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Abstract: Demand response management (DRM) plays a crucial role in the prospective development
of smart grids. The precise estimation of electricity demand for individual houses is vital for
optimizing the operation and planning of the power system. Accurate forecasting of the required
components holds significance as it can substantially impact the final cost, mitigate risks, and support
informed decision-making. In this paper, a forecasting approach employing neural networks for
smart grid demand-side management is proposed. The study explores various enhanced artificial
neural network (ANN) architectures for forecasting smart grid consumption. The performance of
the ANN approach in predicting energy demands is evaluated through a comparison with three
statistical models: a time series model, an auto-regressive model, and a hybrid model. Experimental
results demonstrate the ability of the proposed neural network framework to deliver accurate and
reliable energy demand forecasts.

Keywords: forecasting; neural networks; smart grid

1. Introduction

Smart grids (Figure 1) play a crucial role in ensuring the safe, efficient, and reliable
operation of systems, contributing to the reduction of power loss in the electricity network.
However, modern smart grids face various economic and technical challenges as they strive
to deliver energy securely and cost-effectively to consumers. Among the most significant
obstacles are load-flow analysis, scheduling, and electric energy system control. Achieving
optimal operation and planning of the power system requires an accurate prediction model.

Over the past decade, load forecasting has emerged as a rapidly developing field
of interest and research within smart grids. Numerous forecasting techniques for power
system load have been proposed, with mathematical models demonstrating success. These
techniques aim to minimize estimation errors between predicted and measured future
values in energy demands.

The importance of smart grids’ demand forecasting is evident in several key aspects:

• Reducing unit production costs and preserving the efficiency of power facilities.
• Monitoring high-risk maintenance operations and managing energy reserves.
• Providing crucial data for planning and ensuring effective power delivery.

1.1. Literature Review on Forecasting Models for Load Forecasting

One of the most common forecasting models is categorization, which distinguishes
between linear and non-linear models (Raza et al. [1]). Linear models are separated into
statistic time series and dynamic time series models.
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Figure 1. Smart grid as a network of intelligent devices.

Time series forecasting is the analysis of time series data using statistics and modeling
to generate predictions. The forecast is generally based on data with a historical time stamp.
Time series forecasting techniques can be categorized according to numerous parameters [2].
Categorization according to the forecasting horizon distinguishes between the time frame
of the forecast :

• Very short-term load forecasting (VSTLF): from a few seconds to several hours. These
models are commonly used in flow management.

• Short-term load forecasting (STLF): ranging from hours to weeks. These models are
commonly used to balance supply and demand.

• Medium-term and long-term load forecasting (MTLF and LTLF): between months and
years normally. These models are used to plan resource usage.

The magnitude of the variables employed is the key distinction between these three
forecasting horizons, not taking into consideration the model that was used (Hernan-
dez et al. [3]). Meanwhile, there are some limitations on time series forecasting. For in-
stance, time series are not useful for all situations, as not all models can fit all sets of data.
It is up to data teams and analysts to understand the limits of their analysis and what their
models can support.

Dynamic models are such that factors and random inputs are taken into consideration
dynamically. They make use of time series for modeling dynamical behavior. They are
divided into auto-regressive and moving average models and state-space models.

• Auto-regressive and moving average (ARMA) models combine auto-regressive and
moving average models. Auto-regressive models use the previous values to forecast
future values. Moving average (MA) models calculate the residuals or errors of
previous values and determine future values. In ARMA models, residuals and the
effects of previous values are taken into account when predicting future values. Many
modifications to the ARMA model can be found in the literature under other names
like Auto-Regressive Integrated Moving Average (ARIMA), which is quite similar to
the ARMA model in the use of previous values and residuals to predict future values,
other than the fact that it includes one more factor known as Integrated (I).

• State-space models are used when dealing with dynamic time series issues. They use
a set of input, output, and state variables to represent a physical system mathemati-
cally. The state variables are employed to describe a system with a set of first-order
differential equations. State–space models are commonly used to analyze ecological
and biological time-series data.

A comprehensive table outlining the findings of the review of 47 publications detailing
264 forecasting models from 1997 to 2018 is presented in Czapaj et al. [4]. It summarizes
the status of research on short-term power demand forecasting for power systems using
auto-regressive and non-auto-regressive approaches and models. In addition, the authors
provide a new method for creating literature reviews when choosing the most probable
forecasting models. An analysis was conducted on the effectiveness of the forecasting
models as determined by the Mean Average Percentage Error (MAPE) measure. Table 1
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lists the top 10 forecasting techniques and models: DEA, FR, GRM, GA, ANFIS, ANN,
FGRM, WANN, ANN, and FL, where the repeated ANN belongs to different models [4].
FGRM and GRM employ the explanatory variables, while the remaining eight models
are auto-regressive.

Table 1. Top 10 rank of the forecasting techniques and models.

Ranking Authors Year Method, Model MAPE

1 Kheirkhah et al. [5] 2013 DEA (Data Envelopment Analysis) 0.01%
2 Kheirkhah et al. [5] 2013 FR (Fuzzy Regression) 0.08%
3 Wang et al. [6] 2018 GRM (General Regression Model) 0.10%
4 Kheirkhah et al. [5] 2013 GA (Genetic Algorithm) 0.14%
5 Kheirkhah et al. [5] 2013 ANFIS (Adaptive Neuro Fuzzy Inference System) 0.15%
6 Kheirkhah et al. [5] 2013 ANN (Artificial Neural Network) 0.16%
7 Wang et al. [6] 2018 FGRM (Full General Regression Model) 0.20%
8 Rana et al. [7] 2016 WANN (Wavelet Artificial Neural Network) 0.27%
9 Rana et al. [7] 2016 ANN (Artificial Neural Network) 0.28%

10 Rana et al. [7] 2016 FL (Fuzzy Logic) 0.29%

The results of the reviews supported the auto-regressive approach’s great potential
for forecasting power demand. The employment of auto-regressive models may assist the
transmission system operator in achieving improved forecasting efficiency. The advantage
of using the ARIMA model is that it is simple to use and offers good forecasts over a short
period of time. It has two basic limitations, which are listed below (Khashei et al. [8]):

• Linear limitation: it is supposed that a variable’s future value will be a linear function
of several previous data points and random errors. If the implicit mechanism is
nonlinear, the ARIMA models’ estimation may be completely unsuitable. However,
since non-linearity is a common feature of real-world systems (Zhang et al. [9]), it
is illogical to assume that a given implementation of a time series is the result of a
linear process.

• Data limitation: for ARIMA models to produce the desired results, a lot of historical
data are required. Data limitation dictates that ARIMA models need at least 50,
and preferably 100 or more, data points to get the required results.

Using hybrid models or combining multiple models can be an efficient strategy to
enhance forecasting performance. The fundamental concept behind model combining in
forecasting is to remove its limits in order to create a more comprehensive model with more
accurate outcomes. The fundamental ideas of ARIMA, ANNs, and fuzzy regression models
are used to formulate a new approach to forecasting. In that model, the special ability of
ANNs in nonlinear estimating is employed to go over the ARIMA models’ linear limitations
and create a more accurate model. Additionally, fuzzy logic is used to get beyond the
ARIMA models’ data limitations and provide a model that is more adaptable [8].

1.2. Literature Review on ANN Approaches for Load Forecasting

Recently, Dewangan et al. [10] provided an extensive examination of load forecast-
ing, encompassing the categorization, performance indicator calculation, data analysis
procedures, and utilization of conventional meter data for load forecasting, alongside the
technologies employed and associated challenges. This study delved into the significance
of smart meter-based load forecasting, exploring various approaches available.

In particular, the application of ANN-based machine learning to estimate electricity
consumption dates back to the 1990s, with ongoing research. Park et al. [11] demon-
strated the superiority of ANN-based techniques over traditional forecasting methods.
Amjady et al. [12] used the ANN modified harmony search algorithm for short-term load
forecasting (STLF) with excellent accuracy. Macedo et al. [13] explored DRM in power
systems using ANN. Baliyan et al. [14] conducted a survey on ANN applications for
short-term load forecasting. Muralitharan et al. [15] proposed a neural-network-based



Energies 2024, 17, 2329 4 of 14

optimization model for energy demand forecasting, employing genetic algorithms and par-
ticle swarm optimization. Li [16] utilized a machine learning-based forecasting model for
short-term load forecasting, integrating data mining and de-noising methods. Jha et al. [17]
employed the LSTM and random forest methodologies for electricity load forecasting.
Through meticulous comparison with models employing analogous parameters, they ascer-
tained the superior reliability and suitability of our model for long-term forecasting. Their
model exhibits an exemplary performance, boasting an average overall accuracy of 96%.
Sharadga et al. [18] compared various methods for predicting time series, including both
statistical techniques and artificial intelligence-based approaches for forecasting phtovoltaic
(PV) power output. Additionally, the study examines how altering the prediction time
frame impacts the performance of these algorithms. The BI-LSTM algorithm proves to be
a highly precise model for predicting power output in large-scale PV plants, surpassing
various neural networks and statistical models in accuracy.

Da Silva et al. [19] proposed a solution employing a fuzzy-ARTMAP (FAM) artifi-
cial neural network (ANN). Historical databases are utilized to extract the fundamental
knowledge necessary for training this ANN. In tandem with load forecasting, the FAM-
ANN integrates a continuous learning (CL) mechanism, enabling incremental knowledge
acquisition through real-time measurement system data. A rapid and highly precise load
forecasting (with a mean absolute percentage error of around 2%) is achieved for extended
forecast intervals, such as 96 h ahead. Tarmanini et al. [20] used two different forecasting
models within machine learning (ML) techniques for load prediction: auto regressive
integrated moving average (ARIMA) and artificial neural network (ANN). They evaluated
the performance of both methods using mean absolute percentage error (MAPE). Utilizing
daily electricity consumption data from 709 randomly selected households in Ireland over
an 18-month duration, the study demonstrated that ANN outperforms ARIMA in handling
non-linear load data.

1.3. Motivation and Novelties of Our Approach

The utilization of ML-based forecasting models continues to evolve, addressing vari-
ous aspects of energy demand prediction with advancements in neural network approaches.
In this context, this paper aims to identify the most accurate smart grid load forecasting
models and neural network architectures.

The key challenges faced by artificial neural networks (ANN) involve obtaining
precise results, achieving maximum performance during training, and minimizing overall
prediction errors. The main innovation points in our current paper intend to address these
challenges. To this aim, we explore three distinct models:

• Time series model, utilizing multiple input measurements (hour, period, day, season,
month, number of appliances) to forecast energy consumption.

• Auto-regressive model, relying on past energy consumption (within a specific period
range) to predict future energy consumption.

• Hybrid auto-regressive model, incorporating both input measurements and past
energy consumption to forecast energy consumption.

The performance of these three models is assessed using various multi-layer neural
network architectures. The proposed ANN framework undergoes testing on two real-life
smart grid data sets to derive general recommendations.

Our paper introduces novelty through the comparison of three statistical models
within various ANN architectures for smart grid load forecasting, a comparison that,
to our knowledge, has not been conducted previously. The closest study to ours is by
Tarmanini et al. [20], which compares the ARIMA model with an ANN model for short-
term load forecasting. However, our work stands out notably as we integrate the time
series model, the auto-regressive model, and the hybrid model within the ANN forecasting
framework. To the best of our knowledge, this approach has not been published before.
The chosen forecasting model and neural network are intended to contribute to energy
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conservation, aid in demand and supply management, and facilitate efficient financial
planning for users venturing into power generation.

Section 2 outlines the data formatting and pre-processing methods employed in our
context. Additionally, it provides a detailed account of the statistical models and the
artificial neural network (ANN) approach for DRM. Section 3 presents the experimental
results obtained with the three different models, utilizing various ANN architectures on
two smart grid data sets. Finally, Section 4 summarizes and concludes the paper.

2. ANN Forecasting Approach for DRM

Neural network (NN) techniques constitute a subset of machine learning methods
employed for diverse prediction problems. NNs excel at modeling non-linear data across
various domains and can approximate complex functions with reasonable precision. In par-
ticular, recurrent neural networks (RNNs) employ training data to acquire knowledge.
Their defining feature is their ability to retain and leverage information from previous
inputs to influence current input-output relationships [21]. RNNs’ outputs are influenced
by preceding elements within the sequence. In this paper, RNNs (Figure 2) are used to
estimate the uncertain smart grid energy load yt. To do so, we utilize observed historical
values pt

r, on t = 1, . . . , T previous observations of r = 1, . . . , R, input variables. The es-
timated ŷt of yt is then employed as the average value approximation for the smart grid
demand. The activation function fl(.) used in each layer l (l = 1, . . . , L) of the ANN may be
different. It approximates the output of each neuron in layer l. Each layer l may contain Sl
neurons. A composed function F(pt) transforms the input pt = (pt

1, . . . , pt
r, . . . , pt

R, 1) into
a predicted ŷt, such that:

ŷt = F(pt) = fL( fl(. . . f1(pt))).

Figure 2. Neural Network Sample Architecture.

2.1. Steepest Descent Methods

In a traditional steepest descent scheme, weight updates occur after each forward pass
h, adhering to the following sequence:

wh+1
r = wh

r − µ
1

||∇E(T)||
∂E(T)

∂wr
,

bh+1 = bh − µ
1

||∇E(T)||
∂E(T)

∂b
.
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Here, µ represents a predetermined parameter adjusted based on specific guidelines,
while ||∇E(T)|| indicates the magnitude of ∇E(T). In vector form, the steepest gradient
descent scheme is written as:

wh+1 = wh − µ

||∇E(T)|| · ∇E(T).

In the forthcoming Experimental Results Section 3, we employ a walk-forward opti-
mization on the training set as we assess the effectiveness of our ANN utilizing various
gradient optimizers, encompassing adaptive moment estimation (Adam) [22], adaptive
gradient algorithm (Adagrad) [23], and Adamax [22] as a further development of Adam.

2.2. Data Sets, Data Formatting and Component Analysis

This paper investigates two real-life data sets: Toronto Data Set 1 and Data Set 2.
Toronto Data Set 1 encompasses energy consumption information from 1082 households,
collected daily over 36 consecutive months in the past 3 years: 2019, 2020, and 2021.
The data include geographic coordinates of each household, its current index in the data
set, the ‘number of electric appliances’ inventoried, the ‘day order’ within the current year,
the ‘season’, the ‘day of the week’, and the ‘period’ of the ‘measurement’. Each household
contributes only one observation.

Toronto Data Set 2 comprises over 30,000 observations from 6 selected residential
areas. The energy consumption information was gathered daily over 60 consecutive
months spanning the past 5 years: 2017, 2018, 2019, 2020, and 2021. Similar to Data Set 1,
it includes details such as the ‘number of electric appliances’ inventoried, the ‘day order’
within the current year, the ‘season’, the ‘day of the week’, the ‘period’, and the ‘hour’ of
the ‘measurement’.

The ‘day order’ represents the order of the measurement day in the corresponding
year. Both data sets are segmented into three four-month seasons: Season 1 spans from
November to February, Season 2 spans from March to June, and Season 3 spans from July
to October. Days of the week are denoted by integers, with Monday assigned the value of 1,
Tuesday assigned the value of 2, and so forth. Time periods are also represented by integers:
1 indicates the time between 0:00 and 5:59, 2 indicates the time between 6:00 and 11:59,
3 indicates the time between 12:00 and 17:59, and 4 indicates the time between 18:00 and
23:59. In Data Set 2, measurements are taken over six hours, ranging from 1 to 6, for each
time period.

2.3. Data Formatting and Cleaning

The acquired data needed to undergo transformation into input-output time series
samples for model training. Specifically, for data set 1, we had to address issues with 14
out of 1082 data entries. These 14 entries generally had a value of 0 in the (kilowatt per
hour) KWH electricity consumption column, likely stemming from measurement errors.
Subsequently, we replaced the entries in the corresponding cells with the average values
observed for demand. This replacement took into consideration factors such as average
demand on similar weekdays, seasons, and periods.

Data cleaning involves identifying and rectifying mistakes and discrepancies to en-
hance the quality of the data. Errors in data entry, information gaps, and other types of
inaccuracies can lead to issues with data quality.

2.3.1. Correlation Analysis

The correlation matrix obtained for residential area 1, as shown in Table 2, indicates
that the correlation between consumption (KWH) and the number of appliances is the
highest. The correlation between consumption and the other features is lower than the
correlation with the number of appliances. All the features have a similar positive effect on
consumption, but their impact is smaller than the impact of the number of appliances.
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Table 2. Correlation matrix: residential area 1.

Cov. Day Order Day of Week Period Nbr Appliances Hour KWH

Day Order 1.000 0.319 0.346 0.450 0.328 0.204
Day of Week 0.319 1.000 0.378 0.485 0.358 0.244

Period 0.346 0.378 1.000 0.524 0.383 0.243
Nbr Appliances 0.450 0.485 0.534 1.000 0.463 0.449

Hour 0.328 0.358 0.383 0.463 1.000 0.186
KWH 0.204 0.244 0.243 0.449 0.186 1.000

2.3.2. Trend and Seasonality

Trend and seasonality decomposition, whether additive or multiplicative, enables
the identification of inherent data patterns specific to the problem at hand. An additive
decomposition is applied when the variation around the trend cycle or the magnitude
of seasonal fluctuations remains constant with the time series level. On the other hand,
a multiplicative decomposition is preferred when such variance is found to be proportional
to the time series level. The additive formula for time series decomposition is given by:

yt = Tt + St + Rt.

Meanwhile, the multiplicative formula is expressed as:

yt = Tt × St × Rt,

where yt represents the observed series, Tt denotes the trend component, St stands for the
seasonal component, and Rt represents the irregular component (residual) at period t.

For example, the additive seasonality decomposition shown in Figure 3 indicates a
significant seasonal component for electricity consumption in data set 1. It also reveals a
specific trend related to increased electricity consumption during the first season, corre-
sponding to the harsh winter conditions in Canada. The Dickey-Fuller test, with a p-value
of 0.07 (more than 0.05), conducted on electricity consumption confirms the presence
of seasonality.

 

Figure 3. Additive Trend-Seasonality Decomposition Results.

3. ANN Forecasting Experimental Results

We evaluate the performance of our neural network (NN) approach in predicting
energy demands by comparing it with three statistical models: a time series model, an auto-
regressive model, and a hybrid model. For this evaluation, we employ various network
architectures, manipulating the number of neurons at each layer, using different activa-
tion function types, and employing diverse gradient descent methods, including Adam,
Adagrad, or Adamax.
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3.1. Time Series Model

Time series models serve as statistical tools for analyzing and predicting data collected
over a specific period. Their applications span various fields, encompassing finance,
economics, weather forecasting, and more. The main goal of time series modeling is to
understand and characterize the inherent patterns and trends within the data, facilitating
accurate predictions of future values.

The time series model undergoes testing on both data sets 1 and 2. In the first layer, we
apply the activation function to the inputs of the data set. The output from the neurons in
the first layer is subsequently used as input for the second layer, and this process continues
until reaching the final layer, denoted as L. The computation is represented as follows:

ŷt = F(pt) = fL(. . . fl(. . . f1(pt))).

3.2. Auto-Regressive Model

Auto-regressive models (AR) belong to the category of time series models that utilize
the previous values of a variable to predict its future values. These models posit that the
current value of the variable results from a combination of its past values and a random
error term. The order of an AR model, denoted as ‘r’, indicates the number of preceding
values used to forecast the present value. For example, an AR(1) model uses the previous
value of the variable to predict the current value, while an AR(2) model incorporates the
last two values. In this paper, our auto-regressive model is expressed as follows:

ŷt = F(yt−r) = fL(. . . fl(. . . f1(yt−r)))

Here, r denotes the number of preceding values of y utilized, representing the time
delay in hours between the last measurement and the output forecasting.

For data set 1, where only a single observation is recorded for each household, this
model cannot be applied. Consequently, the auto-regressive model is exclusively tested on
data set 2, with a maximum delay of r = 6 h, corresponding to a complete period.

3.3. Hybrid Model

Hybrid models, also known as mixed models, are models that incorporate multiple
types of models to formulate predictions. A hybrid time series model can integrate various
models, such as combining an auto-regressive model with a moving average model or
merging an auto-regressive integrated moving average (ARIMA) model with a neural
network model. The purpose of a hybrid model is to leverage the strengths of different
models and mitigate their respective limitations. For example, an auto-regressive model
might perform well for short-term predictions but may fall short for long-term predictions.
In such a case, a hybrid model that combines an auto-regressive model with a moving
average model could yield superior results. Our hybrid model combines time series and
auto-regressive models, considering:

yt = F(pt, yt−r) = fL(. . . fl(. . . f1(pt, yt−r)))

Similar to the auto-regressive model, the hybrid model is exclusively tested on data
set 2, with a maximum delay of r = 6 h, corresponding to a complete period.

3.4. Experimental Results

Our experiments were conducted using Python 3 on Jupyter Notebook (Jupyter
Project). The computations were executed on 64-bit workstations equipped with 2.9 GHz
Intel Core i7-7600 processors and 8 GB RAM, running under MS Windows 11.

The accuracy results of the three-layer ANN are summarized in the following tables:
The results were obtained by varying the number of neurons in each layer (S1, S2, and S3)
and the activation functions f1 and f2. The entries in the table indicate the root mean
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squared error (RMSE) of the residuals calculated with a training set size that remains
constant at 3/4 of the entire data set while predicting household consumption.

Though the scientific community may not have definitively resolved the debate con-
cerning the ideal size ratio between the training and validation sets, we opt to leave this
question open for future exploration, as it does not align with the primary objectives of our
current study.

RMSE is one of the most popular measures for assessing the accuracy of predictions. It
represents the Euclidean distance between measured true values and forecasts. To compute
RMSE, we first calculate the residual (the difference between prediction and true value) for
each data point, then compute the norm of the residuals for each data point. Finally, we
compute the mean of the residuals and take the square root of that mean using the formula:

RMSE =

√
∑T

t=1(yt − ŷt)2

N
.

All the results are obtained with a fixed number of epochs (50). An epoch refers to a
single forward and backward pass through the entire training data set.

The results in Table 3 reveal that the last architecture, with f1: relu and f2: relu as
activation functions, generally provides the best predictions and the lowest RMSE averages.
In particular, the lowest RMSE (1.201) is obtained with S1 = 64 neurons in the first layer,
S2 = 32 neurons in the second, and S3 = 16 neurons in the third layer with the Adam
optimizer. Adam is more stable than Adagrad and Adamax when S1 varies from 32 to
256, S2 varies from 16 to 128 neurons, and S3 varies from 8 to 64 neurons across the
four architectures. The third architecture, with f1: tanh and f2: log-sigmoid as activation
functions, yields a larger RMSE on average. Its best RMSE (1.793) is slightly better than
that obtained by the best accuracy provided by the first architecture. More detailed results
are available upon request.

Figure 4 depicts the consumption values in the y-axis (blue) against the corresponding
predicted values (green) using the proposed three-layer ANN on data set 1. The neural
network is configured with f1: relu, f2: relu, and the Adam optimizer. The x-axis represents
the index of observations.

 

Figure 4. Sample Measurement vs. Prediction on Data Set 1.
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Table 3. Three-Layer ANN Forecasting Results on Data Set 1.

f1: Log-Sigmoid; f2: Selu; f3: Relu

S1 S2 S3 Adam Adagrad Adamax Avg.

32 16 8 1.828 7.984 7.194 5.669
64 32 16 2.004 7.244 6.967 5.405
128 64 32 2.426 7.214 5.636 5.092
256 128 64 2.987 7.04 4.315 4.781

avg. 2.311 7.371 6.028 5.237

f1: Selu; f2: Tanh; f3: Relu

S1 S2 S3 Adam Adagrad Adamax Avg.

32 16 8 2.907 7.297 6.099 5.434
64 32 16 2.372 7.162 4.500 4.678
128 64 32 3.480 6.889 3.276 4.548
256 128 64 4.002 5.982 2.187 4.057

avg. 3.190 6.833 4.016 4.679

f1: Tanh; f2: Log-Sigmoid; f3: Relu

S1 S2 S3 Adam Adagrad Adamax Avg.

32 16 8 3.060 7.217 7.149 5.809
64 32 16 3.628 7.200 7.160 5.996
128 64 32 1.793 7.199 7.031 5.341
256 128 64 2.177 7.182 6.917 5.425

avg. 2.665 7.200 7.064 5.643

f1: Relu; f2:Relu ; f3: Relu

S1 S2 S3 Adam Adagrad Adamax Avg.

32 16 8 1.817 7.560 6.501 5.293
64 32 16 1.201 7.375 5.830 4.802
128 64 32 2.275 7.125 4.313 4.571
256 128 64 1.307 6.465 2.736 3.503

avg. 1.650 7.131 4.845 4.542

Table 4 showcases the results for residential area 1 in data set 2. In the time series
model, the most effective architecture, featuring f1: relu and f2: relu as activation functions,
achieves the lowest RMSE (0.977). This result is obtained with S1 = 256 neurons in the first
layer, S2 = 128 neurons in the second layer, S3 = 64 neurons in the third layer, and the
Adamax optimizer.

For the auto-regressive model, utilizing f1: relu and f2: relu as activation functions,
the minimum RMSE (0.807) is attained with S1 = 32 neurons in the first layer, S2 = 16
neurons in the second layer, and S3 = 8 neurons in the third layer, with the Adam optimizer.

In the hybrid model, employing f1: relu and f2: relu as activation functions, the lowest
RMSE (0.697) is achieved with S1 = 256 neurons in the first layer, S2 = 128 neurons in the
second layer, S3 = 64 neurons in the third layer, and the Adamax optimizer.

Across all three models and four architectures, both Adam and Adamax demonstrate
greater stability than Adagrad. Notably, as S1 varies from 32 to 256, S2 ranges from 16 to
128 neurons, and S3 varies from 8 to 64 neurons. Overall, the hybrid model consistently
yields the lowest RMSE among the three models.
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Table 4. Forecasting Results on Residential 1.

f1: Sigmoid; f2: Selu ; f3: Relu

Time-Series Hybrid Auto-Regressive

S1 S2 S3 Adam Adagrad Adamax Avg. Adam Adagrad Adamax Avg. Adam Adagrad Adamax Avg.

32 16 8 1.076 1.629 1.211 1.305 0.766 0.988 0.812 0.855 0.843 1.041 0.894 0.926
64 32 16 0.998 1.56 1.071 1.201 0.736 0.902 0.784 0.807 0.840 0.939 0.890 0.890

128 64 32 1.027 1.54 1.043 1.203 0.727 0.871 0.787 0.795 0.890 0.891 0.904 0.895
256 128 64 1.03 1.538 1.038 1.202 0.775 0.863 0.756 0.798 0.838 0.894 0.878 0.870

Avg. 1.032 1.567 1.091 1.228 0.751 0.906 0.785 0.814 0.853 0.941 0.892 0.895

f1: Tanh; f2: Sigmoid ; f3: Relu

Time Series Hybrid Auto Regressive

S1 S2 S3 Adam Adagrad Adamax Avg. Adam Adagrad Adamax Avg. Adam Adagrad Adamax Avg.

32 16 8 1.002 1.568 1.031 1.2 0.745 0.994 0.787 0.842 0.848 1.029 0.850 0.909
64 32 16 1.007 1.484 1 1.164 0.710 0.907 0.731 0.783 0.855 0.911 0.882 0.883

128 64 32 1.005 1.432 0.993 1.143 0.706 0.870 0.727 0.768 0.824 0.901 0.840 0.855
256 128 64 0.981 1.555 0.997 1.178 0.809 0.851 0.760 0.807 0.862 0.900 0.895 0.886

Avg. 0.999 1.510 1.005 1.171 0.743 0.906 0.751 0.800 0.847 0.935 0.867 0.883

f1: Tanh; f2: Selu ; f3: Relu

Time Series Hybrid Auto-Regressive

S1 S2 S3 Adam Adagrad Adamax Avg. Adam Adagrad Adamax Avg. Adam Adagrad Adamax Avg.

32 16 8 0.998 2.221 1.035 1.418 0.764 0.842 0.749 0.785 0.850 0.876 0.833 0.853
64 32 16 0.985 1.335 1.001 1.107 0.749 0.825 0.752 0.775 0.825 0.870 0.821 0.839

128 64 32 0.981 1.286 0.99 1.086 0.734 0.820 0.705 0.753 0.813 0.862 0.819 0.831
256 128 64 1.004 1.226 1.006 1.079 0.733 0.812 0.728 0.758 0.837 0.864 0.877 0.859

Avg. 0.992 1.517 1.008 1.173 0.745 0.825 0.734 0.768 0.831 0.868 0.838 0.846

f1: Relu; f2: Relu ; f3: Relu

Time Series Hybrid Auto-Regressive

S1 S2 S3 Adam Adagrad Adamax Avg. Adam Adagrad Adamax Avg. Adam Adagrad Adamax Avg.

32 16 8 0.981 1.381 1.007 1.123 0.701 0.847 0.759 0.769 0.807 0.891 0.843 0.847
64 32 16 0.994 1.346 1.003 1.114 0.727 0.816 0.729 0.757 0.833 0.863 0.840 0.845

128 64 32 0.985 1.263 0.978 1.075 0.702 0.805 0.731 0.746 0.811 0.858 0.833 0.834
256 128 64 0.986 1.158 0.977 1.04 0.699 0.779 0.697 0.725 0.839 0.865 0.839 0.848

Avg. 0.987 1.287 0.991 1.088 0.707 0.812 0.729 0.749 0.823 0.869 0.839 0.844

For residential area 4, the results presented in Table 5 indicate that the last architecture,
featuring f1: relu and f2: relu as activation functions, generally offers the best predictions
with the lowest average RMSE across all three models.

In the time series model, the lowest RMSE achieved by the three-layer ANN is
1.640, obtained with S1 = 32 neurons in the first layer, S2 = 16 neurons in the second,
and S3 = 8 neurons in the third layer, utilizing the Adam optimizer.

In the auto-regressive model, the lowest RMSE, amounting to 0.158, is attained with
S1 = 128 neurons in the first layer, S2 = 64 neurons in the second, and S3 = 32 neurons in
the third layer, employing the Adamax optimizer.

Concerning the hybrid model, the lowest RMSE, totaling 1.064, is achieved with
S1 = 256 neurons in the first layer, S2 = 128 neurons in the second, and S3 = 64 neurons in
the third layer, utilizing the Adamax optimizer.

Across all four architectures and three models, both Adam and Adamax exhibit greater
stability compared to Adagrad, as S1 varies from 32 to 256, S2 ranges from 16 to 128 neurons,
and S3 varies from 8 to 64 neurons. Overall, the hybrid model consistently yields the lowest
RMSE among the three models.
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Table 5. Forecasting Results on Residential 4.

f1: Sigmoid; f2: Selu ; f3: Relu

Time Series Hybrid Auto-Regressive

S1 S2 S3 Adam Adagrad Adamax Avg. Adam Adagrad Adamax Avg. Adam Adagrad Adamax Avg.

32 16 8 1.695 3.213 2.120 2.343 1.113 1.625 1.167 1.302 1.206 1.665 1.228 1.366
64 32 16 1.692 3.042 2.033 2.256 1.080 1.459 1.139 1.226 1.207 1.470 1.184 1.287

128 64 32 1.676 3.037 1.724 2.146 1.076 1.330 1.133 1.180 1.193 1.395 1.203 1.264
256 128 64 1.657 3.034 1.708 2.133 1.090 1.284 1.112 1.162 1.183 1.290 1.194 1.222

Avg. 1.680 3.082 1.896 2.219 1.090 1.425 1.138 1.218 1.197 1.455 1.202 1.285

f1: Tanh; f2: Sigmoid ; f3: Relu

Time Series Hybrid Auto-Regressive

S1 S2 S3 Adam Adagrad Adamax Avg. Adam Adagrad Adamax Avg. Adam Adagrad Adamax Avg.

32 16 8 1.667 2.978 1.679 2.108 1.084 1.613 1.138 1.278 1.186 1.606 1.181 1.324
64 32 16 1.677 3.043 1.697 2.139 1.080 1.331 1.102 1.171 1.171 1.317 1.186 1.225

128 64 32 1.686 3.003 1.665 2.118 1.074 1.263 1.090 1.142 1.205 1.270 1.175 1.217
256 128 64 1.696 2.597 1.651 1.981 1.072 1.246 1.073 1.113 1.197 1.260 1.211 1.223

Avg. 1.682 2.905 1.673 2.087 1.078 1.363 1.101 1.180 1.190 1.363 1.188 1.241

f1: Tanh; f2: Selu ; f3: Relu

Time Series Hybrid Auto-Regressive

S1 S2 S3 Adam Adagrad Adamax Avg. Adam Adagrad Adamax Avg. Adam Adagrad Adamax Avg.

32 16 8 1.675 2.919 1.740 2.111 1.078 1.339 1.127 1.181 1.186 1.286 1.209 1.227
64 32 16 1.696 2.625 1.673 1.998 1.075 1.256 1.087 1.139 1.162 1.235 1.183 1.193

128 64 32 1.665 2.498 1.674 1.946 1.080 1.229 1.084 1.131 1.193 1.201 1.179 1.191
256 128 64 1.662 2.388 1.653 1.901 1.106 1.183 1.067 1.119 1.182 1.213 1.187 1.194

Avg. 1.675 2.608 1.685 1.989 1.085 1.252 1.091 1.142 1.181 1.234 1.190 1.201

f1: Relu; f2: Relu ; f3: Relu

Time Series Hybrid Auto-Regressive

S1 S2 S3 Adam Adagrad Adamax Avg. Adam Adagrad Adamax Avg. Adam Adagrad Adamax Avg.

32 16 8 1.640 2.866 1.680 2.062 1.090 1.376 1.086 1.084 1.169 1.251 1.177 1.199
64 32 16 1.694 2.599 1.663 1.986 1.095 1.259 1.095 1.150 1.161 1.253 1.178 1.197

128 64 32 1.666 2.408 1.652 1.909 1.080 1.183 1.080 1.114 1.168 1.215 1.158 1.180
256 128 64 1.643 2.089 1.642 1.791 1.089 1.149 1.064 1.101 1.186 1.203 1.160 1.183

Avg. 1.661 2.491 1.659 1.937 1.089 1.242 1.081 1.137 1.171 1.231 1.168 1.190

3.5. Summary of Results

For both data sets 1 and 2, the optimal accuracy with our three-layer ANN is consis-
tently achieved using the last architecture with f1: relu and f2: relu as activation functions.
Specifically, for data set 1, this is typically realized with the Adam optimizer, while for data
set 2, the preference is generally for the Adamax optimizer.

In the case of data set 2, within the time series model, the Adamax optimizer yields
the most accurate results for residential areas 1, 2, 3, 5, and 6. Residential area 4, on the
other hand, achieves the best accuracy with the Adam optimizer. In the auto-regressive
model, the Adamax optimizer is superior in accuracy for residential areas 2, 3, 4, 5, and 6,
while residential area 1 achieves the best accuracy with the Adam optimizer. For the hybrid
model, the Adamax optimizer consistently provides the best accuracy across all residential
areas. Notably, the hybrid model exhibits the highest accuracy (lowest RMSE value) among
the three models.
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Stochastic Gradient Descent (SGD) proves ineffective with both data sets 1 and 2. The un-
derlying concept of SGD relies on random subsets of the gradient, but due to sparse
gradients and numerous zeros in each gradient subset, it fails to perform effectively.

4. Conclusions

This paper proposed a neural network forecasting approach for demand-side manage-
ment in smart grids. The presented neural network framework demonstrated the ability to
accurately and reliably predict energy consumption, as evidenced by experimental results
on two data sets. The paper explored diverse three-layer neural network architectures and
three different statistical models.

The experimental results showed that the most effective architecture employs the
relu activation function in all three layers. In addition, the Adamax optimizer consistently
yielded the highest accuracy for the hybrid model across all residential areas. Notably,
among the three models, the hybrid model demonstrated the greatest accuracy.

Regarding computational efficiency, the time series model emerges as the fastest
among the three models, albeit with a compromise in accuracy. Conversely, the hybrid
model requires more computational time but delivers superior accuracy.

The selected ANN, coupled with the most suitable statistical model chosen by energy
providers, has the potential to contribute to energy conservation, demand and supply
management, and the effective organization of financial support for individuals initiating
power production.
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