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Abstract: Self-assembly formation is a key research topic for realizing practical applications in
swarm robotics. Due to its inherent complexity, designing high-performance self-assembly formation
strategies and proposing corresponding macroscopic models remain formidable challenges and
present an open research frontier. Taking inspiration from crystallization, this paper introduces
a distributed self-assembly formation strategy by defining free, moving, growing, and solid states
for robots. Robots in these states can spontaneously organize into user-specified two-dimensional
shape formations with lattice structures through local interactions and communications. To address
the challenges posed by complex spatial structures in modeling a macroscopic model, this work
introduces the structural features estimation method. Subsequently, a corresponding non-spatial
macroscopic model is developed to predict and analyze the self-assembly behavior, employing the
proposed estimation method and a stock and flow diagram. Real-robot experiments and simulations
validate the flexibility, scalability, and high efficiency of the proposed self-assembly formation
strategy. Moreover, extensive experimental and simulation results demonstrate the model’s accuracy
in predicting the self-assembly process under different conditions. Model-based analysis indicates
that the proposed self-assembly formation strategy can fully utilize the performance of individual
robots and exhibits strong self-stability.
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1. Introduction

The initial inspiration for swarm robotics derives from the incredible self-organizing
swarms observed in nature, such as bird flocks [1], fish schools [2], and crystallization [3].
Such natural swarms formed by numerous simple units are completely distributed and de-
centralized, achieving complex collective behavior solely through simple local interactions
rather than external or central controls [4]. This spontaneous phenomenon is defined as
self-organization, and its characteristics, including scalability, flexibility, and robustness,
serve as critical indicators for developing swarm robotics [5-8]. As a result, the focal point
of the field of swarm robotics is to develop a swarm of simple robots. They can go beyond
the capabilities of individual robots and effectively collaborate to achieve higher-level
collective objectives [6]. Over the past two decades, swarm robotics has gradually evolved
into a mature field, engaging researchers worldwide in its development. A comprehensive
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exploration of fundamental swarm behaviors, such as aggregation [9], foraging [10], and
collective exploration [11], has been undertaken. The characteristics of these swarm behav-
iors are also analyzed by modeling microscopic [12,13] and macroscopic [14-16] models.
Through these investigations, a more profound comprehension of swarm robotics and its
prospective applications has been achieved.

Self-assembly is a reversible process in which pre-existing simple entities sponta-
neously form an ordered spatial structure without external intervention [17,18]. In the field
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of swarm robotics, self-assembly formation is considered a fundamental research topic and
holds significant potential for practical applications [19]. These applications encompass
the self-assembly control of the satellites [20,21], the programmable self-assembly mat-
ter [22,23], and advanced manufacturing rooted in self-assembly [24]. Consequently, this
challenging and meaningful problem has attracted the attention of researchers worldwide
striving to develop high-performance self-assembly swarm robotics. In 2014, Ruben-
stein et al. designed distributed local interaction rules for swarm robotics based on the
finite-state machine (FSM) and achieved self-assembly formations by organizing a motion
chain [25]. However, this approach operated in a single-threaded mode, resulting in ex-
tremely low efficiency. Following this, Yang et al. proposed a self-assembly formation based
on a distributed algorithm by implementing two parallel motion chains [26,27]. Although
this policy improved the efficiency, the high parallel potential of swarm robotics was not
fully exploited. Additionally, Divband Soorati et al. designed swarm robotics to achieve the
self-assembly of a tree formation [28]. Since father nodes constrained the growth of child
nodes, the efficiency of the self-assembly was also hindered. In 2019, Zhu et al. defined
four rules of collective behavior to form a square formation [29]. While this algorithm
showed high parallelism and efficiency, its robustness was limited by the global leader.
Zheng et al. [30] and Deshmukh et al. [31] discussed the self-assembly formation based on
the density-feedback method, showing great scalability and high parallelism. However,
the density-feedback laws relied on off-line global pattern planning [30] or a centralized
controller [31], which conflicted with the flexibility and robustness of swarm robotics.
The graph-based method was applied in a small-scale self-assembly by Klavins [32] and
Mong-ying et al. [33]. Nevertheless, this control policy might face the challenge of dimen-
sional explosion when applied to large-scale swarm robotics. Similarly, automated design
methods were typically limited to small-scale self-assembly [34,35]. The potential field
approach [36-38] might achieve distributed and high-efficient self-assembly formation.
As the potential field only constrained robots to a specific area rather than certain posi-
tions, forming a formation with lattice structures was challenging. The above research on
self-assembly of swarm robotics is summarized in Table 1. While the above research is
valuable and offers essential guidance for exploring self-assembly formations, the potential
of swarm robotics has yet to be realized. Indeed, crystallization is an exciting self-assembly
phenomenon in nature, where the free particles efficiently and spontaneously form crystals
with a periodic arrangement of atoms [39-41]. This phenomenon may contain the key
principles for designing high-performance self-assembly formation strategies.

Table 1. An overview of research on self-assembly of swarm robotics.

Reference Authors R'e search Methods Limitations
Achievements
Swarm robotics
organized a single Extremely low efficiency
Ref. [25] Rubenstein et al. motion chain to achieve The FSM method resulted from only
self-assembly single-threaded mode.
formation.

Refs. [26,27]

Swarm robotics

organized two parallel Low efficiency resulted
Yang et al. motion chains to The FSM method from only double-threaded
achieve self-assembly mode.
formation.

Ref. [28]

Swarm robotics

self-assembled to the The constraints between

Divband Soorati et al. The FSM method father and child nodes

tree-like formation to

search for bright areas. limit efficiency.
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Table 1. Cont.

Reference Authors R.e search Methods Limitations
Achievements
Swarm robotics The robustness is limited
Ref. [29] Zhu et al. self-assembled to a The FSM method due to designing a global
square formation. leader for swarm.
Swarm robotics . The flexibility is limited
Ref. [30] Zheng et al. self-assembled to the The derr::}ttill—(fgedback due to rely on the off-line
specified formation. global pattern planning.
Swarm robotics The densitv-feedback The robustness is limited
Ref. [31] Deshmukh et al. self-assembled to the Y due to rely on a centralized
i . method
specified 2D formation. controller.
Swarm robotics
. achieved small-scale Not suitable for large scale
Ref. [32] Klavins et al. self-assembly The graph-based method self-assembly formation.
formation.
Swarm robotics
. achieved small-scale Not suitable for large scale
Ref. [33] Mong-ying et al. self-assembly The graph-based method self-assembly formation.
formation.
Swarm robotics
self-assembled into a The evolutionary Not suitable for large scale
Ref. [34] Grofs etal small formation for algorithms self-assembly.
collective transport.
Swarm robotics . .
Ref. [35] Sperati et al. self-assembled into a The evollutlonary Not suitable for large scale
algorithms self-assembly.
small-scale path.
Swarm robotics Unable to construct a
Ref. [36] Khaldi et al. self-assembled to the The potential field methods formation with lattice
specified path. structures.
Swarm robotics Unable to construct a
Ref. [37] Cheah et al. self-assembled to the The potential field methods formation with lattice

specified 2D formation. structures.

The macroscopic model provides a crucial theoretical basis for studying swarm
robotics [4]. It can directly capture the critical features of swarm behavior and predict the
long-term behaviors of swarm robotics [42,43]. Hence, macroscopic models facilitate the
analysis of the underlying mechanisms driving swarm behavior [42,43]. These analysis
results can be further used to optimize the design of the swarm robotics and improve
the robot controllers. Generally speaking, macroscopic models can be subdivided into
non-spatial models and spatial models [4,43]. The non-spatial model is widely used, relying
on the assumption of spatial uniformity [44]. Based on the probabilistic finite-state machine
(PFSM), Martinoli et al. [14] and Konur et al. [45] presented the non-spatial model for the
collaboration-based stick-pulling swarm. The steady-state conditions and optimal collabo-
ration rate were further discussed. Schmickl et al. [46] used the non-spatial model based
on the stock and flow diagram to analyze the feedback loops of the aggregation behaviors.
Liu et al. proposed a non-spatial model for foraging behaviors using PFSM [16]. On this
basis, Song et al. found the optimal decision rules of the foraging behaviors [10]. The above
research demonstrates that non-spatial models are usually very adept at analyzing the
driving mechanism of swarm behavior besides the predicted ability. The spatial model
is another significant macroscopic approach for studying swarm robotics, being mathe-
matically grounded in the Fokker-Planck or diffusion-reaction equations [7,47,48]. Since
the spatial model characterizes the ensemble of trajectories for a swarm within a specific
area and time, its predictions can be visualized to directly depict the anticipated shape
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of the swarm robotics [4,7]. Schmickl et al. [46] and Prorok et al. [49] discussed spatial
models in aggregation and coverage behaviors, respectively. They demonstrated little
difference between spatial and non-spatial models in long-term predictions. Although the
predictions of the non-spatial models are more visually intuitive, it is difficult to identify the
driving mechanisms of swarm behaviors [46]. Meanwhile, due to the difficulty in obtaining
analytical solutions, the applications of spatial models may be constrained [7].

Although macroscopic models have been applied extensively to study various swarm
tasks and have shown great significance, modeling a macroscopic model for self-assembly
formation remains a relatively underexplored area. Whether it is a spatial or non-spatial
model, a key aspect of modeling is constructing the state transition functions (or state
transition probabilities) between states [14,46]. To the authors’ knowledge, two widely used
methods for constructing the state transition function are the data statistics method [50-53]
and the geometrical estimation method [14,16]. However, in all current studies on modeling
macroscopic models for self-assembly formation, the state transition functions are often
reduced to experiment-based free parameters [14] using the data statistics method [50-53].
Since the free parameters fail to explain the inner mechanisms of the state transitions, the
scientific value of the macroscopic model becomes limited. The state transition function,
based on the geometrical estimation method, holds the potential to elucidate its transition
mechanisms. However, this method is only suitable for situations where state transitions
are only influenced by the geometric description of the robot’s sensing area and the density
of the robots, e.g., stick-pulling [14], aggregation [46], and foraging [16]. In self-assembly
formation, the state transition is also affected by the spatial structural features of the
formation besides the robot’s sensing area. These complex spatial structures introduce
strong nonlinearity to the state transitions. Therefore, the geometrical estimation method
cannot be used to construct state transition functions for the self-assembly formation.

Designing a high-performance self-assembly formation strategy to achieve the two-
dimensional (2D) shape formation with lattice structures and presenting a corresponding
macroscopic model is challenging and meaningful for advancing swarm robotics. In this
paper, a high-performance distributed self-assembly formation strategy is introduced,
drawing inspiration from crystallization processes. To convert the macroscopic swarm
behaviors to multiple simple collaborative tasks, five states, i.e., free, moving, building,
growing, and solid, are defined for robots inspired by the crystallization’s phase transition
processes (see Figure 1a and Table 2). Corresponding behavioral rules are designed for each
robot state. Additionally, the concepts of unit cells and nucleation in crystallization are
incorporated into self-assembly formation to initiate the self-assembly process and facilitate
lattice formation, respectively. Consequently, robots in various states can autonomously
collaborate and communicate locally, allowing them to form user-specified 2D shape
formations with lattice structures. Notice that designing a self-assembly formation strategy
for swarm robotics is not a thorough reproduction of the crystallization process due to
the difference between robots and crystal. To implement the proposed self-assembly
formation, Waxberry robots running within a grid ground and the embodied simulator are
developed. Meanwhile, a non-spatial macroscopic model is proposed for the self-assembly
formation. Here, the master equations of this model are created based on the stock and flow
diagram. To solve the limitations of the geometric estimation and data statistics methods,
the structural features estimation (SFE) method is proposed to construct the model’s state
transition functions. Through defining the basic six structural types and analyzing their
features, the state transition functions that have the potential to explain the transition
mechanisms are constructed. Real-robot experiments and embodied simulations verify the
proposed model’s predictive capability for self-assembly formation across various shapes,
scales, and system parameters.
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Figure 1. Three critical characteristics in crystallization. (a) The phase transition of the crystallization.
Inspired by the phase transitions, the complex self-assembly formation task can be decomposed into
several simple cooperative tasks among robots in different states. (b) The Wigner—-Seitz unit cell in
the parallelogram lattices. The unit cell is introduced for self-assembly to achieve the formation with
lattice structures. (c) Nucleation. Nucleation in crystallization suggests that self-assembly formations
also require a special robot to trigger this process.

Table 2. The definition of states of robot inspired by crystal growth.

The Phenomena of Crystal Growth The States of Robot
The free solute particles Free robots
The solute particles in the diffusion process Moving robots
The solute particles entering kinks Building robots
The atoms making up the crystal surface Growing robots
The atoms inside crystal Solid robots

The main contributions of this paper are summarized in the following three aspects.
Firstly, a high-performance distributed self-assembly formation strategy inspired by crys-
tallizations is proposed for homogeneous swarm robotics. Since the design of a swarm-
robotics cooperative mechanism in self-assembly formation is inspired by crystallization,
swarm robotics shows excellent flexibility, scalability, and high efficiency. These advantages
are demonstrated by real-robot experiments and simulations. Secondly, the SFE method
is proposed to address the challenges posed by complex spatial structures in modeling
macroscopic models. Compared with the data statistics method, the SFE method possesses
the potential to delve into the mechanisms underlying swarm behaviors. Meanwhile, the
proposed method overcomes the limitations of the geometric estimation method in sce-
narios with spatial structures. Besides the self-assembly formation, the proposed method
is also significant in modeling other swarm tasks involving complex spatial structures.
Thirdly, a non-spatial macroscopic model is modeled for the proposed self-assembled
formation based on the stock and flow diagram and SFE method. Compared to simulations,
the proposed model can quickly and accurately predict the whole macroscopic dynamic
results. This predictive capability is an important guarantee for the realization of practical
applications of self-assembly formation, especially in large scale tasks. Furthermore, the
analysis based on the model indicates that shorter building time consumed by a single
robot means a higher forming efficiency. It points out ways of optimizing the efficiency of
the self-assembly formation.

The rest of this paper is organized as follows. In Section 2, the distributed self-assembly
formation strategy inspired by crystallization is proposed and verified. In Section 3,
the mathematical description of the macroscopic model is introduced. In Section 4, the
validation of the proposed model and discussions are expounded. Lastly, the conclusions
of this paper are drawn in Section 5.

2. The Self-Assembly Formation Inspired by Crystallization
2.1. Crystallization and Inspiration

Crystallization is a natural self-assembly process in which free solute particles (e.g.,
atoms, ions, or molecules) are arranged into highly ordered structures, resulting in a crystal
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with a periodic arrangement of atoms [39—41]. Driven by the laws of physics, free solutes
spontaneously assemble into a crystal through local interactions without external controls.
This phenomenon signifies a set of high-performance self-assembly rules. Consequently,
it becomes feasible to devise a high-performance distributed self-assembly formation
strategy for swarm robotics to create a 2D shape with lattice structures by emulating the
crystallization process. Here, three critical characteristics in crystallization are worth noting,
offering inspiration for self-assembly formation.

Firstly, crystallization is a phase transition [54]. Through diffusion (i.e., mass transfer),
the free solute particles are transported from the solution to the growing crystal surface
(see Figure 1a). According to the Kossel-Stranski model [55], the particles attached to the
kinks are incorporated into the crystal by forming new bonds with crystal atoms on the
surface, resulting in crystal growth. Indeed, the crystallization process can be regarded as
cooperating task finished by the particles in different phases or states. This phenomenon
suggests to us that the complex self-assembly formation can be decomposed into multiple
simple collaborative tasks performed by robots in different states.

Secondly, the unit cell is the fundamental building block of the crystal and defines
atoms’ basic arrangement and repetition [56]. It is the key to generating periodic latticed
structures. Here, Figure 1b shows the definition of the unit cell according to Wigner-Seitz
in the parallelogram lattices [56]. Therefore, introducing the unit cell for self-assembly is
the key to achieving the formation with lattice structures. Under the above inspirations of
the crystallization’s characteristics, the self-assembly formation strategy is introduced in
Section 2.2.

Thirdly, crystallization begins in nucleation. Nucleation may occur spontaneously
from the solvated phase or be artificially induced [57]. When the radius of nucleus r exceeds
its critical radius, the crystal growth begins based on this stable nucleus (see Figure 1c). It
is not hard to find that a stable point is essential for self-assembly.

The above characteristics can provide inspiration for designing the self-assembly
formation of swarm robotics. However, due to the difference between crystals and robots,
many unique crystallized mechanisms are not applied in the self-assembly formation
of swarm robotics, such as the equilibrating crystallization process, the driving force of
crystallization based on thermodynamics, and so on. Thus, designing the self-assembly
formation strategy for swarm robotics is not a thorough reproduction and imitation of the
crystallization process.

2.2. The Distributed Self-Assembly Formation Strategy for Swarm Robotics

For the self-assembly formation considered in this paper, all robots are initially dis-
tributed on the ground randomly and uniformly. This paper sets the density of robots on
the ground as 0.2 by default. Generally, the number of robots is more than sufficient for
self-assembly formation. Each robot has a low ability; they only know their position and
can communicate with neighboring robots in a small local area. Note that direct communi-
cation has the advantages of portability and has a lower cost than stigmergy [58]. After
giving the user-specified shape, robots will assemble into this formation by interacting
with neighbors without relying on external control and global information. The details are
designed as follows.

As introduced in Section 2.1, the inspiration drawn from crystal growth provides
a framework for designing self-assembly formation. To decompose the complex self-
assembly formation task into several simple cooperative tasks, five states are defined for
robots inspired by the crystallization’s phase transition (see Table 2). Inspired by the free
solute particles, the free robot is designed to provide the available materials for self-assembly
formation. Like solute molecules in the diffusion process, the moving robot is responsible
for transporting itself to the growth boundary of the formation. The particles attached
to the kinks inspire the design of the building robot, which occupies a specified position
to enter and expand the formation. The growing and solid robots correspond to atoms on
the surface of and inside the crystal, respectively. Considering the differences between
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crystallization and self-assembly formation, the growing robot should provide the specified
positions and recruit free and moving robots to these positions, promoting the expansion
of formation. The solid robots no longer do anything, like the atoms inside the crystal.
In addition, more sub-states are also defined for robots based on different criteria, out of
consideration for modeling the macroscopic model. See Figure 2 and Section 3 for more
details. As shown in Figure 1b, based on the Wigner—Seitz unit cell in the parallelogram
lattices, the cross-arranged unit cells are designed for self-assembly formation to achieve
the shape with lattice structures. Here, the unit cell is defined as a square grid with two
unit lengths, allowing a building, growing, or solid robot to be positioned at its center (see
Figure 3). The cross-arranged unit cells stipulate the arrangement of the robots in the
formation and provide a basis for the growing robot to specify where it needs to be built.
Referring to the definition of the cross-arranged unit cells (see Figure 3), each growing
robot positioned in a unit cell has four neighboring unit cells. Within this context, the
growing state is subdivided into three distinct sub-states, i.e., GI, G2, and G3, based on
the conditions of neighboring unit cells (see Figure 2). As shown in Figure 4, the G1, G2,
and G3 states indicate that this growing robot has one, two, and three neighboring filled
unit cells, respectively. The unit cell filled by growing or solid robots is defined as the
filled unit cell; otherwise, it is the empty unit cell. These sub-states of the growing state
are necessary for modeling the macroscopic model of self-assembly formation. For more
details, see Section 3. In addition, inspired by the nucleation in crystallization, two robots
will be selected as the initial growing robots and positioned at the coordinates (xo, yo)
and (xp, yo + 2) according to the cross-arranged unit cell’s definition (see Figure 5). xg
and y( can be assigned any value. The configuration of two growing robots can trigger
self-assembly and benefit subsequent modeling macroscopic models. Other robots will be
configured as free robots and placed in the arena randomly and uniformly, similar to solute
particles (see Figure 5). Then, the self-assembly formation will start automatically. The
detailed control strategy of the robots in different states is introduced as follows.

(a) (c)

The sates _—

New
growing

Growing
Old
growing

JIIT

(b)

Dormant
growing

Activated
growing

New
building

Building

Growing

Old
building Working

growing

Figure 2. The definitions of robot’s states. (a) The main states of robots (b) The sub-states of
building robots depend on birth time. (c) The sub-states of growing robots depend on the number
of neighboring filled unit cells. (d) The sub-states of growing robots depend on birth time. (e) The
sub-states of growing robots depend on working modes.
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Filled unit cell
Cross-arranged

Figure 3. The cross-arranged unit cells for self-assembly formation inspired by Wigner-Seitz unit cell.

G2robot  G17 robot G3robot G2 robot
Empty
unit cells

Solid robot

—Filled unit
cells

Figure 4. The sub-states of the growing state. Blue solid circle is the Solid robot. Blue hollow circle is
the growing robot.

Free robots

Two initial
growing robots

itk

Es
© Opg
[ “

./‘o

Figure 5. The initial conditions of the self-assembly formation and the specified initial growing robots
inspired by nucleation. Two initial growing robots should be positioned at the coordinates (xg, yo)
and (xp, yo +2). xp and yg can be assigned any value. Here, (xo, yo) is set as (0, 0).

When a growing robot is generated within a unit cell, its four neighboring unit cells
that share an edge with its unit cell will be defined simultaneously (see Figure 3). Unit cells
not yet filled by growing or solid robots are defined as empty; otherwise, they are defined
as filled. Table 3 introduces the classifications and definitions of unit cells. Therefore, like
the atoms on a growing crystal surface, the growing robots can recruit others to occupy
their neighboring empty unit cells to expand the formation. Specifically, the growing robot
selects one of the neighboring empty unit cells as an available empty unit cell. The selected
one should be closest to the coordinate origin and not occupied by building robots. The
coordinates of the available empty unit cell’s center are then broadcast to recruit free robots.
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As shown in Figure 6a, when the growing robot first broadcasts its selected coordinates at
time step ¢, this broadcast only impacts the free robots. After receiving recruitments, the
free robot turns into the moving state and selects the nearest available empty unit cell as its
target position, moving towards it. During the move, the moving robot will not actively
change its target position. To avoid self-assembly downtime, the moving time parameter
Ty is defined. Thus, moving robots may turn into free robots due to exceeding the moving
time parameter T);. Furthermore, as the growing robots’ broadcasts are public, multiple
moving robots may hold the same target position. Hence, the competitive mechanism is
applied based on the distance to the target position and ID number. As shown in Figure 6b,
moving robots numbered 1, 3, and 6 share the same target position. The moving robot closest
to the target position with the lowest ID number value can win the competition. Thus, in
Figure 6b, the moving robots numbered 3 and 6 fail in the competition and will degenerate
into free robots. The moving robot numbered 1 wins the competition and moves towards
its target position. The moving robot that arrives at its target position will translate into a
building robot (see Figure 6c¢). The building robots located in unit cell will wait for a few
time steps (i.e., building time parameter Tp) to simulate the time-consuming of assembly
and building work. Whereafter, they will become the growing robots, resulting in the
expansion of the formation. If the currently selected available empty unit cell is occupied
by a building robot, the growing robot will continue to choose a new available empty unit
cell and broadcast for it. When all neighboring unit cells are filled unit cells, this robot
completes its task and transitions from the growing state into the solid state. As shown in
Figure 7, the finite-state machine (FSM) shows the whole control flow of the individual
robot in the proposed self-assembly formation.

Table 3. Classifications and definitions of the unit cells.

Definition of Unit Cells Descriptions
Filled unit cell The unit cells are filled by growing or solid robots.
Empty unit cell The unit cells are not filled by growing or solid robots.

The empty unit cells selected by growing robots and are

Available empty unit cell allowed as target positions for free and moving robots.

The empty unit cells are allowed to be occupied by

Building unit cell building robots.

The building unit cells can be occupied by building

Priority building unit cell robots preferentially.

The building unit cells are occupied by building robots

Non-priority building unit cell non-preferentially.

(a) The growing robot's (b) (C) Free robot
communica!k\in range Free robots The failed moving robot

' e N | I —---iiiiiiiiiiiiia ; 6
Solig robots\ 6 A f The winner moving robot 6 1 H E
H \ ! Action:
ol j: =7 ! moving _l H

\ 3 3 g 3

\ —I :

The avaé\able
empty unit cell

The failed moving robot

The focused \ S0 T ‘

User-specified growing robot
shape

Time step: t+2

Time step: t Time step: t+1

Figure 6. The competition mechanism of moving robots for the same target position. (a) Time step: ¢.
(b) Time step: t + 1. (c) Time step: t + 2.
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Figure 7. The FSM of a robot in the self-assembly formation.

2.3. The Implementation of the Self-Assembly Formation

As shown in Figures 8 and 9, the Waxberry robots are designed to achieve the proposed
self-assembly formation, operating on a grid ground composed of unit square grids. The
name “Waxberry” is derived from a unique fruit in China. As shown in Figure 8b, each
Waxberry robot is equipped with two independent stepping motors. Under the control
of the motor driver, each robot wheel can independently rotate forward or reverse at
a specified speed. Thus, the Waxberry robot can move omnidirectionally based on the
differential steering control. Here, the unit length and unit area are defined as the side
length and area of a square unit grid, respectively. On the grid ground, the Waxberry robot
can navigate between the locating points positioned on the nodes of each square unit grid
(see Figure 9). Therefore, after obtaining its initial coordinates, the Waxberry robot can
accurately determine its real-time position by tracking its trajectory using the principles
of inertial navigation [59]. For simplicity, each movement from one locating point to any
of its eight adjacent points is referred to as one time step. The local communication range
of the Waxberry robot is limited to the area that the robot can reach in three time steps
(see Figure 9). The information exchanged among Waxberry robots includes the robot’s ID
number, state, present coordinates, and working information.

In this study, 15 Waxberry robots are manufactured. Each Waxberry robot is equipped
with an identical self-assembly strategy, as described in Section 2.2. Two different shape
formations are considered to test the proposed self-assembly strategy, i.e., the four-pointed
star and the hexagonal crystal shape formations (see Figure 10). The system parameters of
the self-assembly formation, i.e., building time parameter Tp and moving time parameter
Ty, are set as one step and four steps by default. As shown in Figure 10, under the
control of the proposed self-assembly formation strategy, 15 Waxberry robots autonomously
assemble into 2 different shape formations without relying on external controls and the
global leader. To verify the proposed self-assembly formation in a large-scale swarm, an
embodied simulator capable of accommodating thousands of agents is developed. This
simulator is programmed in MATLAB 2020, a high-level programming language designed
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for engineers and scientists. Using MATLAB'’s powerful development capabilities, the
simulator allows a large number of agents to simultaneously emulate the functionalities
of the Waxberry robot. Each agent in the simulator can move, communicate, and make
autonomous decisions. Consequently, the proposed self-assembly can be further tested at
large-scale formations. Here, the formation scale is expanded to include about 300 robots,
1500 robots, and 3500 robots, respectively. Based on the proposed self-assembly strategy,
swarm robotics can successfully form the two considered shape formations. Figure 11
shows the self-assembly process when the formation is composed of about 300 robots.

Tl

0 independent
stepping Motors

Figure 8. Waxberry and Waxberry robots. (a) Waxberry. (b) The battery and motors of the Waxberry
robot. (c) The electronic system of the Waxberry robot. (d) The 3D design of the Waxberry robot.
(e) The swarm robotics is composed of multiple Waxberry robots.

&+ Movement ~ Vig”
' ability
b 4

Locating point .2’ \ )
~ _-~” Communication range

Figure 9. The foundational ability of the Waxberry robot.



Sensors 2024, 24, 3081

12 of 39

Free: (]
Moving: e
Building:
Growing: e
Solid: e

(@)

The specified shape: Time step: 1
four-pointed star Free:13;  Moving:0;
Building:0; Growing:2; Solid:0

Time step: 6 Time step: 11 Time step: 17
Free:6; Moving:3; Free:3; Moving:1; Free:2; Moving:0;
Building:2; Growing:4; Solid:0 Building:1; Growing:3; Solid:7 Building:0; Growing:0; Solid:13

(b) Two initial growing Free_. o
robots are used to | Moving: e
trigger the self- Building: ®
assembly S
formation, like the GFQW_'"Q- L4
nucleation In Solid: [}
crystallization.

The specified shape: Time step: 1
hexagonal crystal Free:13;  Moving:0;
Building:0; Growing:2; Solid:0

Time step: 6 Time step: 11 Time step: 17
Free:2; Moving:7; Free:0; Moving:3; Free:0; Moving:0;
Building:0; Growing:5; Solid:1 Building:1; Growing:4; Solid:7 Building:0; Growing:0; Solid:15

Figure 10. The self-assembly formation achieved by 15 Waxberry robots. (a) Self-assembly of a
four-pointed star shape formation. (b) Self-assembly of a hexagonal crystal shape formation.

The above real-robot experiments and simulations demonstrate the proposed self-
assembly strategy’s high flexibility, scalability, and efficiency. The robots in different states
can self-assemble into various shape formations through local interactions and cooperation,
demonstrating flexibility in different shape conditions. Meanwhile, compared to the works
in Refs. [29-31], the proposed distributed self-assembly formation does not rely on a
global leader and pre-design global information. This allows swarm robotics more flexible
deployment capabilities, showing massive potential in practical applications. Additionally,
tests conducted at the formation scale, ranging from about 15 to 3500 robots, verify that
the proposed self-assembly strategy exhibits excellent scalability. Such scalability comes
from a fully distributed self-assembly strategy based on local interactions. That is, the
local environments of individual robots are similar, no matter how large the scale of the
swarm robotics. High forming efficiency is also one of the advantages of the proposed self-
assembly formation. Compared with the one or two parallel motion chains in Refs. [25-27],
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the proposed self-assembly formation shows remarkable parallelism capability, as all
growing robots contribute to the expansion of the formation. Indeed, as the formation grows
larger, the forming efficiency becomes higher due as there are more growing robots involved
in the construction. Thus, the proposed self-assembly formation shows a rare and precious
super-linear feature. This feature is analyzed in detail below.

Time step: 1

Time step: 44

Time step: 11 Time step: 22 Time step: 33

Time step: 55 Time step: 66

Time step: 1

Time step: 44

Time step: 33

Time step: 11

Time step: 55 Time step: 66 Time step: 74

Figure 11. Self-assembly a formation comprising about 300 robots. (a) Self-assembly a four-pointed
star shape formation. (b) Self-assembly a hexagonal crystal shape formation. Green dots: free
robots. Blue dots: moving robots. Orange dots: building robots. Pink dots: growing robots. Red dots:
solid robots.

The super-linear feature is strong evidence for the high forming efficiency. That is, the
forming efficiency of the self-assembly increases with the scale of the formation [13]. Itis a
rare and precious feature. The efficiency of the existing self-assembly formation designed
by Rubenstein et al. [25] and Yang et al. [26] remains constant and does not increase as
the formation scale becomes larger (see Figure 12). To analyze the super-linear feature,
the average number of robots joining the formation within one time step is defined as the
forming efficiency index e.. It can be expressed as follows.

Mo

€c = T 1)

here, T represents the total time dedicated to the self-assembly formation, while m( denotes
the number of robots positioned within the formation (i.e., the formation scale). As shown
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in Figure 12, whether forming the four-pointed star shape or the hexagonal crystal shape
formation, the simulation results show that the forming efficiency increases with the scale of
the formation. In the small-scale formation comprising about 15 robots, the efficiencies e. of
forming the four-pointed star shape formation and the hexagonal crystal shape formation
are 0.764 and 0.598, respectively. However, when the scale formation is expanded to about
3500 robots, the efficiencies e. are 13.418 and 14.455, respectively. The efficiencies of forming
the four-pointed star shape and the hexagonal crystal shape formations are increased by
1756% and 2417%, as the formation scale increases from about 15 to 3500 robots. The effi-
ciencies e of self-assembly formation designed by Rubenstein et al. [25] and Yang et al. [26]
can be viewed as one and two, respectively, using robots of the same performance with-
out considering the preparation time. Although our proposed self-assembly formation
cannot show an efficiency advantage over the work in Refs. [25,26], the efficiency of the
proposed self-assembly formation is greater than 2 when more than 100 robots form the
formation (see Figure 12). In the formation comprising about 3500 robots, the efficiency of
the proposed self-assembly formation is 13.9 and 6.97 times more efficient than the studies
of Rubenstein et al. [25] and Yang et al. [26], respectively.

20

—+—The proposed strategy: hexagonal crystal
The proposed strategy: four-pointed star
Yang et al.

——Rubenstein et al.

N
(@]
T

The forming efficiency e,
S

(&)}
T

/

Vi . - .
O T' 1 Il Il Il Il 1 1
010 500 1000 1500 2000 2500 3000 3500
The scale of the formation

Figure 12. The super-linear of the proposed self-assembly formation based on simulation results [25,26].

3. Mathematical Description of the Macroscopic Model

The macroscopic model is an important mathematical tool for predicting and studying
swarm behaviors. This section develops a non-spatial macroscopic model for the proposed
distributed self-assembly formation. The master difference equations (i.e., the model’s
framework) are described in Section 3.1. The analysis for the structural features of the
shape formation is introduced in Section 3.2. Subsequently, all state transition functions in
this macroscopic model are estimated in Section 3.3 according to the structural features.
Lastly, the effects of the shape boundary’s constraints are shown in Section 3.4.

3.1. The Master Difference Equations

In this section, the non-spatial macroscopic model is developed to study the character-
istics of the proposed self-assembly formation’s swarm behaviors. Referring to Ref. [46],
a stock and flow diagram (see Figure 13) is created to depict the swarm behaviors of the
proposed self-assembly formation, utilizing the FSM depicted in Figure 7. The stocks,
represented by boxes in Figure 13, denote the average number of robots in various pre-
defined states at the macroscopic level. Arrows in Figure 13 depict flows, expressing the
number of robots transitioning between states. Such changes can be described by state
transition functions. Based on this stock and flow diagram, a set of difference equations in
the discrete-time domain can be derived to model the fluctuations in the average number



Sensors 2024, 24, 3081

15 of 39

of robots between different states. The framework of the macroscopic model is outlined

as follows.

NE(t+1) = Np(t) = Tp(#) + Tag(£) + ARy (t, Tua) 2
Nm(t+1) = Nm(t) = Ty (t) — Ty (£) — Ay (t, Tar) + (1) 3)
Np(t+1) = Np(t) = AG(t, Ts) + Ty (1) 4)

Noi1(t+1) = N1 (t) + A (t, Tp) — AZH(t) — AG (1) — Qe (t) (5)
Nga(t+1) = Nga(t) + AG2(t, Tp) + AZ () — AG (1) — Qea(t) (6)
Nea(t+1) = Noa(t) + AG () + A (1) — AZ5(t) (7)
Ns(t+1) = Ns(t) + A25(t) + Qc1 (1) + Qe (t) 8)

As shown in Table 4, Ng(t), Np(t), Np(t), and Ns(t) are the average number of
robots in state free, moving, building, and solid respectively at time step . Ngi(t), Nga(t),
and Ng3(t) represent the average number of robots in state G1, G2, and G3 at time step
t. The definitions of the G1, G2, and G3 states can be found in Section 2.2 and Figure 4.
Furthermore, the total number of growing robots is expressed as Ng ().

Table 4. Description of notations in the master difference equations.

Notations

Descriptions

NE(t)
N (t)
Ng(t)
Ng(t)
Negi(t)
Neca(t)
Neal(t)
Ns(t)

Ir(t)
I (1)
AL (t, Ty)

T (*)

The number of free robots at time step ¢.

The number of moving robots at time step t.

The number of building robots at time step ¢.

The number of growing robots at time step .

The number of G1 robots at time step .

The number of G2 robots at time step .

The number of G3 robots at time step .

The number of solid robots at time step .

The number of free robots becoming moving robots at time step ¢ due to
receiving broadcasts.

The number of moving robots becoming free robots at time step ¢ due to
failure in competition.

The number of moving robots becoming free robots at time step ¢ due to
running out of the moving time parameter T;.

The number of moving robots becoming building robots as they succeed in
competition and arrive at their target positions at time step ¢.

The number of building robots becoming growing robots at time step

t after spending Tp steps assembling the formation.

The number of building robots becoming G1 robots at time step

t after spending T steps assembling the formation.

The number of building robots becoming G2 robots at time step

t after spending Tp steps assembling the formation.

The number of GI robots becoming G2 robots at time step t.

The number of G1 robots becoming G3 robots at time step t.

The number of G2 robots becoming G3 robots at time step .

The number of G3 robots becoming solid robots at time step .

The number of G1 robots becoming solid robots at time step t due to
constraints of shape boundary.

The number of G2 robots becoming solid robots at time step f due to
constraints of shape boundary.

The state transition functions describe the changes in the number of robots transition-
ing between different states at time step t. The details are introduced as follows. I'r(t)
represents the number of free robots that turn into the moving state upon receiving broad-
casts from growing robots. 't (t) represents the number of robots in the moving state that
degenerate into the free state due to failure in competition with other moving robots for
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the same target position. I'j(t) represents the number of moving robots that succeed in
competition and arrive at their target positions. AL, (t, Tj1) denotes the number of moving
robots that run out of the moving time parameter Tys and become the free state. AG!(t, T;)
and A§?(t, Tp) represent the number of building robots that transition into G1 and G2 states,
respectively, after spending Tp steps assembling the formation. Their total number is ex-
pressed as A§ (t, Tg). When the building robots occupying the empty unit cells become the
growing robots, the existing growing robots will update their sub-states or translate into the
solid state. These transitions are denoted as AZ2(t), A3 (t), AS3(t), and AZ(t), respectively.
Additionally, Qg1 (t) and Qg (t) signify the count of G1 and G2 robots directly transition-
ing into solid robots due to due to the constraints of the shape boundary, respectively. At
this point, the framework of the proposed macroscopic model is described completely.

Free m ------ :
A Ags(t)
TGN IAG I (")

Yazo

G T) )
88 | 850

61 i
Buildin e
A5(t, Tg) The constraints

of the shape

GrOWing boundary

Figure 13. The stock and flow diagram of the proposed macroscopic model.

3.2. The Analysis for the Structural Features

In the proposed self-assembly formation, all growing robots collectively constitute
the growth boundary of the formation. The arrangement of growing robots based on the
cross-arranged unit cells inevitably creates intricate structures within the growth boundary,
causing strong nonlinearity for the state transitions. As shown in Table 5, the influence of
spatial structures renders traditional geometrical estimation methods ineffective in deduc-
ing corresponding state transition functions. Similarly, the data statistics method falls short
in elucidating the internal mechanisms of state transitions. Consequently, analyzing the
structural features within the growth boundary of the formation is an essential precondition
for constructing state transition functions capable of probing into the mechanisms of swarm
behaviors. Although the macroscopic model considers the features of spatial structures,
it remains non-spatial as the probability of these structural features affecting each robot
is uniform. Here, the definition and quantities of six basic structural types are discussed
to depict the structural features of the growth boundary. Subsequently, the distribution
characteristics of building robots within the empty unit cells provided by different struc-
tural types are discussed. The arrangement characteristics of the structural types are also
analyzed. Note that the distribution characteristics of building robots in empty unit cells
and the arrangement characteristics of structural types are regarded as independent in
probability. Additionally, some assumptions for the macroscopic model should be eluci-
dated to facilitate the discussion of structural features. As introduced in Section 2.2, all
robots share the same ability and an identical self-assembly strategy. In the task of the
self-assembly formation, all robots distributed across the arena randomly and uniformly
will experience free, moving, building, growing, and solid states and perform corresponding
tasks to complete the self-assembly. Therefore, based on the principle of equalitarianism
and the actual situations of self-assembly formation, the macroscopic model should satisfy
the following assumptions:

Assumption 1. The building efficiency of any unit cell remains constant both in terms of time
and space.
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Assumption 2. The formation expands at a consistent rate in all directions.

Assumptions 1 and 2 are consistent with the fact that the model is non-spatial. In
the structural features analysis, these assumptions can reduce the number of situations
that need to be discussed (see Section 3.2) and simplify the complexity of the model. Note
that the above assumptions are only for the self-assembly of swarm robotics and have no
bearing on crystallization.

Table 5. The comparison among the existing methods and our proposed method.

Explaining the Inner
Mechanisms of the
State Transitions

Applicable to Spatial
Structure Scenarios

Data statistics method [50-53] Vv X
Geometrical estimation method [14,16] X Vv
Structural feature estimation method Vv V

3.2.1. The Definitions of Six Basic Structural Types

As shown in Figure 14, six basic structural types are defined based on G2 robots.
Each structural type comprises only one G2 robot, positioned on the leftmost side of the
structural type. Thus, the total count of structural types corresponds to the number of
G2 robots. The structural types consisting of only G2 and G3 robots can be classified as
Fa and Ra based on whether the angle between G2 and its neighboring growing robot to
the right is 180° (flat angle) or 90° (right angle) (see Figure 14a,c). When the structural
type Fa contains a G3 robot, it is subdivided into Fay; otherwise, it is Faj. Similarly, the
structural type Ra is also divided into Ra; and Ra,. The situations involving structural
types that include more than one G3 robot are not considered in this paper since the G3
robot builds its neighboring empty unit cells with the same efficiency as other growing
robots (see Assumption 1). To simplify the analysis, GI robots are only considered within
structural types Fa, i.e., structural types Fa; and Fay (see Figure 14e,f). That is, we ignored
some of the rare structure types without reducing the accuracy of the model predictions.
Using these defined six basic structural types, the growth boundary’s structural feature can
be described precisely. The notations related to all state transition functions are explained
in Table 6.

(a) Structure type Fa, (c) Structure type Ra,

The building
The building robot A unit cell A

(e) Structure type Fay-

The growing

robot ,,@
Vigo: 5o ;
--i - - .-t

(b) Structure type Fa, (d) Structure type Ra, (f) Structure type Fa,-

Figure 14. Six basic structural types. The orange heavy solid line and orange dotted line represent the
connection interfaces to the previous and next structural types, respectively. The black dotted arrows
points to the neighboring empty unit cells of the growing robots. The green dotted boxes represent
the building unit cells, which are the empty unit cells allowed to be occupied by the building robots.
Hollow blue circles represent growing robots, solid blue circles represent solid robots, and solid gray
circles represent building robots.
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Table 6. Description of notations in all state transition functions.

Notations Descriptions

Nr, (1) The number of structural types Fa.

N, () The number of structural types Fay.

Nra,. (t) The number of structural types Fay:.

N, (1) The number of structural types Fay

Nrg,. (1) The number of structural types Fay:.

Ngq(£) The number of structural types Ra.

NRg, (1) The number of structural types Raj.

NRg, (1) The number of structural types Ra;.

Ny, (1) The total number of building unit cells.

Ny, (t) The total number of the priority building unit cells.

Np,,. (f) The number of new building robots.

Ng,,(t) The number of old building robots.

Oold The probability of old building robots in the priority building unit cell.

€old The probability of old building robots in the non-priority building unit cell.

Cnew The probability of new building robots in the priority building unit cell.

€new The probability of new building robots in the non-priority building unit cell.

. The probability of structural type Ra; being on the left side of structural
types Rap and Fa.

o The probability of structural type Ra; being on the left side of structural
type Raj.

The probability of the building robots in the building unit cell provided by

HRay the G2 robots of the structural type Raj.
old The probability of the old building robots in the building unit cell provided
HRay by the G2 robots of the structural type Ra;.
new The probability of the new building robots in the building unit cell provided
HRay by the G2 robots of the structural type Ra;.
The probability of the building robots in the building unit cell provided by
HRa, the G2 robots of the structural type Ray.
The probability of the building robots in the building unit cell provided by
HFa the G2 robots of the structural type Fa.
old The probability of the old building robots in the building unit cell provided
HEa by the G2 robots of the structural type Fa.
new The probability of the new building robots in the building unit cell provided
HFa by the G2 robots of the structural type Fa.
& The probability of the G1 robots in a new growing state.
05’ The probability of the G2 robots in a new growing state.
- The probability of the robot transitioning from building to growing state
As within the priority building unit cells.
e The probability of the robot transitioning from building to growing state
B

within the non-priority building unit cells.

3.2.2. The Calculation of the Quantities of Six Basic Structural Types

According to Assumptions 1 and 2, the shape of the formation’s growth boundary
must be a convex polygon before the shape boundary constraint is triggered. As shown
in Figure 15, the structural types Fa can bend the extension of the growth boundary by
90° in addition to increasing the length of the growth boundary. Therefore, based on the
basic geometric principles, a growth boundary allows for only four structural types of
Fa. The growth boundary can be understood as composed of four equal-length growth
edges originating from the structural type Fa. The simplest growth edge contains only a
structural-type Fa (see Figure 15a). Thus, the number of structural-type Fa is written as
N, (t), ie.,

Ng,(t) = min(4, Nga (1)) 9)

where Ng,(t) expresses the number of G2 robots. The number of structural types of
Fay, Fay+, Fap, and Fap: at time step t can be expressed as Nr,, (), Nra,. (t), Nps, (t), and
Npaz* (t), ie.,

Nfa, (£) = Nra(£)(1 = pc3) (1 — pc1) (10)
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Nra,. (£) = Nra()(1 = pc3)pc (11)
Nra, (£) = Nra(t)pcs(1 — pc1) (12)
NPuz* (t) - NPa(t)PG3PG1 (13)
where pg; is the probability of GI robots in structural type Fa, which is defined as
Nei(t)
= 14
PG1 Nra (t) (14)

The pg3 denotes the probability that structural types Fa and Ra contain a G3 robot.
Due to equalitarianism, pg3 can be expressed as

0 _ Nas(t)
7 Nea(t)

(15)

Here, Ng;(t) represents the total number of all structural types. The number of the
structural type Ra can be written as Ng,(t), i.e.,

NRu(t): NGZ(t) - NPa(t) (16)
Similarly, the number of structural types Ra; and Ra, is represented as follows.
NRra, (£)= NRa(t) (1= pgs) (17)

NRa, (t)= Nra(t) pc3 (18)

(a) [» The four simplest growth edges \‘

uj—gJ O ® O S

The simplest Structure type Fa, Structure type Fa, Structure type Fa, Structure type Fa,
closed growth boundary
(90° Rotation) (180° Rotation) (270° Rotation)

Structure type Fay Structure type Ra,

+ 4

Structure type Ra, Structure type Ra,

4

S~ “Structure type Fa, Structure type Fa,-
Growth boundary

Figure 15. The relationship between growth boundary, growth edge, and structural types. (a) The
disassembly of the simplest growth boundary. (b) The disassembly of a normal growth boundary.
3.2.3. The Distribution Characteristics of Building Robots

The distribution of building robots within the empty unit cells provided by the struc-
tural types should be discussed since it plays a crucial role in the state transitions of building
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and growing robots. The empty unit cells allowed to be occupied by the building robots are
considered the building unit cells (see Table 3 and Figure 14). Therefore, the distribution
rules and classification of the building unit cells are determined first. Then, the sub-states
of building robots should be discussed further. Finally, the probability of different building
robots in different building unit cells can be determined.

As a prerequisite for estimating the number of building unit cells, based on a large
number of simulations and experimental results, the following two phenomena related to
empty unit cells deserve attention. Firstly, the building time parameter of building robots
considered in this work is very small (i.e., Tg < 4), usually less than the time required for
the robot to transition from free to building state. Therefore, in the case of a growing robot
with multiple empty unit cells (such as GI and G2 robots), when it autonomously recruits a
building robot for the second empty unit cell, the building robot within its first empty unit cell
has already transitioned to the growing state due to completing its assembly works. As this
transition also triggers the original growing robot to undergo a state transfer, it is impossible
for a growing robot to actively recruit multiple building robots simultaneously without
triggering its state transition. Secondly, the empty unit cell shared by two neighboring
growing robots is typically closer to the coordinate origin than its neighbor. According to
the self-assembly strategy, growing robots prioritize selecting empty unit cells of this kind
and broadcast their coordinates to recruit free and moving robots. Consequently, empty
unit cells shared by two adjacent growing robots are more likely to be occupied by building
robots, thereby becoming the building unit cells. Under the premise of satisfying the above
phenomena, the simplified distribution rules for building unit cells are defined as follows
to minimize model complexity.

() Each growing robot is deemed to actively provide only one empty unit cell as the
building unit cell.

(I) The G1 robot must share the building unit cell with the G2 robot in the current
structural type.

(III) The building unit cells actively provided by the G2 robot should be unaffected by the
structural types on the left.

(IV) G2 robots preferentially select empty unit cells shared with adjacent growing robots of
the same structural types as the building unit cell.

Here, the total number of building unit cells can be written as follows.
Nbu(t) = NFa1 (t) + ZNFaZ (t) + NFal* (t) + ZNFaZ* (t) + NRa1 (t) + NRaz(t) (19)

The green dotted boxes in Figure 14 represent the possible building unit cells. Note
that a building robot cannot become a G3 robot directly under current situations.

Indeed, a particular type of building unit cell, i.e., a priority building unit cell, is
given preference for occupation by the building robots. According to the self-assembly
strategy, once a building robot occupies a neighboring empty unit cell, the growing robot
will immediately broadcast the next suitable neighboring unit cell’s coordinates. It is not
hard to see that the corresponding building unit cell’s coordinates have been broadcast
before a growing robot is upgraded to the G3 sub-state. Consequently, the building unit
cells provided by G3 robots are designated priority building unit cells. In structural types
Faj« and Fay+, the simultaneous birth of two neighboring GI1 and G2 robots from the
building state is typically not feasible. Thus, when a G1 robot sits next to a G2 robot, their
sharing building unit cell has been broadcast and should be treated as the priority. Besides
the proposed self-assembly strategy, the generation of priority building unit cells is also
related to the autonomous actions of robots. Estimating the priority building unit cell’s
number based only on the self-assembly strategy and structural features is prone to bias.
Considering the randomness of autonomous actions of robots, it is assumed that there are
¢ priority building unit cells exiting in structural types Ra; to correct the estimate of the
priority building unit cell’s number. Note that the autonomous actions of robots are affected
by the external environment, i.e., the proportion of robots in different states within the
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swarm. As defined in Section 2.2, the building time parameter Ty can change the survival
duration of the building and growing robots to change the proportion of robots in different
states within the swarm. Thus, based on the statistical result of simulations, Table 7 shows
the values of ¢ under different building time parameters Tp. The total number of the
priority building unit cells is written as follows.

Nbup(t) = NFul* (i‘) + ZNpuz* (t) + Npuz(i‘) + NRuz(t) +¢ (20)

Table 7. The value of coefficients ¢ and ¢.

Building Time Parameter Tp

>
(Unit: Steps) ! 2 3 4 =3
¢ 1.3 1.1 0.7 0.5 0.2
@ 0.62 0.74 0.76 0.78 0.8

¢ can be found in Equation (20). ¢ can be found in Equation (54).

Other building unit cells are considered non-priority building unit cells, except for
priority building unit cells.

Additionally, it is imperative to delve deeper into the sub-states of the building robot.
These sub-states can be used to distinguish the neighboring growing robot’s working modes.
This differentiation is crucial for constructing the state transition functions I'};(¢). Here,
the building robots transitioning from the moving robot at time step  — 1 are referred to
as the new building robots, while others are classified as old building robots (see Figure 2b).
According to Assumption 1 and the discussion of the priority building unit cells, old
building robots are given preference for occupying the priority building unit cells compared
to new building robots. Thus, the probability of old building robots being distributed in the
priority building unit cell is

NB,, (t)

Ny () &0 @

Oo14 = min(1

where ¢ is a value of 10~° to avoid miscalculation. The N B, (t) expresses the number of
old building robots at time step ¢, which can be written as follows.

Ng,,, (t) = Np(t) — Np,,,, (t) (22)

where N (f) is the number of new building robots at time step f, which is equal to
I'f(t —1) (see Equation (3)). The probability that the old building robots are distributed in
the non-priority building unit cell is

Ng,, (£) = Oo1dNpu, (t)

€10 = 23
old Nbu(t) - Nbup (t) + e ( )

The probabilities of the new building robot distributed in the priority building unit cell
and the non-priority building unit cell are

) Ng, .. (¢)
_ 1— new 24
Onew min ( Oolds Nbup (t) + 60) ( )
NB, o, (t) = OnewNeu, (1)

€new = 25
e Nbu(t) - Nbup(t) +ep %)

3.2.4. The Arrangement Characteristics of Six Basic Structural Types

The arrangement of these structural types is another key factor affecting the state
transitions. Note that the arrangement characteristics of the structural types and the
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distribution characteristics of the building robots are probabilistically independent of each
other. According to the analysis of building robot distributions within building unit cells, the
structural type Ra; plays a unique role. As shown in Figure 16, when a growing robot is born
in the building unit cell provided by the structural type Raj, both the G2 robot in the current
structural type Ra; and another G2 robot in the right structural type will update to G3
robots simultaneously. That is, the structural type Ra; can affect its adjacent right structural
types. This is a special feature that other structural types don’t have. Therefore, the key
of the arrangement analysis is to estimate the probability that the left side of the focused
structural type is structural type Ra;. Here, based on the principle of equalitarianism,
all structural types Ra; are evenly allocated to four growth edges and are arranged after
the starting structural type Fa. Then, the structural types Ra; have an equal probability
of appearing in all vacancies generated by structural types Fa and Ra; (see Figure 17).
Utilizing permutation and combination theory [60], we can calculate the probability of
structural type Raj being on the left side of structural types Ra, and Fa as follows.

NRa1 (t)
" NFa(t) + Nra, (1)

) (26)

7 =min (1
where Nr,(t) + N, (t) represents total number of the vacancies generated by structural
types Ray and Fa. The probability that a structural type Ra; is on the left side of another

structural type Ra is

*

_ max (0, Nrg, (£) — Nra(t) — NRay (1))

Nr,(t) + Nra, (t) 27)

The newly generated
Structure type Ra; growing robot

Structure type Ra,

Figure 16. The effect of the structural type Ray for other structural types.

A Growth edge

Fa Ral Ra1 Ral

Structure type Fa Structure type Ra, Vacancies

Figure 17. The arrangement approach of structural types within a growth edge.
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3.3. The State Transition Functions Based on the SFE
3.3.1. The State Transition Function I'r(#)

The I'r(t) represents the number of free robots transitioning to the moving state due to
receiving recruitments of the growing robots. It is written as follows.

Tr(t) = Sodo — Nm(t) — Np(t) (28)

where Sy represents the total communication area created by all growing robots. Note that
the communication range of a growing robot can also cover the formed formation. This area
will not be taken into consideration for Sy (see Figure 18). Within this communication area,
do denotes the robot’s density, which is defaulted to 0.2 (see Section 2.2). Sydy represents
the total number of robots. Furthermore, all moving and building robots are situated within
the total communication area, enabling interaction with growing robots. Therefore, I'r(t)
can be expressed by Equation (28).

The overlapped communication The G1 robot's
range between G1 and G2 robots communication range

e o o o The G2 robot's o o 0 o o o
communication range
{ ] ( J o ( J \ o @ o o o ® o
G2 robot in
®  ®structural types Ra /. o |0 0\0 ] O\

G2 robot in | G7'robot | G3 robot
structural types Fa

Figure 18. The definition of the independent communication ranges of growing robots. Blue solid
dots: G1 robot’s independent communication ranges. Dark blue solid dots: G2 robot’s independent
communication ranges. Light blue solid dots: G3 robot’s independent communication ranges.

The total communication area Sy created by all growing robots is the key to constructing
the state transition function I'z(¢). As shown in Figure 9, the communication range of a
robot can be regarded as 7 x 7 position points. Due to the defined cross-arrangement, there
will be some overlap in the communication ranges of two neighboring growing robots (see
Figure 19). To avoid repetitive computation, Equation (29) is proposed to calculate the total
communication area based on the structural types. It can be written as follows.

So = &1 NFa, (t) + «2NFq,. (t) + a3NFa, (t) + a4 Npa,, (t) + «5NRg, (t) + €6 NRa, (t) — a0Dg2 (29)

To calculate the coefficients ag to a4, the independent communication ranges of grow-
ing robots that do not overlap are defined artificially. Solid dots in Figures 18 and 19
denote a unit area. As shown in Figure 18, dark-blue solid dots indicate that indepen-
dent communication ranges of the G2 robots in structural types Fa and Ra are twelve and
eighteen unit areas, respectively. The blue and light-blue solid dots represent the distinct
communication domains of the GI and G3 automatons, encompassing sixteen and six units
of area, correspondingly. Based on the above definitions, the independent communication
ranges provided by six basic structural types are summarized in Table 8 (i.e., a1 to ag).
However, if the left side of the focused G2 robot corresponds to the structural type Ra;,
the focused G2 robot’s two neighboring empty unit cells may be occupied by two building
robots simultaneously (see Figure 19). In such cases, the focused G2 robot will go dormant
and stop broadcasting, causing the reduction of the total communication area. According
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to the growing robot’s working modes, the growing robot that doesn’t broadcast available
empty unit cell coordinates is defined as the dormant growing sub-state (see Figure 2e).
Although the overlapped communication area between neighboring growing robots can
compensate for some of the losses, a dormant G2 robot can still lead to a reduction in the
communication area by four unit areas (see Figure 19).

Table 8. The value of coefficients ag to ag.

[ %)) (5] [1%) (1 %] 17} K5 Ke
4 18 36 24 42 12 18
———
A The overlapped communication area
@ —0—@ /
/ The reduction of the
*—o i total communication area
[ ] @ o X X
[ ]

0.

Building robot

The dormant G2 robot

Figure 19. The effects of the dormant G2 robot for total communication area. Gray solid dots: the
portion of the communication ranges overlap between a G2 robot and its neighboring growing robots.
Black fork: The reduction of the total communication area.

Based on the definitions of the structural types, the calculation of the dormant G2 robots
is determined by Equation (30).

Dz = D¢y' + Dgg? + D (30)

where Dg, Dg%, and Déz denote the number of dormant G2 robots in structural types Raq,
Ray, and Fa, respectively. The quantity of dormant G2 robots within structural types Ra;,

ie, Dggl , can be mathematically expressed as follows.

Dggl = Nra, (£)T" HRay fRay (31)

where the value of T* is determined by Equation (27). The ug,, is the overall probability of
the building robot being assigned to the building unit cell provided by the G2 robot of the
structural type Raj. It is represented in Equation (32).

HRar= Wiy +1HRa; (32)
here, y%gl and pu;” denote the overall probability that the building unit cells provided by
the G2 robot of structural type Ra; are occupied by old and new building robots, respectively.
According to the structural features analysis in Equations (19)-(25), y?{g] and y}“ﬁf can be
written as follows.

od _ §%1d + (NRay (t) — §)€ota
Raq NRﬂl (t) + e

new _ $Onew + (NRIJ1 (t) = ¢)€énew
R Nga, (t) +eo

(33)

(34)
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where ¢y can be found in Equation (21). Similarly, the number of dormant G2 robots within
structural types Rap and Fa, i.e., Dégz and Dé‘é, can be written as follows, respectively.

Dégz = NRﬂz (t)TVRtll HRay (35)

Déé = NFa(t)T.uRalVFa (36)

where T can be found in Equation (26). pg,, and i, represent the overall probability of the
building robot distributing in the building unit cell provided by the G2 robot in structural
types Rap and Fa, respectively. They are written as follows.

URay = Onew + Oold (37)

HEa = Mia 1 (38)
here, 0,5 and 0y, are shown in Equations (21) and (24). The y"Flf and pu" are the overall
probability of old building and new building robots distributing in the building unit cells
provided by the G2 robot in the structural type Fa. As analyzed in Equations (19)—(25), u%4

Fa
and pu" can be expressed as

old _ (NFay. (t) + NFay. (t))001a + (Npa, (t) + NEay (1) )€o1a
HEa NFa(t) + e

(39)

ynew _ (Npﬂﬁ (t) + NFﬂz* (t>)an€w + (NFa1 (t) + NFaz(t))enew (40)
Fa NEq(t) + e

3.3.2. The State Transition Function I'}; (t)

The I'}(t) signifies the count of moving robots transitioning into free robots when they
fail in competition with others for the same target position. This state transition function
can be expressed as Equation (41).

T (t) = Nu(t)yy (41)

where 7y ¢ is the probability of the moving robots failing to compete for the target position.
Indeed, 1y is closely related to the working modes of the growing robots. Here, the growing
robot that can provide an independent available empty unit cell for moving robots is re-
garded as being in the working growing sub-state, recorded as G, (see Figure 2e). According
to the proposed self-assembly strategy, some available empty unit cell coordinates only
impact the free robots, not the moving ones. If the provided available empty unit cells
are shared or do not affect the moving robots, the growing robot is considered to be in the
activated growing sub-state (see Figure 2e). Each available empty unit cell affecting moving
robots is shared by n( moving robots, i.e.,

Num(t)

nn =
*” Ne, ()

(42)

where Ng_ (t) is the number of working growing robots. Therefore, the success and failure
rates of moving robots competing to obtain a target position are s and ¢, i.e.,

1
— 4
Vs 1o (43)

1

=1 (44)

The failure probability -y relies on the count of working growing robots Ng,, (t).
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According to the structural features, the calculation of the working growing state num-
bers for G1, G2, and G3 robots proceeds as follows. To determine G1 robots in the working
growing state, two probabilistically independent events should be discussed. The first event
is the probability of the G1 robot in new growing state. Here, the robot transformed from the
building to the growing state at time step t — 1 is defined as the new growing robot at time
step ¢, or it is regarded as the old growing robot (see Figure 2d). Following the proposed
self-assembly strategy, the broadcasts of the new growing robots exclusively impact the free
robots and not the moving robots. Thus, all new growing robot is in activated growing state.

The probability of the G1 robot in a new growing state is expressed as p}’, i.e.,

new __ Agl (t -1 TB) (45)
ol Nea(t)

here, Agl is introduced in Section 3.3.4. The second event is the distribution characteristics
of building robots within the building unit cells. Note that the possible building unit cell
not occupied by a building robot will be preferentially selected as the available empty unit
cell. Here, two situations should be considered. In the first situation, the building unit
cell provided by a G1 robot is not occupied by a building robot. Note that this building
unit cell must be shared by the neighboring G2 robot (see Section 3.2.3). Although the
focused G1 robot and its neighboring G2 robot broadcast the building unit cell’s coordinates
simultaneously, only the G2 robot is usually considered the working growing state to avoid
double counting. However, if the G2 robot is in a new growing state, the focused G1
robot could be considered the working growing robot. In addition, as G1 robot has three
neighboring empty unit cells. Thus, when its building unit cell is occupied, the focused G1
robot will be in the working growing state. Thus, Nélw (t) is expressed as follows.

NGi, () = [Nray. () + Nra. (D] (1= pG1) [(1 = ota — Onew) 085" + 00ra] - (46)

where [Npal* (t) + NEa,, (t)] expresses the total number of the G1 robot in structural types
Faj« and Fap«. The second terms on the right-hand side of Equation (46) indicate the dis-
cussed first events. Two sub-terms in the third term represent the discussed two situations
in the second events, respectively. p{5” can be found in Equation (47).

Similarly, two probabilistically independent events need to be discussed to calculate
the number of G2 robots in the working growing state. The first event is the probability of

the G2 robots in a new growing state, i.e.,

new __ Agz(t -1 TB)

€z - Nea(t) “7)

The second event is the structural features involving the arrangement characteristics
of the structural types and the distribution characteristics of building robots within different
building unit cells (See Section 3.2). Through a comprehensive analysis of the structural
features, the G2 robot may be in the working growing state under the following three situa-
tions. The first situation is that the building unit cell provided by the focused G2 robot is
not occupied by a building robot. Under this situation, the focused G2 robot is in the working
growing state, providing an available empty unit cell for free and moving robots. The second
situation is that an old building robot occupies the building unit cell provided by the focused
G2 robot, and the left structural type of the focused G2 robot is not the structural type Ra;.
Note that the G2 robot has two empty unit cell. According to the definition of the building
robot’s distribution, the focused G2 robot cannot actively use its second neighboring empty
unit cell as a building unit cell (see Figure 14). Since the structural type on the left is not Ray,
the focused G2 robot can monopolize its second neighboring empty unit cell and work as a
working growing robot to broadcast its second neighboring empty unit cell’s coordinates. In
the third situation, an old building robot occupies the focused G2 robot’s building unit cell,
and the left structural type is Ra;. As shown in Figure 16, the focused G2 robot’s second
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neighboring empty unit cell plays the role of the building unit cell of the G2 robot of the
structural type Ra;. When the building unit cell of the G2 robot of the structural type Ra;
is not occupied, the G2 robot of the structural type Ra is prioritized as the working growing
robot rather than the focused G2 robot to avoid double counting. However, if the G2 robot
of the left structural type Ra; is in the new growing state and its building unit cell is not
occupied, the focused G2 robot will be seen as a working growing robot. Additionally, a
new building robot occupying a building unit cell indicates that the corresponding G2 robot
completed a recruitment task at time step t — 1. Hence, the G2 robot cannot function as a
working growing robot, as its broadcasts can only impact the free robots at time step ¢. Based
on the above discussions, the number of G2 robots in structural type Ra; in the working

growing state can be expressed as Ng;; (1), 1ie.,

(1) = Niay (01 = 25°) [ (1= peay) + 808 (1= ) 4 il 7 (1~ e, ) )

where N, (t) expresses the number of G2 robots in the structural type Ra;. Similarly, the
number of G2 robots in structural types Rap and Fa in the working growing state are written

as Nggi (t)and NE§ (1), ie.,
NGg2 () = Nray (1)(1 = 085 [(1 = piRay) + 0ota (1= T) + 0ot T(1 = i, )0&5"] (49)

NES, (1) = Nra(t)(1— o) [ (1= pra) + (1= 7) + i (1= pura )28’ ] (50)

As introduced in Section 3.2.3, the G3 robots cannot enter a new growing state, and
their only neighboring empty unit cells are the priority building unit cells by default. In
the structural types Fay and Fay+, the G3 robot can use its building unit cell preferentially.
Thus, as long as a building robot does not occupy the building unit cell, the G3 robot in
the structural types Fa; and Fay+ will remain in the working growing state. Based on the
structural features, the quantity is expressed as Nggw (t),1ie.,

N(FZ%w (t) = [NPIZZ (t) + NFIIZ* (t)] (1 — Oold — (Tnew) (51)

In the structural type Rap, G2 and G3 robots share the building unit cell. When the
building robot does not occupy the building unit cell, the G2 robot is prioritized as the
working growing robot to avoid double counting. However, if the G2 robot is in the new
growing state, the G3 robot may be in the working growing state. It is expressed as follows.

NEE (#) = Niay (£) (1 — 0ot — Onews ) P15 (52)

Finally, the to