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Abstract: Mesenchymal stem cells (MSCs) have shown great potential in the treatment of several
inflammatory diseases due to their immunomodulatory ability, which is mediated by exosomes
secreted by MSCs (MSC-Exs). The incidence of inflammatory bowel disease (IBD) is increasing
globally, but there is currently no long-term effective treatment. As an emerging therapy, MSC-Exs
have proven to be effective in alleviating IBD experimentally, and the specific mechanism continues
to be explored. The gut microbiota plays an important role in the occurrence and development of
IBD, and MSCs and MSC-Exs can effectively regulate gut microbiota in animal models of IBD, but
the mechanism involved and whether the outcome can relieve the characteristic dysbiosis necessary
to alleviate IBD still needs to be studied. This review provides current evidence on the effective
modulation of the gut microbiota by MSC-Exs, offering a basis for further research on the pathogenic
mechanism of IBD and MSC-Ex treatments through the improvement of gut microbiota.

Keywords: mesenchymal stem cells; exosomes; inflammatory bowel disease; gut microbiota; therapy

1. Introduction

Mesenchymal stem cells (MSCs) are a type of adult stem cell that can differentiate
into various cell types, such as bone, cartilage, fat, and muscle cells. MSCs have been
widely studied for their therapeutic potential in regenerative medicine due to their ability
to promote tissue repair and modulate the immune system [1,2]. Extracellular vesicles,
including exosomes released by MSCs (MSC-Exs), carry various biological molecules such
as proteins, lipids, and nucleic acids like microRNAs. Exosomes can act as messengers
between cells, delivering their cargo to target cells and influencing their behavior. MSC-
Exs have shown potential in promoting tissue repair, modulating the immune response,
and inhibiting inflammation, making them a promising therapeutic tool in regenerative
medicine and immune-related disorders, including inflammatory bowel disease (IBD) [3,4].

The gut microbiota refers to the community of microorganisms that live in the gastroin-
testinal tract, including bacteria, viruses, fungi, and other microbes. The gut microbiota
plays a vital role in maintaining the health of the host by aiding digestion, producing
vitamins, and protecting against pathogenic bacteria [5]. IBD, a chronic inflammatory
disorder of the gastrointestinal tract, includes Crohn’s disease (CD) and ulcerative colitis
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(UC). The exact cause of IBD is not fully understood, but it is believed to be due to a
complex interplay between genetic, environmental, and microbial factors [6]. Emerging
evidence suggests that dysbiosis, an imbalance in the gut microbiota, may play a critical
role in the development and progression of IBD. Changes in the composition of the gut
microbiota, such as a decrease in beneficial bacteria or an increase in harmful bacteria, have
been observed in patients with IBD [7,8]. In addition, the gut microbiota can lead to an
inappropriate immune response, resulting in chronic inflammation in the gut, and can
produce metabolites that affect the gut environment and immune system [9].

Therefore, the gut microbiota is considered a potential therapeutic target for the treat-
ment of IBD. Strategies such as probiotics, prebiotics, and fecal microbiota transplantation
(FMT) are being investigated for their ability to restore gut microbial balance and alleviate
inflammation in IBD. Other therapeutic agents such as MSCs and MSC-Exs have attracted
research attention in this field since studies have reported their role in regulating the gut
microbiota in IBD by altering the abundance of specific bacterial species, leading to a
reduction in proinflammatory bacteria and an increase in anti-inflammatory bacteria [10].
This study examines current evidence on the regulatory role of MSCs and MSC-Exs on the
gut microbiota in IBD and provides a basis for further research.

2. Gut Microbiota and IBD
2.1. Composition of Gut Microbiota and Its Influencing Factors

The gastrointestinal tract consists of three parts: the stomach, the small intestine, and
the large intestine. Each of these parts has a different composition of microorganisms
(Figure 1). For a long time, it was generally believed that the stomach has no bacterial
growth due to its strong acidity, but after a lot of research, it was found that the stomach
contains a large number of acid-resistant strains. Due to the development of culture-free
techniques, five major phyla have been detected in the stomach: Firmicutes, Bacteroidetes,
Actinobacteria, Fusobacteria, and Proteobacteria. Prevotella, Streptococcus, Veillonella,
Rothia, and Haemophilus are the main flora in the healthy human stomach [11]. The small
intestine (SI) can be divided into the duodenum, jejunum, and ileum, and different parts
have different bacterial compositions and content due to their microenvironments. The
duodenum predominantly contains Firmicutes and Actinomycetes; the jejunum supports
the growth of Gram-positive aerobic and facultative anaerobes, including Lactobacilli, Entero-
cocci, and Streptococci; and the ileum supports predominantly anaerobic and Gram-negative
bacteria, similar to the colon [12]. Anaerobic bacteria mainly dominate the large intestine
(LI) [13], and their ratio is closely related to the individual’s health status. At the same
time, Bacteroides, Bifidobacteria, Streptococcus, Enterobacteriaceae, Enterococcus, Clostridium,
Lactobacillus, and Ruminococcus are the major bacterial genera in the large intestine.

The gut microbiota is affected by many factors, which can be roughly divided into three
categories: host endogenous factors, exogenous factors, and environmental factors [14].
Host endogenous factors include age. A study of genomic analyses (MetaOTUs) of the
gut microbiota of infants one year after birth found that the diversity and number of
gut microbiota increased as the infants aged; in contrast to the mother’s gut microbiota,
the composition becomes more similar with age [15]. In a study on the fungal group in
middle-aged and elderly people, the fungal composition significantly differed between
the two groups. In the elderly population, Germella and Ascystis were absent, whereas
Malassezia was absent in middle-aged individuals but abundant in the elderly [16]. Host
exogenous factors include diet, drugs, and lifestyle. Diet changes the metabolites of gut
microbiota through the influence of microorganisms, influencing health [17]. In addition,
one study showed that vegetarian and omnivorous diets can increase fecal amino acid
metabolites, where dietary fiber helps in the recovery of the human gut microbiome and
its metabolome by promoting the growth of healthy bacteria populations [18]. Drugs can
also affect the gut microbiota, and some of the microbiota may also reduce drug efficacy.
Different geographical locations also affect the gut microbiota. In addition, temperature
and some extreme conditions cause changes in the gut microbiota [12].
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Figure 1. Changes in gut microbiota in normal and IBD states. The figure depicts the bacterial com-
position of different parts of the normal gastrointestinal tract and changes in the flora in states of 
intestinal inflammation. In intestinal inflammation, the diversity of the gut microbiota is reduced, 
and the dominant flora is altered compared with the healthy gut microbiota. 
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all the genes came from bacteria; only 0.1% were of eukaryotic and viral origin, and the 
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Figure 1. Changes in gut microbiota in normal and IBD states. The figure depicts the bacterial
composition of different parts of the normal gastrointestinal tract and changes in the flora in states of
intestinal inflammation. In intestinal inflammation, the diversity of the gut microbiota is reduced,
and the dominant flora is altered compared with the healthy gut microbiota.

The adult gut microbiota is a large, diverse, and dynamic ecosystem. There are
100 trillion microorganisms in the human intestinal tract, which is ten times the total num-
ber of human cells, accounting for the vast majority of the total number of microorganisms
in the human body, and they have an important impact on the physiological and pathologi-
cal conditions of the human body [19]. A study on DNA sequencing of 124 stool samples
in Europe aimed at adding to the gene catalog of human gut microbes found that almost all
the genes came from bacteria; only 0.1% were of eukaryotic and viral origin, and the rest
were of archaeal origin. In that study, there were a total of 1000 to 1150 bacterial species,
with at least 160 bacterial species per individual, indicating that the gut microbiota has
individual variability [20].

The gut microbiota protects the intestinal mucosa from pathogenic bacteria through
its specific metabolites and immunomodulatory effects [21]. The normal microbiota is
relatively stable and forms a “defense wall” to resist the colonization of abnormal microor-
ganisms and the expansion of pathogenic bacteria. This phenomenon is referred to as
the “Colonization Resistance” of microorganisms and is accomplished through direct or
indirect mechanisms, including the production of inhibitory metabolites, the release of
bactericidal substances, and competition for resources [22].

The immune function of the intestine is related to the gut microbiota. The composition
of the neonatal gut microbiota is closely related to the composition of its immune cells.
Children with higher Bifidobacteria content tend to have more anti-inflammatory T cells,
and breastfeeding-obtained Bifidobacteria can inhibit the occurrence of intestinal inflamma-
tion [23]. The colonization of gut microbiota in infancy is closely related to the development
and maturation of immune cells. Different microorganisms produce corresponding stem
cell populations, and if antibiotics are used early in life, the number of stem cells that
develop into immune cells (Paneth cells and macrophages) is reduced [24]. In addition to
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affecting immune cells, antibody production is also regulated by the gut microbiota. As
the most abundant antibody in the intestinal mucosa, IgA plays an essential role in the
immune defense of the intestinal tract. However, the secretion of IgA requires the induction
of intestinal commensal bacteria. In the early stages of human life, before the colonization
of the gut microbiota, IgA is lacking in the intestinal mucosa, confirming the crucial role of
the gut microbiota in health and diseases [25].

2.2. IBD and Gut Microbiota Role

In recent years, IBD has become a global disease, and the incidence of IBD in newly
industrialized countries such as those in Asia has been increasing [26]. In China, IBD has
migrated from a rare disease to a common disease [27]. There is no doubt that IBD has
become an important health problem globally. As a highly heterogeneous chronic inflam-
matory disease of the gastrointestinal tract, IBD exhibits varying severity and symptoms in
different patients. IBD is often diagnosed in adolescence and early adulthood and usually
presents with gastrointestinal symptoms such as abdominal pain, diarrhea, and bleeding,
as well as systemic symptoms such as anemia and weight loss [28]. Extraintestinal manifes-
tations can also occur, often involving the joints, skin, eyes, and other organs such as the
liver, lungs, and pancreas [29]. In addition, IBD can also cause a series of complications,
such as fistula, infection, and colorectal cancer [30]. IBD exhibits complex and refractory
characteristics and is usually challenging to completely cure. IBD treatment aims to control
the acute and progressive exacerbation of inflammation, maintain remission, and treat
corresponding complications [31].

The interaction of multiple factors such as environment, genetics, immunity, and
intestinal microorganisms causes IBD. The pathogenesis of IBD is very complicated and
has not been fully understood. For a long time, the gut microbiota has been considered
an important factor in the pathogenesis of IBD, and the diversity and quantity of gut
microbiota in IBD patients are abnormal [32]. Most studies have demonstrated that a
dysfunctional interaction between the gut microbiota and the immune response of the
intestinal epithelium can cause IBD. However, the relationship between them is not
clear, and a review showed that IBD is due to a genetic defect that makes the intestinal
epithelial immune system abnormally responsive to gut microbes [33]. Human intestinal
bacteria have been implicated in the pathogenesis of IBD [34]. For example, Actinobacil-
lus Eggerthella lenta (E. lenta) can relieve the inhibition of Th cell transcription factors;
activate proinflammatory cells and Th 17 cells; and trigger intestinal inflammation, and
E. lenta strains are significantly enriched in IBD patients [35]. Moreover, transplanting
Klebsiella pneumonaea strains from IBD patients into sterile colonized mice increases the
probability of IBD in mice, and this effect can be effectively alleviated by Klebsiella pneu-
monaea-targeting phages [36]. In these studies, changing only gut microbes can enhance
intestinal inflammation, indicating that microbes play an indispensable role in the de-
velopment of IBD. In addition, the intestinal microbial composition of IBD patients is
very different from that of healthy people. The diversity of gut microbiota in IBD pa-
tients is significantly decreased, with reduced Firmicutes and Bacteroidetes but increased
Proteobacteria (Figure 1). The metabolism pathways and their associated functions are
also correspondingly altered, and the bacterial network in IBD patients is also altered
compared with normal people [37].

2.3. IBD Treatment: Microbiota Target

At present, IBD is commonly treated with drugs such as immunosuppressants, bi-
ological agents, and antibiotics, but these treatments have certain limitations. Recently,
there has been increasing attention on the treatment of IBD by targeting the gut microbiota,
such as fecal transplants and probiotic transplants. Fecal microbiota transplantation (FMT)
introduces microbes from healthy donors’ feces into patients to improve intestinal microbial
imbalance and achieve therapeutic effects [32]. An IBD study on combined Clostridium
difficile infection (CDI) showed that FMT can significantly increase the diversity of intestinal
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microorganisms and significantly change the microbial composition, effectively treating
CDI, but it easily recurs [38]. Harry Sokol et al., in the co-treatment of CD with cortisol
and FMT, found that no patient reached the primary endpoint of the treatment, i.e., the
colonization of the donor flora within the sixth week, and concluded that the colonization
of the donor flora in CD may be associated with maintaining remission [39]. In a recent
study [40], gut bacteria from UC patients and healthy donors (HD) were transplanted sepa-
rately into a mouse model. The results showed that the two donor flora had a regulatory
effect on the gut microbiota of the mice, and the HD bacteria group significantly reduced
the expression of proinflammatory factors in the model mice, where the effect of improving
IBD was better in HD than that of the UC bacteria group.

Intestinal probiotics mainly include Bifidobacteria and lactic acid bacteria. Probi-
otic transplantation can regulate gut microbiota disturbance, thereby reducing intestinal
inflammation. A study showed that the fecal microbiota of IBD patients were rich in Enter-
obacteriaceae, and the transplantation of IBD patients’ fecal microbiota could cause colitis.
The oral administration of Lactobacillus plantarum NK151, Bifidobacterium longum NK173,
and Bifidobacterium NK175 can alleviate colitis by inhibiting intestinal bacterial lipopolysac-
charide (LPS) and regulating the expression of proinflammatory and anti-inflammatory
cytokines [41]. Studies have shown that Clostridium butyricum (C. butyricum) protects the
intestinal barrier and regulates the gut microbiota, in which EV produced by Chlamydia
butyricum plays an important role [42]. Although fecal and probiotic transplants have
been proven to be useful in the treatment of IBD, they have the disadvantages of easily
recurring and uncertain efficacy. MSC is an emerging treatment method for IBD, and it may
be an effective alternative therapy to alleviate IBD by regulating gut microbiota through
MSC-Exs.

3. The Role of MSCs and MSC-Exs in the Regulation of IBD-Associated Gut Microbiota

Mesenchymal stem cells (MSCs) are cells with multipotential differentiation potential
that can be isolated from different tissues of humans and various mammals [43]. Human
MSCs are mostly extracted from bone marrow, adipose tissue, and neonatal birth-associated
tissues, including the placenta, amniotic fluid, and umbilical cord, and have the ability
to self-replicate and differentiate into multiple lineages of mesenchyme [44,45] (Figure 2).
In addition to the ability to differentiate multi-lineages and self-renew, MSCs also have
the ability to regulate the immune system [46,47]. Therefore, MSCs are regarded as a
possible treatment for many immune and inflammatory diseases, including IBD. MSCs
have been proven to be effective in alleviating IBD, but the precise mechanisms by which
they exert their effects within the intestinal microenvironment remain to be fully explored.
It is hypothesized that their therapeutic impact may be attributable, at least in part, to
the modulation of intestinal microbiota. Emerging evidence suggests that MSCs can
significantly influence antimicrobial activities, directly and indirectly interacting with gut
microorganisms [48].

Accumulating evidence indicates that MSC immunomodulation depends on the cells’
paracrine effects, including soluble factors and large numbers of extracellular vesicles
(EVs). A variety of cell types secrete EVs and are also present in various body fluids [49].
The release of EVs contributes to intercellular communication. EVs are divided into three
types: exosomes, microvesicles, and apoptotic bodies. Their sizes and origins are different.
Among them, the most numerous EV subtypes are exosomes [50]. Exosomes originate
from endosomes, where cell membranes form early endosomes (ESEs) through endocytosis
and lipid depressions, which can also be promoted by the endoplasmic reticulum and
Golgi apparatus, and ESEs can further mature into late endosomes (LSEs), and finally form
multivesicular bodies (MVBs). MVBs fuse with cell membrane lipids and are released to
form multiple exosomes with a diameter of 30–150 nm (Figure 2) [51,52].
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Exosomes are composed of lipids, proteins, RNA, and DNA. Exosomes contain func-
tionally rich proteins, among which, transmembrane proteins include CD9, CD63, CD81,
and CD82, which are involved in cell penetration, invasion, and fusion events. The impor-
tant RNA in exosomes is miRNA; it has less DNA content, which has a smaller effect. At the
same time, exosomes contain different types of lipids [53]. Exosomes act on target cells by
(1) specifically binding to target receptor cells to exchange proteins and lipids; (2) binding
receptors to target ligands to trigger downstream signaling events; and (3) transferring
genetic material through membrane fusion, receptor–ligand interactions, or endocyto-
sis [54]. It is generally believed that the efficient delivery of genetic material is crucial for
successfully applying exosomes. A number of studies have shown the superior therapeutic
effect of MSC-Exs compared with MSCs, and they lack some side effects of MSC treatment,
such as immune rejection. At the same time, MSC-Exs can also be used as carriers in nano-
medicine [55]; therefore, the applications of MSC-Exs in disease treatment have received
extensive attention.

3.1. MSCs and MSC-Exs in the Regulation of IBD-Associated Gut Flora
3.1.1. Reduction in Harmful Flora

The gut microbiota of IBD patients show an abnormal increase in certain commensal
flora, such as Proteobacteria, which are low in the intestines of healthy individuals and
lead to the ecological dysregulation of the intestinal tract. According to research, D-
amino acids can inhibit the growth of Proteobacteria. The administration of D-amino
acids to experimental colitis mice can alleviate intestinal inflammation [56]. Another
piece of evidence in a 16srRNA sequencing analysis of mouse feces showed that intestinal
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inflammation significantly increased the proportion of Proteobacteria, such as Proteus and
Bacteroides, compared with a healthy group. However, the treatment of DSS-induced colitis
mice with MSCs significantly restored microbiota alterations and inhibited the increase in
Proteobacteria [57].

In addition, the normal intestinal tract flora, E. coli, which can be induced to
overgrow by intestinal inflammation [58], and pathogenic E. coli also play an integral
role in the progression of inflammation. Adherent invasive E. coli (AIEC) has been
reported to be associated with intestinal epithelioid granulomas manifested by CD,
whereas diffuse adherent E. coli (DAEC) is often isolated with the feces of patients with
UC [59]. Recently, atypical enteropathogenic E. coli (a-EPEC) has also been found to
be associated with laboratory and clinical UC [60]. The infusion of UC-MSCs reduces
the Enterobacteriaceae family in the gut microbiota and protects against invasion by
pathogenic E. coli [61]. MSCs normalize E. coli levels in the gut microbiota and help to
alleviate intestinal inflammation.

Fusobacterium varium is normally found in the human oral cavity and can adhere to
and invade intestinal epithelial cells. Fusobacteria has been isolated from the intestinal
mucosa of patients with UC [62]. It has been found that enemas given to mice with
supernatants obtained from culturing Fusobacterium varium resulted in the development
of UC in these mice [63]. The secretome of dental pulp multipotent MSCs has been
found to inhibit the invasion of Fusobacteria in the oral cavity [64]. It has also been
reported that the infusion of both hucMSC-Exs and hFP-Exs reduces the abundance of
proinflammatory intestinal bacteria such as Verrucomicrobia and Akkermansia muciniphila
to improve colitis [65].

3.1.2. Increase in Beneficial Flora

In healthy humans, more than 90% of the gut microbiota are Firmicutes and Bac-
teroidetes [13]. Firmicutes and Bacteroidetes can metabolically produce short-chain fatty
acids (SCFAs) [66]. SCFAs, especially butyrate, have been shown to induce the differentia-
tion of regulatory T cells and maintain intestinal homeostasis [67]. Several studies have
demonstrated the anti-inflammatory properties of Bacteroidetes [68,69], and inhibiting this
species could lead to intestinal inflammation. However, most patients with IBD have a
decrease in both Firmicutes and Bacteroidetes. MSCs are able to upregulate the ratio of Fir-
micutes and Bacteroidetes and increase the abundance of healthy flora such as Lactobacillus
murinus and Lactobacillus johnsonii in a mouse model of IBD [70].

Furthermore, probiotics such as the Bifidobacterium, Lactobacillus, and Faecalibac-
terium genera can alleviate intestinal inflammation by modulating the release of cytokines,
including the down-regulation of inflammatory cytokines, as well as promoting the produc-
tion of IL-10 [71,72]. Recent studies have elucidated the role of probiotics in CD [73] and
found that they are able to alleviate intestinal inflammation, although there is uncertainty
about their efficacy. Bifidobacterium and Lactobacillus can also have a therapeutic role by
repairing the intestinal barrier in IBD zebrafish [74]. In IBD, these probiotics are signifi-
cantly reduced, perpetuating inflammation [75]. High-throughput sequencing (16rRNA) of
DSS-induced IBD mice treated with MSC-Exs showed that the MSC-Ex treatment reversed
a colitis-induced decrease in OTUs, Lactobacillus, and Bacteroides [76].

Defects in the mucus gel (MGL) layer are common in intestinal inflammation, and
this defect leads to direct bacterial contact with the colonic surface, allowing bacterial
invasion and the disruption of intestinal homeostasis [77]. Akkermansia, associated
with MGL formation, is significantly reduced in IBD [78]. Recent studies have shown
that the treatment of BALB/c mice with MSCs and endothelial progenitor cells (EPCs)
results in positive gut flora alterations, accelerated mucosal damage repair, and increased
Akkermansia [79].
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3.1.3. Enrichment and Balance of Intestinal Microbiota

Dysbiosis of the gut microbiota in IBD patients is not only due to an increase in
harmful flora, as well as a decrease in beneficial flora, but also, more importantly, a decrease
in the diversity of the flora, which presents a situation in which certain types of flora
are prominently featured while others are virtually absent [80]. MSC-Exs significantly
restore the structure of OTUs, decrease alpha diversity induced by colitis, and improve the
composition of the intestinal microbiota [81]. Do-Wan Kim et al. found that MSCs could
be delivered to intestinal crypts with stem-cell-loaded hydrogel microcapsules (SC-HMs)
and modulated the intestinal microbiota in an IBD model in mice, including Bacteroides
acidifaciens, Lactobacillus (L.) gasseri, Lactobacillus reuteri, and L. intestinalis, among other
strains in dysbiosis, resulting in an increase in the abundance of gut microbiota [82]. In
TNBS-induced colitis mice, MSC restores the normal characteristics of the gut microbiota;
increases α-diversity; and increases the content of Bacteroidetes, Firmicutes, and Tenericutes
while also decreasing the number of Proteobacteria [83].

MSC can also regulate gut microbiota dysbiosis in mouse models of other diseases,
where a disease-related gut microbiota increases, along with a decrease in the immunomod-
ulatory flora, which can be reversed by MSC treatment, possibly due to the involvement of
MSCs in changing some metabolic pathways of the gut microbiota [84].

3.2. Mechanisms of MSCs in Regulating Gut Microbiota
3.2.1. Directly Affecting Specific Strains

SCFAs produced by intestinal bacteria have positive effects on IBD. For example,
butyrate can reduce the aggregation of neutrophils, thus ameliorating DSS-induced colitis
in mice [85]. Recently, it was shown that butyrate can also ameliorate increased intestinal
epithelial permeability induced by AIEC pathobionts (e.g., strain LF82) in UC and maintain
the normal morphology and function of epithelial cell mitochondria [86]. Huc-MSCs can
upregulate the levels of SCFA-producing bacteria, including Akkermansia, Faecalibaculum,
and Clostridia_UCG_014, in the IBD model, which, in turn, promotes T cell homeostasis,
thereby alleviating the inflammatory state of the intestinal mucosa [87]. HucMSC-Exs
are similarly able to increase the levels of SCFAs, especially butyrate, which upregulates
bacteria such as Bacteroides, Parabacteroides distasonis, and Tannerellaceae [88].

The gut microbiota is an important component of bile acid metabolism, hydrolyzing
and dehydroxylating primary bile acids into secondary bile acids (SBAs). In the literature,
SBAs and the SBA-producing bacteria rumenococcaceae have been significantly reduced in
colitis mice, and intestinal inflammation has been reduced when SBAs have been given to
colitis mice. SBAs can bind to the downstream anti-inflammatory receptor signals FXR and
TGR5 to exert anti-inflammatory effects [89,90].

The FXR receptor is an important target for the interaction between intestinal
microorganisms and the host immune system; thus, the ability of MSC-Exs to regulate
its expression is a crucial therapeutic target in IBD [91]. By assessing the modulatory
effect of MSC-Exs on gut bacteria composition and diversity and metabolites and their
related functions and pathways in IBD, a study found that MSC-Exs modulate the gut
metagenomic–metabolomic profile and increase the colonic FXR receptor [81]. This
suggests that MSCs may exert their effects on microorganisms associated with IBD
through the FXR pathway. In one study, in a mouse model of DSS-induced IBD, the
intraperitoneal injection of hucMSCs increased the number of regulatory T cells in the
gut-associated lymphoid tissue and elevated the level of immunoglobulin A, playing an
anti-inflammatory role. The authors concluded that hucMSCs ameliorate DSS-induced
colitis by not only regulating the Tregs-IgA response and enhancing the secretion of IgA
but also by promoting the restoration of intestinal microbiota [92]. SIgA binds intestinal
commensal bacteria, preventing them from passing through the intestinal barrier [93].
Consequently, MSC-Exs have the potential to improve dysbiosis by increasing the release
of SIgA. Furthermore, miR-181a in MSC-Exs can alleviate a DSS-induced colitis model
and restore its gut microbiota to a healthy state [76]. In another study, miR-150-3p in
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MSC-Exs was found to regulate the TRAF6/NF-κB axis and gut microbiota, thereby
improving a mouse ICH (intracerebral hemorrhage) model [94]. At present, there is a
paucity of research investigating the related molecules and signaling pathways between
MSC-Exs and gut microbiota. This provides a foundation for future research on the
specific mechanisms of MSC-Ex action on gut microbiota.

3.2.2. Indirectly Affecting the Microbiota by Modulating the Host’s Immune Response

HucMSC-Exs maintain immune balance by regulating immune cells, which, in turn,
improves the structure of intestinal epithelial cells, thereby improving the intestinal mi-
croenvironment on which the gut microbiota depends. They have a beneficial effect on
the restoration of the gut microbiota [95]. It has been extensively reported that MSCs
achieve immunomodulatory functions through the release of several cytokines [96,97],
of which the most likely involved in the inflammatory regulation of MSCs are TNF-α-
stimulated gene/protein 6 (TSG-6), as strong evidence indicates that TSG-6-deficient MSCs
fail to improve colitis [98]. In 2018, Woo-Jin Song further conducted a study on the mech-
anism of TSG-6, where DSS-colitis mice treated with MSCs had significantly reduced
TNF-α and IL-6 but increased IL-10, and the down-regulation of TSG-6 decreased the
anti-inflammatory effect of MSCs. Since macrophages mainly secrete these cytokines, the
coculture of macrophages with cAT-MSCs (canine adipose tissue-derived MSCs) showed
that TSG-6 produced by cAT-MSCs could induce the conversion of M1 macrophages into
M2 macrophages in vitro. Also, by assessing the number and phenotype of macrophages in
an inflamed colon, it was found that the percentage of total macrophages was significantly
lower in the cAT-MSC-treated group compared with the control group, while the percent-
age of M2 macrophages was significantly increased [99]. Similarly, MSC-Exs regulate Th2
and Th17 cells in mesenteric lymph nodes (MLNs) and repair the intestinal barrier by
targeting TSG -6, significantly improving the structure and function of damaged intestinal
epithelial cells [100]. Recent studies have found that the conversion of M1 cells into M2
cells by MSCs and, thus, their immunomodulatory effects can be mediated by EVs [101],
while miRNA in MSC-Exs plays a major role [102]. MSC-Exs play a role in the treatment
of IBD by down-regulating the inflammatory response by activating M2 macrophages.
Multiple proteins are involved in this process in MSC-Exs, among which, metallothionein-2
is essential [103].

MSC-Exs regulate various cytokines and Treg cells, increase the level of anti-inflammatory
factors, reduce the level of proinflammatory factors, restore the balance of Th17/Treg cells, and
reduce intestinal inflammation (Figure 3) [103]. Treg cells are an important class of immune
cells that maintain immune homeostasis and self-tolerance, and the excessive activation of
Treg cells in IBD patients causes damage to the intestinal mucosa. One study investigated
T cell regulation by hucMSC-Exs and fetal placenta (FP)-MSCs and found that, while DSS
induces a significant increase in Treg cell levels in mice, hucMSCs-Ex and FP-Ex treatments
decrease Treg levels. Also, the MSC-Exs could regulate the concentration and expression
of cytokines, as IL-10, IFN-γ, IL-14A, and IL-7 were significantly reduced in the peripheral
blood of DSS-treated mice but markedly restored after treatment with hucMSCs-Exs or FP-Exs.
Thus, MSC-Exs can restore immune homeostasis to the inflammatory microenvironment of
the intestine [65]. Moreover, another study analyzed the number and proportion of T cells
in the spleens and MLNs of mice with colitis after treatment with hucMSCs and found that
hucMSCs inhibit apoptosis, promote Type 1 regulatory T (Tr1) cell proliferation, increase the
proportion of Tr1 cells, and enhance the immunosuppressive function of Tr1 based on their
paracrine indoleamine-2,3- dioxygenase (IDO), and when IDO is blocked, MSCs are unable to
upregulate Tr1 cells [104].
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Figure 3. The mechanisms of MSC-Exs in the treatment of IBD. (A) MSC-Exs work by releasing
small molecules like (1) miR-378a-5p, (2) miR-326, (3) miR-146a, and proteins. MSC-Exs modulate
intracellular signaling pathways (including inhibiting cell focalization, ubiquitination, and neddyla-
tion) by influencing protein expression levels, thereby reducing inflammation. (B) MSC-Exs improve
the diversity of the gut flora and its products, like SCFAs. By releasing metallothionein-2, TSG-6,
and other important proteins, MSC-Exs regulate the number and function of T cells and activate
macrophages (M2). Cytokines are also altered in this manner, with an increase in anti-inflammatory
cytokines, reducing inflammation and, thus, improving the intestinal barrier.



Pharmaceuticals 2024, 17, 607 11 of 22

3.2.3. Repair of the Intestinal Barrier

MSCs and their derived exosomes potently regulate the function of intestinal epithelial
cells (IECs). IECs line the small intestine and large intestine and play an important role in
the digestion and absorption of nutrients. MSCs and their derived exosomes have been
shown to exert several beneficial effects on IECs, including protection from injury, increased
proliferation and differentiation, and reduced inflammation [105]. One study treated
isolated mesenteric cells with MSCs and found that MSCs induce IEC-6 cell proliferation,
reduce IEC-6 cell apoptosis, and enhance their migration. Hypoxia-pretreated MSCs further
enhance these effects, which may be related to the activation of the PI6-Akt pathway in IEC-
3 induced by hypoxia-pretreated MSCs [96]. Jingling Su et al. found the same supportive
effect of MSCs on IEC-6 cells by culturing them in an MSC-containing DMEM medium. In
addition to this, they found increased viability in IEC-6, and these promotive effects could
be enhanced by IL-25, with the PI3K-Akt pathway playing a key role [106]. Recently, Peng
Liu et al. also reported that MSC-CM pretreated with 25 µM of H2O2 can also enhance the
repair effect of MSCs on the intestinal mucosa, with the activation of the Nrf2/Keap1/ARE
pathway playing a key role [107]. In another study that explored the mechanism of MSC-Exs
carrying microRNA-378a-3p (miR-378a-3p) to target IBD, the authors used bioinformatics
analysis to identify GATA-binding protein 2 (GATA2) as a target gene of miR-378a-3p
that regulates inflammation. Further, an analysis of related gene expression in the colonic
mucosa of IBD patients revealed that miR-378a-3p could inhibit the GATA2/AQP4/PPAR-
α pathway, thereby reducing apoptosis in mouse colonic epithelial cells [108]. Jun Xu et al.
performed an RNA sequencing analysis of mouse colon tissue in a DSS colitis model and
found that the upregulated DEGs (significantly differentially expressed genes) in the MSC
group were mainly enriched in the annotation of intact components of the membrane. Thus,
MSCs play a key role in maintaining colon cell integrity. Further analysis has revealed
that this role is associated with significantly higher IGF-1 in serum after MSC treatments,
which, in turn, upregulates the IGF1R-PI3K-AKT pathway and maintains colonic epithelial
cell integrity [109]. MSCs also improve the secretory function of the intestinal mucosa; a
study investigating the expression of the intestinal mucosal mucin 5ac found that 5ac is
significantly reduced in DSS mice but increased in the colonic mucosa of MSC-treated mice
compared with blank controls, and MUC8ac increased 5-fold in MSC-Ex-treated mice [110].

The normal intestine has intact tight junctions and bridging granules, but in mice
with necrotizing small intestinal colitis, the tight junctions are open, and the adnexal
epithelial cells are separated. However, the tight junctions in MSC-treated intestines
are essentially normal, and the epithelial cells are regularly arranged, indicating that
MSCs can significantly improve the tight junctions [111]. Tight junction proteins are
important components of junctions, including zonula occludens-1 (ZO-1), Occludin, and
Claudins. The ZO-1 protein is often used to assess the usual integrity of the intestine, and
its expression or decreased levels can prevent the formation of tight junctions and cause
intestinal inflammation. MSCs restore ZO-1 protein levels in DSS-induced colitis [112]. An
experiment investigating the therapeutic mechanism of MSC-Exs in a rat model of intestinal
ischemia–reperfusion (I/R) injury (IIRI) found that MSC-Exs increase Claudin-3, Claudin-2,
and ZO-1 levels in Caco-2 cells and improve intestinal epithelial tight junctions. Further
studies have revealed that this is mediated by miR-34a/c-5p and miR-29b-3p targeting the
3′ untranslated region (3′UTR) of the Snail transcription factor [113]. Similarly, Yi-Jun Li
found that miR-34a-5p also causes an increase in tight-junction-related proteins such as
ZO-1, Occludin, Zonulin, and Claudin-3, and an analysis of the upstream signaling of miR-
34a-5p revealed that METTL3/IGF2BP3-mediated m6A modification causes MSC-Exs to
secrete miR-34a-5p levels, thereby upregulating the tight junction proteins [114]. Moreover,
studies have shown that MSCs and MSC-Exs ameliorate the massive deposition of collagen
in the colon submucosa of DSS mice [107,110,112].

The intestinal barrier is capable of resisting microbial invasion, and IBD patients have
an impaired intestinal barrier, including damage to the intestinal epithelium and disruption
of tight junctions. Microbial infiltration into the intestinal mucosa can trigger a detrimental
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cascade, leading to an adverse intestinal environment. MSC can maintain the intestinal
barrier in many ways, and a structurally and functionally intact intestinal mucosal barrier
maintains intestinal homeostasis and prevents intestinal inflammation.

4. Prospects and Challenges of MSCs and MSC-Exs in IBD Therapy
4.1. Efficacy in Animal Models of IBD and Clinical Trials

Multiple experiments have shown that MSCs and their derived exosomes can effec-
tively relieve experimentally induced colitis in mice (Table 1). In one such study, mice with
DSS-induced colitis were treated with MSCs, MSC-Exs, and placebo in different groups,
and the weight loss, stool viscosity, and hematochezia of the mice were recorded and
analyzed. It was found that both MSCs and MSC-Exs could relieve colitis in mice and had
the same inhibitory effect on inflammation [115]. Moreover, by studying the short-term
and long-term protective effects of MSC on experimental colitis, a study found that MSCs
derived from human adipose tissue not only relieve experimental colitis in the short term
but also have long-term beneficial regulatory effects on IBD [116].

Table 1. The role of MSCs and MSC-Exs in IBD.

Disease Treatment Given Mode of
Administration Study Model Results Reference

IBD I-MSCs, AD-MSCs Tail vein injection In vivo (mice)

Both iMSCs and adMSCs reduced
intestinal lesion scores, restored intestinal
epithelial integrity, and improved
microbial dysbiosis.

[57]

IBD MSC-Exs Tail vein injection In vivo (mice)

Infusion of MSC-Exs converted Treg and
Th17 cells in colitis mice into maintain
immune homeostasis. Reduced the
abundance of proinflammatory intestinal
bacteria to ameliorate colitis.

[65]

IBD MSC-Exs Intravenous infusion
In vivo

(mice)/in vitro
(HCOEPIC)

MSC-Exs reduced colonic inflammation;
TNF-α, IL-6, IL-1β, IL-17, and IL-18 levels
were decreased; Claudin-1, ZO-1, and IκB
levels were increased. In addition, the
structure of the intestinal microbiota of
colitis mice was improved.

[76]

IBD MSCs Intraperitoneal
injection In vivo (mice)

MSCs alleviated colitis by modulating the
dysregulation of metabolic pathways and
normalizing the function of abnormal
flora in colitis mice.

[83]

IBD HucMSCs Intraperitoneal
injection In vivo (mice)

HucMSCs improved gut flora and
upregulated the abundance of
SCFA-producing bacteria. They also
remodeled T cell immune homeostasis,
resulting in a decrease in Th17 and an
increase in Th2 and Treg. This had the
effect of alleviating colitis.

[87]

IBD HucMSCs Peritoneal injection In vivo (mice)

HucMSC improved intestinal lesions. It
caused a significant increase in the
proportion of Tregs and plasma cells,
resulting in elevated intestinal and fecal
IgA levels. In addition, microbiome
alterations in colitis mice were
partially restored.

[92]

IBD HucMSC-Exs Peritoneal injection In vivo (mice)

HucMSC-Ex attenuated visual and
histological colitis lesions by modulating
Treg/Th17 balance, increasing
anti-inflammatory, and decreasing
pro-inflammatory cytokine expression.

[95]
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Table 1. Cont.

Disease Treatment Given Mode of
Administration Study Model Results Reference

IBD BM-MSCs Intraperitoneal
injections In vivo (mice)

BM-MSCs formed aggregates in the
peritoneum and produced the
immunomodulatory factor TSG6, thereby
reducing intestinal inflammation.

[98]

IBD cAT-MSCs Intraperitoneal
injection In vivo (mice)

cAT-MSC-secreted TSG-6 ameliorated IBD
and regulated colonic expression of pro-
and anti-inflammatory cytokines,
inducing a shift in macrophage phenotype
from M1 to M2 in mice.

[99]

IBD HucMSC-Exs Intraperitoneal
injection In vivo (mice)

MSC-Exs prevented IBD by restoring
mucosal barrier repair and intestinal
immune homeostasis via TSG-6 in mice.

[100]

UC BMSC-Exs Peritoneal injection

In vivo
(mice)/in vitro

(LPS-treated
macrophages)

BMSC-Exs attenuated the inflammatory
response, resulting in the down-regulation
of pro-inflammatory and up-regulation of
anti-inflammatory factors, and promoted
macrophage conversion into M2.

[101]

IBD ADMSC-Exs Intraperitoneal
injection In vivo (mice)

adMSC-Exs may reduce the clinical
manifestations of IBD by modulating Treg
populations and cytokines.

[103]

IBD MSCs Intraperitoneal
injections In vivo (mice)

hUCMSCs increased the proportion of Tr1
cells in the spleen and mesenteric lymph
nodes in colitis; decreased the proportion
of helper T cells (Th1 and Th17 cells);
promoted the proliferation of Tr1 cells;
and inhibited apoptosis. Effective relief
of IBD.

[104]

IBD MSC-Exs
(miR-378a-3p) Intravenous infusion

In vivo
(mice)/in vitro

(IEC-6)

MSCs-Exs can inhibit IBD by reducing
GATA2 expression and down-regulating
AQP4 to block the PPAR-α signaling
pathway

[108]

IBD T-MSCs Intravenous infusion In vivo (mice)
Intravenous infusion of T-MSCs increased
circulating IGF-1 levels and alleviated
colitis in mice.

[109]

IBD MSCs Enemas In vivo (mice)

MSCs may be effectively involved in
intestinal mucosal repair in experimental
colitis through activation of the
Nrf2/Keap1/ARE pathway.

[112]

Abbreviations: I-MSCs: induced pluripotent stem cell-derived mesenchymal stem cells; AD-MSCs: adipose-
derived mesenchymal stem cells; HucMSCs: human umbilical cord mesenchymal stem cells; BM-MSCs: bone
marrow mesenchymal stem cells; cAT-MSCs: canine adipose tissue-derived mesenchymal stem cells; BMSC-Exs:
exosome secreted by bone marrow mesenchymal stem cells; T-MSCs: MSCs from human embryonic stem cells.

It was reported that among more than 200 patients with refractory fistulas who
received a local injection of MSCs, more than half of the patients had complete remission.
In 49 reported cases of refractory luminal CD who received systemic bone marrow MSC
infusions, the patients who received autologous MSCs had relieved clinical symptoms,
while about 40% of those who received allogeneic MSCs were relieved [117]. In addition, a
trial evaluating the safety and efficacy of MSC-Exs in treating refractory fistulas in patients
with IBD showed that all five treated patients had no adverse effects, and three showed
complete healing [118]. Although MSCs have positive therapeutic effects in many animal
models, their effectiveness in clinical applications needs further studies (Table 2).
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Table 2. Clinical trials regarding the effects of MSCs on IBD and their complications.

Disease Treatment
Given

Number of
Patients

Assessment
Time Result Reference

Luminal CD BM-MSC 15 42 days

(1) Reduced CDAI and CDEIS scores in patients with
biotherapy-refractory luminal CD.
(2) One patient developed a serious adverse reaction
(probably not caused by MSCs).

[119]

PfCD BM-MSC 21 24 months
(1) Injections of 3 × 107 MSCs appear to promote
healing of perianal fistulas.
(2) There were no serious adverse effects.

[120]

PfCD BM-MSC 13 4 years (1) Fistula closure or reduction in size.
(2) No adverse reactions. [121]

CD strictures BM-MSC 10 48 weeks (1) Complete or partial regression of stenosis.
(2) No adverse effects. [122]

PfCD BM-MSC 22 6 months

(1) Improved healing rates and decreased indices,
PCDAI, Wexner incontinence score, and van
Assche score.
(2) No adverse effects

[123]

Pediatric perianal CD BM-MSC 7 (13–17
years) 12 months

(1) In total, 83 percent of patients had complete
healing. Decrease in PCDAI, Wexner incontinence
score, and van Assche score.
(2) No adverse effects.

[124]

UC BM-MSC 6 3 months (1) The Mayo endoscopic severity score decreased.
(2) No adverse effects. [125]

PfCD AD-MSC 212 24 months

(1) Relieves complicated perianal fistulas in patients
with Crohn’s disease.
(2) Adverse effects such as anal abscesses and rectal
pain have occurred.

[126]

PfCD AD-MSC 37 48 weeks
(1) In total, 56% of patients achieved clinical
remission.
(2) Seven cases had serious adverse reactions.

[127]

PfCD AD-MSC 16 48 weeks

(1) Effective treatment of fistulous perianal Crohn’s
disease in half of the patients, and induced good
MRI changes.
(2) No adverse effects.

[128]

PfCD UC-MSC 82 12 months

(1) The CDAI, HBI, and corticosteroid dosage were
decreased.
(2) There were minor adverse reactions (fever) and
no serious adverse reactions.

[129]

PfCD UC-MSC 10 52 weeks

(1) Significant improvement in PCDAI, pelvic MRI
score, CDAI, and quality of life score and 70%
relapse-free at 52 weeks.
(2) No serious adverse effects.

[130]

Abbreviations: CD: Crohn’s disease; CDAI: Crohn’s disease activity index; CDEIS: Crohn’s disease endoscopic
index of severity; PfCD: perianal fistulizing Crohn’s disease; PCDAI: perianal Crohn’s disease activity index; UC:
ulcerative colitis; MRI: magnetic resonance imaging; HBI: Harvey–Bradshaw index.

4.2. Limitations and Future Prospects of MSC/MSC-Ex Treatments in IBD

MSCs can treat IBD by restoring the gut microbiota, forming an inflammation-suppressing
microenvironment and repairing damaged mucosa. MSCs present a potentially superior
alternative to the usual therapies for IBD. However, when the recipient mice and the MSCs’
MHCI and MHCII are mismatched, the infusion of MSCs can cause immune rejection [131] and
produce more serious consequences. In addition to the therapeutic advantages exhibited by
MSCs, hucMSC-Exs are characterized by low immunogenicity and have not yet been associated
with adverse events in IBD treatments.

However, most of the studies on MSCs and MSC-Exs are in the preclinical stage,
with fewer and unrepresentative studies of clinical patients. Furthermore, the preparation
processes for MSCs and MSC-Exs are laborious and time-consuming. Also, the extraction
methods for MSC-Exs are different, and thus, extracts through different methods show
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heterogeneity [132]. Although MSC-Exs are often identified by the size of their microvesicles
and surface markers [133], biomolecules of similar sizes to MSCs are often mixed in, making
it difficult to obtain high-purity MSC-Exs. There is an urgent need to find a uniform and
standardized production method to resolve this dilemma.

Different sources of MSCs have distinct biological properties, resulting in different
therapeutic effects on IBD [134]. The composition of MSC-Exs is complex, and there is
no unanimous conclusion yet. Most studies have characterized the miRNA content and
identified its possible downstream pathways for alleviating intestinal inflammation, but
the protein and lipid constituents have had far from sufficient investigations. There is
a need to identify as many substances in MSC-Exs as possible, and the mechanism of
action of these substances on IBD must be well explored in order to better utilize their
therapeutic effects.

4.3. Optimizing the Route of Administration

In the study of MSCs and MSC-Exs for the treatment of IBD mice, the method of
tail vein injection is generally used. In this mode of administration, the survival rate of
MSCs is lower, and the retention time of MSC-Exs in the body is shorter [135]. A novel
delivery method has been initially investigated and could enhance therapeutic outcomes by
mimicking the ecological environment of natural stem cells through the use of a hydrogel
matrix and growth factors as a carrier. This approach could greatly improve the survival
rate of stem cells [136]. The co-transplantation of CS-IGF-1C hydrogel with human placenta-
derived MSCs (hP-MSCs) could increase the colonization of hP-MSCs in the intestines of
colitis mice and enhance the therapeutic effect of MSCs [137]. The oral delivery of stem-
cell-loaded hydrogel microcapsules (SC-HMs) could also positively affect the colonization
of MSCs in IBD mice [82]. A special hydrogel can also be used as a slow-release carrier
to keep the exosomes persistently at the damaged site for a long-lasting effect [138]. The
retention time of exosomes in vivo can also be significantly increased by the subcutaneous
transplantation of Bio-GelMA@Bio-EX hydrogels [139]. Therefore, new technologies such as
hydrogel carriers should be used in the future to optimize the therapeutic potential of MSCs
and MSC-Exs. It is also necessary to develop more new technologies for delivering MSCs
and MSC-Exs in combination with nanomedicine, materials science, and other disciplines
to achieve the same effect on IBD as cell infusion alone to accelerate clinical progress.

5. Conclusions

MSCs and their exosomes have been shown to be a promising alternative therapy for
the treatment of experimentally induced colitis in mice and have demonstrated efficacy
in clinical treatment. The gut microbiota of mice treated with MSCs or MSC-Exs exhibit a
decrease in harmful bacteria and an increase in beneficial bacteria, as well as an increase in
species of bacteria. MSCs and MSC-Exs can treat IBD by regulating microbiota metabolism,
the immune microenvironment, and intestinal barriers to improve intestinal functions.
Nevertheless, there are certain constraints to the utilization of MSCs and MSC-Exs. It is an-
ticipated that their clinical applicability can be enhanced by integrating novel technologies,
such as hydrogels, in future studies.
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