 0.0509).

For multiple hypothesis tests, the probability that the null hypothesis is rejected, even
though it is true, increases with the number of tests (Type I error—false positive) [45].
The Type I error is controlled by adjusting the p-value. Two general methods for p-value
adjustment are the familywise error rate (FWER) and the false discovery rate (FDR) [46].
The FWER is the probability of one or more type I errors occurring in a family of tests
under the null hypothesis, and the FDR is the expected proportion of the ratio: number of
false-positive tests to the number of tests with the null hypothesis rejected [47]. There are
a variety of methods for controlling FWER (Bonferroni, Holm, Hochberg, Hommel, and
adaptive Bonferroni) and FDR (two-stage linear set-up procedure of Benjamini, Krieger and
Yekutieli, Benjamini and Hochberg, and Storey Tibshirani) [48–50]. The most representative
methods for FWER and FDR are Bonferroni and Benjamini–Hochberg, respectively. Since
the Bonferroni correction is conservative and less powerful compared to the Benjamini–
Hochberg (BH) correction [51], p-value adjustment for the multiple comparison results is
performed using the BH correction.
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BH correction method: Sorting the p-values in ascending order, ranking the p-values
(the smallest p-value has rank 1), calculating the critical BH value for each p-value using
the formula (i/m)Q, where i is the rank of a particular p-value, m is the total number of
tests, and Q is the false discovery rate chosen by the user. After sorting the p-values and
calculating the critical value, the largest p-value whose value is less than the critical value
sets the cut-off for rejecting the null hypothesis. All null hypotheses with p-values smaller
than the largest p-value found, including the largest p-value, are rejected [52,53]. The results
of the BH correction are shown in Figure 10.

The results from Figure 10 show that there is no intersection of the sorted p-values
with the line y = (i/m)Q, which means that all daily combinations with p-values below
0.05 are false positives, i.e., there is no statistically significant difference between all daily
combinations for each motor.
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To investigate whether the approach with a triaxial sensor, random positions over
the motors, and raw data make a difference between the motor conditions, a two-way
RMANOVA was used. The data for the analysis are organized in a table consisting of
columns representing the “day” variable and rows representing the “Motor” variable
(IM1, IM2_H, and IM2_BRB1, respectively). The two-way RMANOVA is performed using
the MATLAB function “ranova(rm)”. Before performing the two-way RMANOVA, the
Mauchly test is performed to check whether the sphericity is met. The result of the Mauchly
test is shown in Table 6, and the result of the analysis is shown in Table 7.

Table 6. Results of the Mauchly test of data prepared for two-way RMANOVA.

W ChiStat DF p-Value

1 36.631 44 0.77698

Table 7. Results of the two-way RMANOVA.

SumSq DF MeanSq F p-Value

(Intercept):
day 0.0013094 9 0.00014549 0.37871 0.94548

Motor 8.6033 2 4.3017 10413 0
Motor: day 0.0072185 18 0.00040103 1.0439 0.40485
Error(day) 31,118 8.1 × 107 0.00038417 1 0.5

The results from Table 6 show that sphericity is met (p > 0.05). The results from Table 7
show that there is not enough evidence for the variable “day” to reject the null hypothesis
with a significance level of 5%, i.e., there is no significant difference in the mean values
between the days. This is already evident in the analysis, which was carried out separately
for each motor. Table 7 also shows that there is strong evidence (p = 0) for the variable
“Motor” to reject the null hypothesis at a significance level of 5%, i.e., there is a statistically
significant difference between the motors. The multiple comparison test according to the
variable “Motor” is shown in Table 8, and the estimated difference in means (with 95%
confidence intervals) is shown in Figure 11.

Table 8. Results of multiple comparison test by variable “Motor”—uncorrected p-values.

Motor 1 Motor 2 Difference StdErr p-Value Lower Upper

IM1 IM2_H 9.0766 × 10−5 5.2479 × 10−6 5.0809 × 10−67 8.048 × 10−5 0.00010105
IM1 IM2_BRB1 −0.00060576 5.2479 × 10−6 0 −0.00061605 −0.00059548

IM2_H IM2_BRB1 −0.00069653 5.2479 × 10−6 5.0809 × 10−67 −0.00070681 −0.00068624
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The results from Table 8 show that there is a statistically significant difference between
the individual motors. Figure 11 shows the graphical representation of the results from
Table 8. The estimated difference in means with a 95 % confidence interval for healthy–
healthy motor combinations is represented in blue color, and healthy–BRB combinations are
represented in red color in Figure 11. The non-overlapping intervals of healthy combination
with any healthy–BRB combinations graphically indicate a statistically significant difference.
From Figure 11, it is observable that healthy–BRB combinations differ significantly in value
from healthy–healthy combinations. To quantify the differences, the percentage difference
between values of estimated differences in means is calculated, and the results are shown
in Table 9.

Table 9. Percentage difference in estimated differences in means relative to the healthy–healthy motor
combination.

Reference Motor Combination Percentage Difference in Estimated
Differences in Means

IM1–IM2_H
IM1–IM2_BRB1 767.40%

IM2_H–IM2_BRB1 867.40%

5.2. Non-Parametric Approach

The assumption of a non-normal data distribution implies the use of a non-parametric
test. In non-parametric analysis, the data are transformed into ranks or signs [54]. The
power of non-parametric tests is generally lower than that of parametric tests, but they are
more powerful for non-normally distributed data [54,55]. The non-parametric alternative
to the RMANOVA test is the Friedman test [56]. The null hypothesis of the Friedman test
states that the compared groups come from the same population or the population with
the same median [57]. The null hypothesis for this study is that the data obtained from
the measurements taken over a 10-day period for a particular motor come from the same
population. The test is performed using the MATLAB function “friedman(x)”, where “x”
represents the table of measurements whose columns are assigned to days. The results of
the Friedman test for each motor are shown in Table 10.

The results from Table 10 show that all p-values are greater than 0.05, i.e., for each
motor/motor condition, there is insufficient evidence to reject the null hypothesis at a 5%
significance level, meaning that all measurements for a given motor come from the same
distribution. The results of the multiple comparison with uncorrected p-values for each
motor are shown in Figure 12.
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Table 10. Results of the Friedman test for each motor separately.

SS df MS Chi-sq Prob>Chi-sq

IM1
Columns 92.7364 9 10.304 10.13 0.34
Error 247,166,451.7636 26,999,991 9.1543
Total 247,166,544.5 29,999,999

IM2_H
Columns 104.678 9 11.6309 11.43 0.2471
Error 247,189,783.322 26,999,991 9.1552
Total 247,189,888 29,999,999

IM2_BRB1
Columns 62.6033 9 6.95593 6.84 0.654
Error 247,200,721.8967 26,999,991 9.15559
Total 247,200,784.5 29,999,999
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Figure 12 shows that not all p-values are above the significance level of 0.05. To check
whether the significant p-values are false-positive, the BH correction is applied. The results
of the BH correction are shown in Figure 13.
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Healthy; (b) IM2_H; (c) IM2_BRB1.

The results from Figure 13 show that there is no intersection of the sorted p-values
with the line y = (i/m)Q, which means that all daily combinations with p-values below
0.05 are false positives, i.e., there is no statistically significant difference between all daily
combinations for each motor.

To examine the differentiation between motor conditions assuming a non-normal
distribution, the Friedman test was used. The data for the analysis are organized in a table
consisting of columns representing the variable “Motor” and rows representing the variable
“day”. The null hypothesis for this analysis is as follows: the data obtained for each motor
with the measurements over a 10-day period come from the same population. The results
of the Friedman test are shown in Table 11.

Table 11. Results of the Friedman for motor comparison.

SS df MS Chi-sq Prob>Chi-sq

Columns 1.8583 × 104 2 9.2914 × 103 1.8647 × 104 0
Error 5.9776 × 107 59,999,998 0.9963
Total 5.9795 × 107 89,999,999 0.00038417

The results from Table 11 show that there is a significant difference between the motors
(p = 0), i.e., that the data obtained for each motor does not come from the same population.
The multiple comparison by the variable “Motor” is shown in Table 12 and the estimated
difference in mean ranks (with 95% confidence intervals) is shown in Figure 14.

Table 12. Results of the multiple comparison by variable “Motor”—uncorrected p-values.

Motor 1 Motor 2 Difference p-Value Lower Upper

IM1 IM2_H 0.0042759 8.3828 × 10−62 0.0037707 0.0047811
IM1 IM2_BRB1 −0.028118 0 −0.028623 −0.027613

IM2_H IM2_BRB1 −0.032394 0 −0.032899 −0.031889

The results from Table 12 show that there is a statistically significant difference between
the individual motors. Figure 14 shows the graphical representation of the results from
Table 12. The percentage difference in estimated mean ranks for the motor combinations
with BRB fault compared to the healthy motor combinations is shown in Table 13.



Sensors 2024, 24, 3080 20 of 23

Sensors 2024, 24, x FOR PEER REVIEW 20 of 24 
 

 

Table 12. Results of the multiple comparison by variable “Motor”—uncorrected p-values. 

Motor 1 Motor 2 Difference p-Value Lower Upper 
IM1 IM2_H 0.0042759 8.3828 × 10−62 0.0037707 0.0047811 
IM1 IM2_BRB1 −0.028118 0 −0.028623 −0.027613 

IM2_H IM2_BRB1 −0.032394 0 −0.032899 −0.031889 

 
Figure 14. Estimated difference in mean ranks of variable “Motor” with 95% confidence interval. 

The results from Table 12 show that there is a statistically significant difference be-
tween the individual motors. Figure 14 shows the graphical representation of the results 
from Table 12. The percentage difference in estimated mean ranks for the motor combina-
tions with BRB fault compared to the healthy motor combinations is shown in Table 13. 

Table 13. Percentage difference in estimated differences in mean ranks relative to the healthy–
healthy motor combination. 

Reference Motor Combination Percentage Difference in Estimated Differences in 
Mean Ranks 

IM1–IM2_H IM1–IM2_BRB1 757.60% 
IM2_H–IM2_BRB1 857.60% 

6. Conclusions 
In this study, a statistical approach for the validation of measurement methods and 

the detection of broken rotor bars was investigated. A novel approach to detection is the 
random positioning of the sensor (triaxial coil) over the surface of the induction motor. 
The study was conducted for two motors and three cases: The first motor was kept in a 
healthy state throughout the measurement; for the second motor, the measurement was 
performed in a healthy state, after which a fault, i.e., a broken rotor bar, was generated. 

Statistical tests were performed on the raw data, i.e., values of the induced electro-
motive force of the coils. The data was collected over a period of ten days, with 100 meas-
urements per day. The statistical analysis of the data distribution was inconclusive. The 
normality tests performed in MATLAB did not show complete agreement with the Q-Q 
plots. Two approaches were chosen: parametric and non-parametric. RMANOVA was 
used for the parametric approach. The RMANOVA results to validate the measurement 
method show that the measurements are time-independent for each motor and motor con-
dition. The multiple comparison analysis was performed together with the BH p-value 
correction for the daily measurement combinations. After applying the BH correction, all 
p-values were above the 5% significance level, i.e., there was no statistically significant 
difference between the daily measurements for a given motor. For BRB detection, a two-

Figure 14. Estimated difference in mean ranks of variable “Motor” with 95% confidence interval.

Table 13. Percentage difference in estimated differences in mean ranks relative to the healthy–healthy
motor combination.

Reference Motor Combination Percentage Difference in Estimated
Differences in Mean Ranks

IM1–IM2_H
IM1–IM2_BRB1 757.60%

IM2_H–IM2_BRB1 857.60%

6. Conclusions

In this study, a statistical approach for the validation of measurement methods and
the detection of broken rotor bars was investigated. A novel approach to detection is the
random positioning of the sensor (triaxial coil) over the surface of the induction motor. The
study was conducted for two motors and three cases: The first motor was kept in a healthy
state throughout the measurement; for the second motor, the measurement was performed
in a healthy state, after which a fault, i.e., a broken rotor bar, was generated.

Statistical tests were performed on the raw data, i.e., values of the induced electro-
motive force of the coils. The data was collected over a period of ten days, with 100 mea-
surements per day. The statistical analysis of the data distribution was inconclusive. The
normality tests performed in MATLAB did not show complete agreement with the Q-Q
plots. Two approaches were chosen: parametric and non-parametric. RMANOVA was
used for the parametric approach. The RMANOVA results to validate the measurement
method show that the measurements are time-independent for each motor and motor
condition. The multiple comparison analysis was performed together with the BH p-value
correction for the daily measurement combinations. After applying the BH correction, all
p-values were above the 5% significance level, i.e., there was no statistically significant dif-
ference between the daily measurements for a given motor. For BRB detection, a two-way
RMANOVA was used to statistically analyze the differences between motors. The analysis
shows that there is a statistically significant difference between all motors/conditions.
However, the results between two healthy conditions (IM1 and IM2_H) were compared,
and their data were found to be statistically different; the quantitative analysis of the esti-
mated mean difference shows a small difference in the mean values for the healthy motor
combination compared to the combination of healthy and BRB motors. All conclusions for
the RMANOVA also apply to the non-parametric approach. The only difference is that the
Friedman test uses ranks, and therefore, the results for the motor comparison are expressed
as estimated differences in the mean ranks.

Overall, the results show that the parametric and non-parametric approaches lead to
the same conclusions: the measurement method is valid, i.e., it provides consistent results
over time, and the raw data obtained with random positioning of the triaxial sensor can
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statistically distinguish a healthy motor from a motor with a broken rotor, but the reference
point or threshold needs to be specified.

Limitations of this research are the number and type of motors, i.e., the experiments
are conducted on two SCIMs of same manufacturer and technical characteristics, severity
of the fault, i.e., only case of one broken bar is investigated, time duration and sampling
frequency of the measurement was kept constant throughout the experiment, meaning
their influence has not been investigated, the influence of the number of measurements
per day has not been investigated and the fact that healthy motor as reference is needed to
detect broken rotor fault.

Future work will include statistical analysis of rotor faults with two broken bars (adja-
cent and non-adjacent) and a comparison of data from IMs from different manufacturers to
investigate the threshold for the healthy–healthy and healthy–BRB combinations.
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