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Abstract: Bending analysis was carried out for a laminated composite porous plate due to sinusoidal
loading with various boundary conditions using improved third-order theory. Zero transverse shear
stress provided a free surface at the top and bottom of the plate. Also, the authors developed a finite
element formulation based on improved third-order shear deformation theory. To circumvent the
C1 continuity requirement associated with improved third-order shear deformation theory, a C0 FE
formulation was developed by replacing the out-of-plane derivatives with independent field variables.
An in-house FORTRAN code was developed for the bending analysis of the laminated porous plate
considering a 2D finite element model. The complete thickness of the plate was covered with different
porosity patterns. The impacts of various modulus ratios, boundary conditions, thickness ratios, fiber
orientation angles, and material parameters were examined for laminated porous plates. There was
an 18.8% reduction in deflection in the case of the square plate as compared to rectangular plates,
with a porosity value of 0.1, a thickness ratio of 10, and an orientation angle of 0◦/90◦/0◦. According
to the current research, adding porosities causes a relatively greater change in deflection rather than
stress, thereby aiding in the development of a lightweight structure.

Keywords: bending analysis; porous plate; finite element; laminated plate; numerical example

1. Introduction

Multiple types of materials are combined to create laminated composites. Different
materials have been extensively utilized to create strengthened composites for the automo-
tive, marine, and aeronautical sectors in recent years. The outstanding stiffness-to-weight
ratio of laminated composites make them a popular choice for applications in mechanical
and civil engineering. In solid mechanics, bending is an extremely important phenomenon.
For the construction of beams, cars, spacecraft, etc., bending analysis is applied. Many
investigators have utilized different boundary conditions, thickness ratios, modulus ratios,
orientation angles, material characteristics, etc., to perform bending analyses of layered
plates [1]. In-depth discussions on the topic can be found in the available research.

Kant and Swaminathan [2] presented a numerical solution for the flexural behavior
of multilayered sheets and sandwiched plates, considering the transverse shear effect of
the higher-order deformation approach. In order to create magnetostrictive patches that
function as both sensors and accuators, Ghosh and Gopalakrishnan [3] studied a unique
analytical method for laminated composite. Liu et al. [4] used an isoparametric method
to conduct flexural and dynamic analyses of the multilayer plate, utilizing a variety of
mess-free techniques. Vidal and Polit [5] conducted a vibration and flexural study of
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a multilayered beam using a three-noded element and a sinus technique. Flexural analyses
of multilayered plates with different edge conditions were examined by Naserian and
Tahani [6]. Due to aerodynamic load, Mahato and Maiti [7] conducted research on the
aeroelastic behavior of smart layer composites. Pandit et al. [8] used an enhanced higher-
order zigzag method to analyze the flexural and dynamic behavior of the switched plate.

Using a novel higher-order deformation approach, Mantari et al. [9] performed flexural
and vibration analysis of shells, layered composites, and switched plates. Moita et al. [10]
investigated the normal frequency of the laminated sandwiched sheet by considering the
core’s viscoelastic properties and the inner portion’s elastic properties. Zaman et al. [11]
used a mixture of chemical transformation and sonication to produce two kinds of epoxy/
GP nanocomposites with varying interface strengths. Using an analytical technique,
Narayana et al. [12] focused on how laminated composite sheets with rectangular per-
forations and different in-plane stresses buckled. A flexural study of several laminated com-
posite sheets that had different boundary circumstances was carried out by Rango et al. [13]
using the first-order deformation approach. Reddy et al. [14] utilized the approach of finite
elements to study the static analysis of a multilayered plate while taking transverse shear
effects into account.

Vanam et al. [15] used an analytical approach to study the flexural responses of multi-
layer composite plates with different edge circumstances. A cross-ply multilayered plate’s
bending analysis was examined by Ghugal and Kulkarni [16] because of nonlinearly chang-
ing temperatures and loading effects. Ramos et al. [17] examined how inadequate contact
circumstances can be caused by natural factors, manmade interface designs, or chemical in-
teractions between the fiber and matrix substance. Ferreira et al. [18] analyzed the dynamic
responses of thin and thick cross-ply using a unified technique. Grover et al. [19] created
a secant-based tangential deformation analytical model for the bending analysis of the
sandwiched structure. For the flexural analysis of switched structures, Sahoo and Singh [20]
created a novel trigonometric zigzag method that takes nonlinear strain distribution over
thickness into account.

Using a variety of deformation theories, Sayyad et al. [21] examined the thermoelastic
bending behavior of laminated plates under sinusoidal linear changing loads. Hirwani et al. [22]
conducted a numerical approach to the bending behavior of delaminated composite plates,
and experimental validation research was conducted. A unique higher-order deformation
technique was created by Sadiq and Abdul-Ameer [1] to study the flexural behavior of mul-
tilayered composite structures. Gopinath and Batra [23] looked at combining techniques to
create fiber-reinforced elasto-plastic composite materials. Their techniques included the use
of cellular approaches, Fourier series, and transformation techniques. The impact of chemi-
cal groups on graphene accumulation in nanocomposites was examined by Li et al. [24]. To
explain the fluctuating and balanced characteristics of laminated composites with spatially
variable micro- and macro-mechanical component features, Naskar et al. [25] proposed an
unpredictable framework.

Demirhan and Taskin [26] used four variable plate hypotheses with simply sup-
ported edge circumstances to examine the flexural behavior of functionally graded plates.
Kumar et al. [27] examined the influence of obliqueness in the strike angle and angular
distortion in the sheet shape on the low-velocity collision behaviors of sandwich plates
with laminate face layers. Adhikari and Singh [28] analyzed the vibration responses of the
layered sheet with varying edge loads. An analytical method was developed by Chanda
and Sahoo [29] for the flexural study of sandwiched plates and multilayered sheets. Ac-
cording to Fantuzzi et al. [30], carbon nanotubes can strengthen the polymeric matrix as
well as enhance the mechanical characteristics of the resultant composite. A flexural study
was conducted by Patel and Sharma [31] on a laminated composite plate with a polygonal
cutout. The results rely on the loading distribution, number of layers, fiber orientation, hole
shape, and corner radius. Hoang [32] performed the interpolation technique with varying
meshing divisions for the laminated plate. Zenkour and El-Shahrany [33] investigated the
dynamic responses of a sandwiched plate resting on an elastic base. Belardi et al. examined
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the mechanical properties of a laminated sector plate with rectilinear orthotropy, specifically
focusing on deflection and stresses inside the laminated composite plate [34]. Algül and
Oktem [35] examined the flexural analysis of symmetric and antisymmetric laminated
plates using a double Fourier series. Chanda et al. [36] studied the static and dynamic be-
havior of a multilayered smart piezoelectric plate resting on an elastic base. Assie et al. [37]
developed a mathematical model for the static analysis of a bi-directional pervious plate
resting on elastic foundation, with the help of an efficient mathematical approach including
a differential integral quadrature technique. Bab and Kutlu [38] applied a C0 efficient
model to analyze the stresses of laminated composite plate, with the help of higher-order
deformation theory. Tran et al. [39] developed a basic equation based on higher-order shear
deformation theory for the flexural analysis of pervious plates. Tru et al. [40] conducted
static analysis of functionally graded pervious plates with the help of naval shear defor-
mation theory. They considered uniform and non-uniform porosity distribution over the
entire thickness of the plate.

In this study, porosity influence is investigated through bending analysis of the lami-
nated plate’s thickness. The influence is also noted for different orientation angles, mate-
rial characteristics, boundary circumstances, and thickness ratios, among other elements.
The first-, second-, and third-order shear deformation hypotheses are only a few of the
techniques used in the literature mentioned above for composite plate bending analysis.
Classical plate theory is also used for analysis. Limited research has been done on the
bending analysis of laminated composite porous plates. For the bending analysis of multi-
layered plates, no research has used an improved third-order shear deformation concept
with various boundary conditions and porosity effects due to sinusoidal loading. Employ-
ing in-house FORTRAN code, we conducted bending analysis for a number of 2D finite
element technique instances. Improved third-order deformation theory is used to compute
all outcomes.

The current study’s objectives are to develop an accurate and efficient 2D finite element
approach for evaluating the bending behavior of multilayer composite pervious plates. This
study also examines the bending behavior modelling of the layered porous composite plate
for various boundary conditions, orientation angles, thickness ratios, and modulus ratios,
applying the improved third-order shear deformation hypothesis based on the identified
gap in the existing research. After reviewing the literature, the following study topics were
identified as significant. The literature review makes it abundantly evident that very little
study has been conducted on the examination of layered composite porous plates. No study
has been conducted on the bending analysis of a porous layered plate that has a varied
boundary circumstance, orientation angle, modulus ratio, and thickness ratio using an
improved third-order concept. The bending study of layered composite porous plates
with various boundary conditions due to sinusoidal load has been the subject of very few
investigations. The literature study highlights the need for a precise and effective model in
order to understand how porosity affects the behavior of laminated composite plates.

The novelty of the present research is its addressing of the shortcomings of previous
plate theories. We consider transverse shear stress continuity at each layer interface and zero
transverse shear stress at the top and bottom of the plate. Also, the authors develop a finite
element formulation based on improved third-order shear deformation theory. In-house
FORTRAN code was developed to study the bending analysis of laminated composite
porous plates.

2. Materials and Methods
2.1. Relation between Stress and Strain

As seen in Figure 1A, a rectangular layered composite plate is presented, with thickness
in the z axis and length in the x and y directions, designated Lx and Ly, correspondingly.
The figure presents a simply supported plate with sinusoidal and uniformly distributed
load. The plate is separated into three sections with identical thickness and uniformity
around the middle plane, each of which has three lamina that are oriented at various angles.
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The whole layer thickness of the plate induces a porosity dispersion, which is represented
by the porosity dispersion model in Figure 1B. The material characteristics of the lamina
(E) vary in accordance with this model, with the Young’s modulus, Poisson’s ratio, and
other parameters being expressed as E(p) = E(1 − p). Numerous instances involving the
bending analysis of multilayered pervious plates under sinusoidal stress are addressed
in the present work. Convergence and validation analyses are conducted in this work to
assess the validity and application of the findings. Furthermore, the full thickness of the
plate is filled with porosities, such as 0.1, 0.2, and 0.3. The link between stress and strain is
examined as follows.

σx
σy
τxy
τxz
τyz

 =


Q11(p) Q12(p) Q16(p) 0 0
Q12(p) Q22(p) Q26(p) 0 0
Q16(p) Q26(p) Q66(p) 0 0

0 0 0 Q55(p) Q45(p)
0 0 0 Q45(p) Q44(p)




εx
εy
γxy
γxz
γyz

or {σ} =
[

Q−i
]
{ε} (1)
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Here, the material characteristics (E1, E2, ν12, G13, G23, G12) and stiffness matrix
[
Q−i]

may be constructed using the lamina fiber orientation (θ) [41]. In Equation (1), (σx, σy, τxy,
τxz, τyz) are the stresses and (εx, εy, γxy, γxz, γyz) are the strains with respect to the lamina
axis. Qij represents the transform elastic constants or the stiffness matrix.

Q11(p) = Q11(p) cos4 θ + 2(Q12(p) + 2Q66(p)) sin2 θ cos2 θ + Q22(p) sin4 θ

Q12(p) = (Q11(p) + Q22(p)− 4Q66(p)) sin2 θ cos2 θ + Q12(p)(cos4 θ + sin4 θ)
Q22(p) = (Q22(p) cos4 θ + 2(Q12(p) + 2Q66(p)) sin2 θ cos2 θ + Q11(p) sin4 θ)

Q16(p) = (Q11(p)− Q12(p)− 2Q66(p)) sin θ cos3 θ + (Q12(p)− Q22(p) + 2Q66(p)) sin3 θ cos θ

Q26(p) = (Q11(p)− Q12(p)− 2Q66(p)) sin3 θ cos θ + (Q12(p)− Q22(p) + 2Q66(p)) sin θ cos3 θ

Q66(p) = (Q11(p) + Q22(p)− 2Q12(p)− 2Q66(p)) sin2 θ cos2 θ + Q66(p)(cos4 θ + sin4 θ)
Q44(p) = G13(p) cos2 θ + G23(p) sin2 θ, Q45(p) = (G13(p)− G23(p)) sin θ cos θ

Q55(p) = G23(p) cos2 θ + G13(p) sin2 θ

Q11(p) = E1(p)
1−ν12(p)ν21(p) , Q12 = ν12(p)E2(p)

1−ν12(p)ν21(p) , Q22 = E1(p)
1−ν12(p)ν21(p) , Q66 = G12(p).

(2)

2.2. Relation of Displacement and Material Properties

Figure 2 shows the variation in in-plane movement over the plate’s thickness at the
interfaces between composite layers. The curve represents the displacement configuration
at the cross-section of a plate with a general lamination layout based on improved third-
order shear deformation theory.
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{u1} =
{

u0
1

}
+ ∑nu−1

i=0 Si
1(Z − Zi){H}(Z − Zi) + ∑nl−1

i=1 Ti
1(Z − ρi){H}(−Z + ρi) + {ξ1}Z2 + {φ1}Z3 (3)

{u2} =
{

u0
2

}
+ ∑nu−1

i=0 Si
2(Z − Zi){H}(Z − Zi) + ∑nl−1

i=1 Ti
2(Z − ρi){H}(−Z + ρi) + {ξ2}Z2 + {φ2}Z3 (4)
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Figure 2. Variations in the in-plane movement over the depth of the laminated composite plates.

Equations (3) and (4) represent in-plane displacements in the x and y direction, respec-
tively [42]. Where {u0} represents the in-plane displacement of any points on the central
surface of the plane, and nu and nl represent the number of upper and lower surfaces
of the plane. The slopes of the ith layer for upper and lower surfaces are represented by
Si

1, Si
2, Ti

1, Ti
2 respectively. the unidentified higher-order terms are {ξ1}, {ξ1}, {φ1}, {φ2}.

The unit step expressions are {H}(Z − Zi), (Z − ρi) and the subscripts 1 and 2 denote the
coordinate axes (i.e., x, y in these functions).

The lateral displacement is considered to be uniform across the entire thickness of the
sheet, i.e.,

{u3} = {w}(x, y) (5)

By eliminating particular variables from in-plane displacement equations in HZT,
zigzag theory is shortened to a third-order concept with the use of the previously mentioned
expansion and FSDT. Indeed, expressions (3) and (4) exclude those concepts, making HZT
the most common and making HSDT and FSDT its subsets. For the higher deformation
concept, Si

1, Si
2, Si

3, Ti
1, Ti

2, Ti
3 are not included, except S0

1, T0
1, S0

2,, T0
2 , S0

3, T0
3, and regarding

FSDT and anticipating ξi, φi, every Si
α, Ti

α, with the exception of S0
α, T0

α , where α = 1.2,
denotes the coordinate axis of x and y.

Here, by using free boundary conditions and lateral tangential stress at the top and
bottom of the plate, σ3α/z=±h/2 = 0. Now, ξα and φα of the zigzag theory can be represented
as follows, where α = 1.2 represents the x and y axes.

{φ1} = − 4
3h2

{
w1 +

1
2

(
∑nu−1

i=0 Si
1 + ∑nl−1

i=0 Ti
1

)}
(6)

{φ2} = − 4
3h2

{
w2 +

1
2

(
∑nu−1

i=0 Si
2 + ∑nl−1

i=0 Ti
2

)}
(7)

{ξ1} = − 1
2h

{
w1 +

1
2

(
∑nu−1

i=0 Si
1 − ∑nl−1

i=0 Ti
1

)}
(8)
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{ξ2} = − 1
2h

{
w2 +

1
2

(
∑nu−1

i=0 Si
2 − ∑nl−1

i=0 Ti
2

)}
(9)

On the other hand, by substituting the lateral tangential stress consistency at the
interior layer, the Sα and Tα equations are stated as follows:

Si
1 = ai

1γ(wγ + Ψγ) + bi
1γw,γ (10)

Si
2 = ai

2γ(wγ + Ψγ) + bi
2γw,γ (11)

Ti
1 = ci

1γ(wγ + Ψγ) + di
1γw,γ (12)

Ti
2 = ci

2γ(wγ + Ψγ) + di
2γw,γ (13)

where ai
1γ, bi

1γ, ai
2γ, bi

2γ, ci
1γ, di

1γ, ci
2γ, di

2γ are constants depending on the geometric and
material characteristics of individual layers, and w,γ is the gradient of lateral displacement,
where γ = 1.2 and S0

α = Ψα is the angular deformation about perpendicular to the central
layer surface of the dimension axis, where (α = 1.2, i.e., x and y axis). By utilizing expres-
sion (1), expressions (3) and (4), and expressions (12) and (13), the strain field vector may
be determined; it is represented by

{ε} = [H]{ε} (14)

where {ε} denotes the vector representing the strain field with a 5 × 1 matrix size. At
the mid plane, {ε} represents the modified strain vector with a size of 17 × 1. [H] is
a 5 × 17 matrix representation that includes both terms, including z, and terms pertaining
to material qualities.

{ε}T =

{
δu1
δx

δu2
δy

δu2
δx + δu1

δy
δw1
δx

δw2
δy

δw2
δx

δw1
δy

δψ1
δx

δψ2
δy

δψ2
δx

δψ1
δy Ψ1Ψ2

δw
δx

δw
δy w1w2

}
(15)

{ε} = [B]{δ} (16)

where [B], {δ} denote strain displacement and an unknown nodal vector, having a matrix
of size 17 × 63 and 63 × 1, respectively.

2.3. Finite Element Formulation

C1 consistency to the lateral displacement must be achieved by the displacement
fields in order to use the finite element approach. In order to circumvent the issues of C1

consistency, the derivatives of w concerning x and y are described as

δw
δx

= w1 and
δw
δy

= w2 (17)

The abovementioned expressions are useful to represent all the unknowns containing
w1 and w2 as C0 continuous. In the current investigation, nine noded quadrilateral contin-
uous isoperimetric components with seven degrees of freedom per individual node are
applied, as shown in Figure 3.

u1 =
9
∑

i=1
Niui, u2 =

9
∑

i=1
Nivi, u3 =

9
∑

i=1
Niui, ψ1 =

9
∑

i=1
Niψ1i, ψ2 =

9
∑

i=1
Niψ2i

w1 =
9
∑

i=1
Niw1i, w2 =

9
∑

i=1
Niw2i

(18)

where Ni represents the shape function of ith node. Shape functions representing the
transverse displacement ‘w’ in improved third-order shear deformation theory (ITSDT) are
usually selected according to the displacement field expected within the plate. Here, the
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expressions for the component nodal load vector and element rigidity matrix are derived
for the bending analysis. The following element rigidity matrix and equation of equilibrium
are created with the use of the Hamilton approach:

[
kel

]
=

nu+nl

∑
i=1

y
[B]

T
[H]T

[
Q−i

]
[H][B]dxdydz + [p0] (19)

[
kel

]
=

nu+nl

∑
i=1

x
[B]T [D][B]dxdy + [p0] (20)

where [B] is the strain matrix, and [Q] is the transformed material constant matrix. The
terms related to material characteristics and the terms containing z constitute the matrix [H].
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Where [D] =
∫ n

k=1

∫
[H]

T[Q−i][H]dz.
Now, using expression (15), the penalty term is defined as

[p0] =
x

µ(

{
δw
δx

− w1

}{
δw
δx

− w1

}
+

{
δw
δy

− w2

}{
δw
δy

− w2

}
)dxdy (21)

where µ is the penalty factor.
Expression (18) can be used to provide the component load vector, which can also be

generated throughout the computation process.

[p0] =
∫
[N]

T
qdxdy (22)

where q and [N] are the shape function matrix and the intensity of lateral load, respectively.

2.4. Bending Analysis

The format adopted for bending analysis eliminates zeros within the band of the
stiffness matrix beyond the last non-zero value and reduces the storage requirement.

The bending equilibrium equation is written as

[K]{δ} = {P} (23)

Equation (23) is solved by the Cholesky decomposition procedure [43]. Efficient
techniques, such as an automatic mesh generator and the skyline storage scheme, are
incorporated into the in-house computer code. The deflection components {δ} at any point
of the plate can be calculated by solving the static equilibrium equations, as discussed
above. Once these displacements at the reference plane are known, the strain components,
{ε}, at any point of the plate can be calculated by using the strain displacement relationship
using Equations (15) and (16). The stress is calculated using Equation (1). For the calculation
of transverse shear stresses, the respective equilibrium equations are used.
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The following equations are used for the calculation of normalized central deflection
and stresses for Example 1:

w = wnd(a/2, b/2), wnd = 100wh3E2/qa4 (24)

σ1 = σnd
1 (a/2, b/2, h/2), σnd

1 =
h2σ1

qa2 (25)

σ2 = σnd
2 (a/2, b/2, h/6), σnd

2 =
h2σ2

qa2 (26)

σ4 = σnd
4 (0, b/2, 0), σnd

4 =
h2σ4

qa2 (27)

σ5 = σnd
5 (a/2, 0, 0), σnd

5 =
h2σ5

qa2 (28)

σ6 = σnd
1 (0, 0, h/2), σnd

6 =
h2σ6

qa2 (29)

The following formula is used to obtain the normalized deflection and stresses for the
remaining examples:

w = wnd(a/2, a/2, 0), wnd = wh3E2/qa4 (30)

σxx = σnd
xx (a/2, a/2,−h/2), σnd

xx =
h2σxx

qa2 (31)

σyy = σnd
yy (a/2, a/2,−h/4), σnd

yy =
h2σyy

qa2 (32)

σxy = σnd
xy (0, 0,−h/2), σnd

xy =
h2σxy

qa2 (33)

σxz = σnd
xz (0, a/2, 0), σnd

xz =
hσxz

qa
(34)

σyz = σnd
yz (a/2, 0, 0), σnd

yz =
hσyz

qa
(35)

3. Results and Discussion

In this work, improved third-order shear deformation theory analysis is performed
using a finite element approach. Numerous novel findings are determined regarding the
deflection and stresses resulting from modifications in the boundary conditions, orientation
angle, length–thickness ratio, modulus ratio, and other factors for the pervious composite
plate, as shown in Figure 1A. A 16 × 16 mesh size is used in the calculation of the results.
The thickness, density, and orthotropic substance of each layer are taken to be identical. The
laminate’s boundary conditions and dimensions are listed as follows: the edges x1 = 0, a
and x2 = ±b/2 can take any combination of simply supported, clamped (C), and free (F)
edge conditions.

Example 1. In this part, Table 1 presents the results of the analysis of a three-layer rectangular
(b/a = 3) cross-ply laminated plate (Figure 1) with a fiber orientation angle of 0◦/90◦/0◦, exposed to
a sinusoidal load of varying intensity q(x, y) = q0 sin(πx/a) sin(πy/b)and boundary conditions.
All the layers have the same material characteristics, even when they are oriented differently
(E1 = 25 GPa, E2 = 1 GPa; G12 = G13 = 0.5E2, G23 = 0.2E2; ν12 = 0.25 and ν13 = 0.01). This
research was designed for a thickness ratio of 10 and 100. Table 1 displays the results of the validation
and convergence studies. Tables 2–5 display the new findings.
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Table 1 shows the results of the validation study; the obtained results are compared
with those obtained by (Sheikh and Chakrabarti [35], Reddy [36], and Pagano [37]) due to
the applied sinusoidal load. Using a three-layer laminated plate with a thickness ratio of 10
to 100, deflection and stresses are examined.

Table 1. Validation study of three-layer laminated plate.

a/h Reference Theory w σ1 σ2 σ3 σ4 σ6

10

Present study (16 × 16) ITSDT 0.9587 0.7527 0.0439 0.3587 0.0119 0.0125
Sheikh and

Chakrabarti [44]
HSDT 0.8649 0.7164 0.0383 0.2851 0.0106 0.0117
FSDT 0.8013 0.6398 0.0367 0.1861 0.0110 0.0103

Reddy [45] HSDT 0.8622 0.6924 0.0398 0.2859 0.0170 0.0115
FSDT 0.8030 0.6214 0.0375 0.1894 0.0159 0.0105

Pagano [46] 3D-Elasticity 0.9190 0.7250 0.0435 0.4200 0.0152 0.0123

100

Present study (16 × 16) ITSDT 0.5058 0.6706 0.0242 0.3690 0.0084 0.0087
Sheikh and

Chakrabarti [44]
HSDT 0.5097 0.6457 0.0253 0.2847 0.0129 0.0085
FSDT 0.5091 0.6449 0.0252 0.1866 0.0127 0.0084

Reddy [45] HSDT 0.5070 0.6240 0.0253 0.2886 0.0129 0.0083
FSDT 0.5064 0.6233 0.0253 0.1897 0.0127 0.0083

Pagano [46] 3D-Elasticity 0.5080 0.6240 0.0253 0.4390 0.0108 0.0083

Table 2. New results for three-layer laminated plate.

Boundary
Conditions

Reference
(Theory)

Orientation
Angle w σ1 σ2 σ3 σ4 σ6

SSSS
Present study

(ITSDT)

0◦/90◦/0◦ 0.9587 0.7527 0.0439 0.3587 0.0119 0.0125
0◦/60◦/0◦ 0.8923 0.7308 0.0671 0.3521 0.0129 0.0135
0◦/45◦/◦0◦ 0.8385 0.7099 0.0637 0.3542 0.0128 0.0126
0◦/30◦/0◦ 0.7913 0.6901 0.0428 0.3657 0.0114 0.0119

CCCC
Present study

(ITSDT)

0◦/90◦/0◦ 0.4827 0.3605 0.0208 0.1222 0.0173 0.0014
0◦/60◦/0◦ 0.4494 0.3423 0.0319 0.1379 0.0158 0.0019
0◦/45◦/◦0◦ 0.4147 0.3240 0.0278 0.1548 0.0137 0.0044
0◦/30◦/0◦ 0.3787 0.3065 0.0152 0.1796 0.0113 0.0019

SSSC
Present study

(ITSDT)

0◦/90◦/0◦ 0.9594 0.7532 0.0436 0.3590 0.0119 0.0125
0◦/60◦/0◦ 0.8927 0.7311 0.0669 0.3522 0.0129 0.0135
0◦/45◦/◦0◦ 0.8386 0.7101 0.0636 0.3542 0.0128 0.0127
0◦/30◦/0◦ 0.7914 0.6902 0.0402 0.3657 0.0113 0.0119

FFCC
Present study

(ITSDT)

0◦/90◦/0◦ 0.9594 0.7532 0.0438 0.3590 0.0049 0.0090
0◦/60◦/0◦ 0.8926 0.7310 0.0676 0.3522 0.0048 0.0106
0◦/45◦/◦0◦ 0.8386 0.7096 0.0646 0.3543 0.0048 0.0094
0◦/30◦/0◦ 0.7914 0.6893 0.0409 0.3659 0.0044 0.0085

SSCC
Present

study(ITSDT)

0◦/90◦/0◦ 0.9602 0.7538 0.0432 0.3593 0.0285 0.0066
0◦/60◦/0◦ 0.8929 0.7314 0.0666 0.3523 0.0268 0.0073
0◦/45◦/◦0◦ 0.8387 0.7103 0.0635 0.3542 0.0241 0.0072
0◦/30◦/0◦ 0.7914 0.6903 0.0402 0.3657 0.0206 0.0070

FFCC
Present study

(ITSDT)

0◦/90◦/0◦ 0.9587 0.7527 0.0441 0.3587 0.0049 0.0090
0◦/60◦/0◦ 0.8923 0.7307 0.0676 0.3521 0.0048 0.0106
0◦/45◦/◦0◦ 0.8385 0.7095 0.0646 0.3543 0.0047 0.0094
0◦/30◦/0◦ 0.7914 0.6892 0.0409 0.3659 0.0044 0.0085
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Table 3. New results for three-layer laminated porous plate (p = 0.1).

Boundary
Conditions

Reference
(Theory)

Orientation
Angle w σ1 σ2 σ3 σ4 σ6

SSSS
Present study

(ITSDT)

0◦/90◦/0◦ 0.9171 0.7392 0.0420 0.3597 0.0125 0.0134
0◦/60◦/0◦ 0.8523 0.7192 0.0635 0.3519 0.0134 0.0143
0◦/45◦/◦0◦ 0.8042 0.6998 0.0627 0.3538 0.0128 0.0135
0◦/30◦/0◦ 0.7610 0.6814 0.0401 0.3655 0.0118 0.0127

CCCC
Present study

(ITSDT)

0◦/90◦/0◦ 0.4498 0.3477 0.0195 0.1265 0.0168 0.0015
0◦/60◦/0◦ 0.4186 0.3311 0.0305 0.1422 0.0154 0.0020
0◦/45◦/◦0◦ 0.3863 0.3143 0.0271 0.1589 0.0133 0.0021
0◦/30◦/0◦ 0.3529 0.2983 0.0152 0.1758 0.0111 0.0020

SSSC
Present study

(ITSDT)

0◦/90◦/0◦ 0.9135 0.7398 0.0417 0.3599 0.0125 0.0134
0◦/60◦/0◦ 0.8536 0.7194 0.0651 0.3520 0.0134 0.0143
0◦/45◦/◦0◦ 0.8043 0.7000 0.0626 0.3539 0.0132 0.0135
0◦/30◦/0◦ 0.7611 0.6815 0.0400 0.3656 0.0118 0.0127

FFCC
Present study

(ITSDT)

0◦/90◦/0◦ 0.9135 0.7398 0.0419 0.3599 0.0050 0.0094
0◦/60◦/0◦ 0.8536 0.7193 0.0658 0.3521 0.0049 0.0110
0◦/45◦/◦0◦ 0.8044 0.6996 0.0635 0.3540 0.0049 0.0098
0◦/30◦/0◦ 0.7611 0.6807 0.0406 0.3658 0.0046 0.0089

SSCC
Present study

(ITSDT)

0◦/90◦/0◦ 0.9144 0.7403 0.0413 0.3602 0.0283 0.0072
0◦/60◦/0◦ 0.8539 0.7197 0.0649 0.3521 0.0267 0.0079
0◦/45◦/◦0◦ 0.8045 0.7001 0.0616 0.3539 0.0240 0.0078
0◦/30◦/0◦ 0.7612 0.6816 0.0400 0.3656 0.0206 0.0075

FFCC
Present study

(ITSDT)

0◦/90◦/0◦ 0.9135 0.7393 0.0422 0.3597 0.0051 0.0094
0◦/60◦/0◦ 0.8534 0.7191 0.0658 0.3519 0.0049 0.0110
0◦/45◦/◦0◦ 0.8042 0.6995 0.0636 0.3539 0.0049 0.0098
0◦/30◦/0◦ 0.7610 0.6806 0.0406 0.3658 0.0045 0.0089

Table 4. New results for three-layer laminated porous plate (p = 0.2).

Boundary
Conditions

Reference
(Theory)

Orientation
Angle w σ1 σ2 σ3 σ4 σ6

SSSS
Present study

(ITSDT)

0◦/90◦/0◦ 0.8681 0.7256 0.0410 0.3606 0.0132 0.0145
0◦/60◦/0◦ 0.8136 0.7037 0.0635 0.3517 0.0140 0.0153
0◦/45◦/◦0◦ 0.7697 0.6898 0.0616 0.3534 0.0138 0.0145
0◦/30◦/0◦ 0.7305 0.6726 0.0397 0.3653 0.0125 0.0138

CCCC
Present study

(ITSDT)

0◦/90◦/0◦ 0.4161 0.3347 0.0182 0.1313 0.0163 0.0016
0◦/60◦/0◦ 0.3873 0.3197 0.0175 0.1469 0.0149 0.0022
0◦/45◦/◦0◦ 0.3576 0.3046 0.0263 0.1634 0.0130 0.0022
0◦/30◦/0◦ 0.3269 0.2902 0.0256 0.1800 0.0108 0.0021

SSSC
Present study

(ITSDT)

0◦/90◦/0◦ 0.8685 0.7261 0.0398 0.3608 0.0132 0.0145
0◦/60◦/0◦ 0.8136 0.7075 0.0633 0.3517 0.0140 0.0154
0◦/45◦/◦0◦ 0.7698 0.6897 0.0615 0.3535 0.0138 0.0145
0◦/30◦/0◦ 0.7306 0.6726 0.0397 0.3654 0.0124 0.0138

FFCC
Present study

(ITSDT)

0◦/90◦/0◦ 0.8680 0.7261 0.0400 0.3608 0.0053 0.0100
0◦/60◦/0◦ 0.8135 0.7075 0.0638 0.3517 0.0051 0.0115
0◦/45◦/◦0◦ 0.7698 0.6894 0.0623 0.3535 0.0052 0.0103
0◦/30◦/0◦ 0.7306 0.6720 0.0402 0.3656 0.0047 0.0094

SSCC
Present study

(ITSDT)

0◦/90◦/0◦ 0.8688 0.7265 0.0395 0.3611 0.0281 0.0078
0◦/60◦/0◦ 0.8137 0.7078 0.0631 0.3518 0.0265 0.0085
0◦/45◦/◦0◦ 0.7699 0.6899 0.0615 0.3535 0.0240 0.0084
0◦/30◦/0◦ 0.7306 0.6727 0.0397 0.3654 0.0208 0.0083

FFCC
Present study

(ITSDT)

0◦/90◦/0◦ 0.8680 0.7256 0.0403 0.3606 0.0053 0.0100
0◦/60◦/0◦ 0.8136 0.7073 0.0639 0.3517 0.0051 0.0115
0◦/45◦/◦0◦ 0.7697 0.6893 0.0623 0.3535 0.0050 0.0103
0◦/30◦/0◦ 0.7305 0.6719 0.0402 0.3655 0.0047 0.0094
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Table 5. New results for three-layer laminated porous plate (p = 0.3).

Boundary
Conditions

Reference
(Theory)

Orientation
Angle w σ1 σ2 σ3 σ4 σ6

SSSS
Present study

(ITSDT)

0◦/90◦/0◦ 0.8218 0.7117 0.0381 0.3615 0.0141 0.0159
0◦/60◦/0◦ 0.7742 0.6952 0.0615 0.3513 0.0148 0.0166
0◦/45◦/◦0◦ 0.7349 0.6791 0.0604 0.3529 0.0146 0.0158
0◦/30◦/0◦ 0.6993 0.6635 0.0394 0.3651 0.0132 0.0151

CCCC
Present study

(ITSDT)

0◦/90◦/0◦ 0.3815 0.3215 0.0168 0.1368 0.0157 0.0017
0◦/60◦/0◦ 0.3553 0.3083 0.0276 0.1521 0.0145 0.0023
0◦/45◦/◦0◦ 0.3282 0.2943 0.0254 0.1684 0.0127 0.0024
0◦/30◦/0◦ 0.3006 0.2819 0.0252 0.1846 0.0106 0.0022

SSSC
Present study

(ITSDT)

0◦/90◦/0◦ 0.8218 0.7121 0.0378 0.3616 0.0141 0.0159
0◦/60◦/0◦ 0.7742 0.6954 0.0613 0.3513 0.0148 0.0167
0◦/45◦/◦0◦ 0.7350 0.6792 0.0603 0.3529 0.0146 0.0158
0◦/30◦/0◦ 0.6998 0.6636 0.0393 0.3651 0.0132 0.0151

FFCC
Present study

(ITSDT)

0◦/90◦/0◦ 0.8225 0.7121 0.0381 0.3617 0.0055 0.0106
0◦/60◦/0◦ 0.7742 0.6954 0.0618 0.3513 0.0053 0.0121
0◦/45◦/◦0◦ 0.7349 0.6789 0.0609 0.3530 0.0052 0.0109
0◦/30◦/0◦ 0.6997 0.6630 0.0397 0.3652 0.0049 0.0100

SSCC
Present study

(ITSDT)

0◦/90◦/0◦ 0.8225 0.7125 0.0375 0.3618 0.0279 0.0087
0◦/60◦/0◦ 0.7743 0.6956 0.0612 0.3514 0.0265 0.0094
0◦/45◦/◦0◦ 0.7350 0.6793 0.0602 0.3530 0.0241 0.0093
0◦/30◦/0◦ 0.6998 0.6636 0.0393 0.3651 0.0210 0.0091

FFCC
Present study

(ITSDT)

0◦/90◦/0◦ 0.8218 0.7117 0.0383 0.3615 0.0056 0.0106
0◦/60◦/0◦ 0.7742 0.6952 0.0618 0.3512 0.0053 0.0121
0◦/45◦/◦0◦ 0.7748 0.6788 0.0609 0.3530 0.0052 0.0109
0◦/30◦/0◦ 0.6997 0.6630 0.0397 0.3652 0.0049 0.0100

The new results were analyzed for the various boundary conditions, porosity, and
orientation angle in Tables 2–5. In Table 2, deflection and stress are presented in relation
to variations in boundary conditions and orientation angle to the fiber in composites
using improved third-order theory. For the length-to-thickness ratio of 10 and boundary
condition SSSS, deflection is decreased by 8.4% with variation in the fiber orientation angle
from 0◦/90◦/0◦ to 0◦/45◦/0◦. It also seems that normalized effective stresses (σ1) are also
decreased by 5.7% for the same conditions. For the boundary condition CCCC, normalized
deflection is decreased by 6.9% with variation in fiber orientation angle from 0◦/90◦/0◦

to 0◦/60◦/0◦. Effective stress (σ2) is reduced to 12.8% with variation in fiber orientation
angle from 0◦/60◦/0◦ to 0◦/45◦/0◦. Due to applied sinusoidal load and SSSC boundary
conditions, deflection is decreased by 11.34% and normalized stress (σ3) is increased by
3.8% with variation in orientation angle from 0◦/60◦/0◦ to 0◦/30◦/0◦. Here, deflection is
also decreased by 5.6% with a variation in orientation angle from 0◦/45◦/◦0◦ to 0◦/30◦/◦0◦

with boundary condition SSCC and a thickness ratio of 10. It helps to have a lightweight
structure. It seems that normalized stress (σ4) is also decreased by 14.5% for the same
conditions. For the FFCC boundary condition and variation in fiber orientation angle from
0◦/60◦/0◦ to 0◦/45◦/0◦, deflection is reduced by 6% and normalized stress (σ6) is also
reduced by 11.3%.

In Table 3, deflection and stresses are examined after the application of a porosity
distribution of 0.1 throughout the plate thickness. A porosity distribution of 0.1 and
SSSS boundary condition, normalized deflection is decreased by 4.4% as compared to
without porosity effects, with a fiber orientation angle of 0◦/90◦/0◦ and a thickness ratio
of 10. In Table 3, considering sinusoidal load and porosity effects, deflection is reduced
by 14% with variation in the orientation angle from 0◦/90◦/0◦ to 0◦/45◦/0◦ and with
boundary condition CCCC. Here, normalized stress (σ1) is also reduced by 9.6% for the
same boundary conditions.

In Table 3, for the boundary conditions of SSSC, normalized deflection is reduced to
4.8% with a porosity of 0.1 as compared to negligible porosity. It is further reduced by
6.5% with a change in orientation angle from 0◦/90◦/0◦ to 0◦/60◦/0◦. For the length-to-
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thickness ratio of 10 and FFCC boundary conditions, normalized stress (σ2) is decreased
by 3% with a change in orientation angle from 0◦/90◦/0◦ to 0◦/30◦/0◦. With a porosity
distribution of 0.1 and boundary condition SSCC, normalized stress (σ3) is decreased by
2.2% with a change in orientation angle from 0◦/90◦/0◦ to 0◦/60◦/0◦. For the boundary
condition FFCC, deflection is decreased by 4.7% with a porosity of 0.1, as compared to
negligible porosity, as specified in Table 2.

In Table 4, a porosity distribution of 0.2 is applied, further taking into account nor-
malized stresses and deflection under various boundary conditions and a thickness ratio
of 10. For the boundary condition SSSS and orientation angles of 0◦/90◦/0◦, normalized
deflection is reduced by 5.6% with a porosity allocation of 0.2, as compared to a porosity
of 0.1, as specified in Table 3. With a porosity distribution of 0.2 and boundary condition
CCCC, normalized effective stress (σ1) is decreased by 13.3% when the orientation angle
varies from 0◦/90◦/0◦ to 0◦/30◦/0◦. Here, normalized stress (σ3) is increased by 11.9%
with a shift in orientation angle from 0◦/90◦/0◦ to 0◦/60◦/0◦ and having all fixed edges.
Deflection is decreased by 11.3% due to change in orientation angle from 0◦/90◦/0◦ to
0◦/45◦/0◦ with a porosity effect of 0.2 and boundary condition SSSC. For a thickness ratio
of 10 and boundary condition FFCC, normalized stress (σ3) is decreased by 2.5% with a shift
in orientation angle from 0◦/90◦/0◦ to 0◦/30◦/0◦. With variation in the fiber orientation
angle from 0◦/90◦/0◦ to 0◦/45◦/0◦, normalized effective stress (σ4) is decreased by 14.6%
under boundary condition SSCC. For the orientation angle of 0◦/90◦/0◦, deflection is
decreased by 5% with a porosity of 0.2, as compared to a porosity value of 0.1, as specified
in Table 3. Here, stress (σ6) is also decreased by 2% with a shift in fiber orientation angle
from 0◦/60◦/0◦ to 0◦/30◦/0◦, having a porosity value of 0.2 and a length–thickness ratio
of 10.

In Table 5, a sinusoidal load is applied along with a porosity value of 0.3, applied to
the whole thickness of the sheet. For the SSSS boundary condition, normalized deflection is
decreased by 5.4%, as compared to the deflection mentioned in Table 4 for a fiber orientation
angle of 0◦/90◦/0◦. Here, normalized effective stress (σ1) is also reduced to 6.7% with
a change in fiber orientation angle from 0◦/90◦/0◦ to 0◦/30◦/0◦. For a thickness ratio of
10 and the CCCC boundary condition, normalized deflection is decreased by 14% with
a shift in orientation angle from 0◦/90◦/0◦ to 0◦/45◦/0◦ and having porosity of 0.3. It is
also observed that effective stress (σ2) is reduced by 8% with a shift in orientation to the
fiber from 0◦/60◦/0◦ to 0◦/30◦/0◦, having the same boundary conditions. Normalized
deflection is decreased by 10.5% with variation in fiber orientation angle from 0◦/90◦/0◦ to
0◦/45◦/0◦ and with boundary condition SSSC. In the current study, stress (σ3) is increased
by 4% with variation in orientation to the fiber from 0◦/90◦/0◦ to 0◦/30◦/0◦. In this case,
for a porosity effect of 0.3 and the FFCC boundary condition, normalized deflection and
stress (σ4) are decreased by 14.9% and 10.9% with shift in orientation angle of 0◦/90◦/0◦

to 0◦/30◦/0◦, respectively. For the SSCC boundary condition of the sheet, it is found
that deflection is reduced by 6.5% and stress is increased by 8% with a variation in the
orientation angle from 0◦/90◦/0◦ to 0◦/60◦/0◦. Considering boundary condition FFCC
and a length–thickness ratio of 10, normalized deflection is reduced by 9.6% with a shift in
orientation angle from 0◦/90◦/0◦ to 0◦/30◦/0◦, with porosity value of 0.3.

Example 2. For the purpose of bending analysis of the laminated pervious sheet, the following
analytical problem is solved. The authors considered a four-layer, square (a = b), laminated plate,
resting on simply supported end conditions. The orientation angle was 0◦/90◦/90◦/0◦, and material
properties were as follows: E1= 175, E2= 7, G12= G13= 3.5, G23= 1.4, υ12= 0.25, and a/h = 10.
A sinusoidal loading pattern is applied, with q(x, y) = q0 sin(πx/a) sin(πy/b). Table 6 presents
a validation analysis for the stresses and deflections of the square layered plate under a sinusoidal
load with different boundary conditions. Tables 7–10 present new findings that are examined with
varying porosity patterns, boundary conditions, fiber orientations, material parameters, etc.
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Table 6 shows the results of the validation analysis for the different material properties;
the obtained results are compared with those reported by (Tasneem et al. [38]) with regard
to applied sinusoidal load. Deflection and stresses were analyzed at various points with
the four-layer composite plate having thickness ratio of 10.

Table 6. Validation analysis with different boundary conditions of normalized deflection and stresses
for the square laminate with orientation angle 0◦/90◦/90◦/0◦.

Boundary
Conditions Reference Theory w × 102 σxx σyy σxy σxz σyz

SSSS
Present study (16 × 16) ITSDT 0.762 0.556 0.417 0.0270 0.256 0.122

Tasneem et al. [47] HSDT 0.719 0.570 0.397 0.0276 0.277 0.156

CCCC
Present study (16 × 16) ITSDT 0.37247 0.23406 0.2502 0.00138 0.0932 0.1170

Tasneem et al. [47] HSDT 0.36119 0.24582 0.2433 0.00230 0.1913 0.2285

SSSC
Present study (16 × 16) ITSDT 0.6230 0.4542 0.3786 0.0241 0.2108 0.1261

Tasneem et al. [47] HSDT 0.5974 0.4668 0.3553 0.0251 0.2383 0.1625

FFCC
Present study (16 × 16) ITSDT 0.6987 0.1491 0.4889 0.00204 0.0271 0.2017

Tasneem et al. [47] HSDT 0.7157 0.1527 0.4961 0.00263 0.0342 0.4225

SSCC
Present study (16 × 16) ITSDT 0.5108 0.3569 0.3474 0.00655 0.1738 0.1567

Tasneem et al. [47] ITSDT 0.4977 0.3932 0.3377 0.00808 0.1926 0.3106

FFFC
Present study (16 × 16) ITSDT 5.828 0.15717 0.6419 0.00079 0.0254 0.00102

Tasneem et al. [47] HSDT 5.860 0.16059 0.7381 0.00098 0.0343 0.00138

Table 7. New results for four-layer laminated plate.

Boundary
Conditions

Reference
(Theory)

Orientation
Angle w × 102 σxx σyy σxy σxz σyz

SSSS
Present study

(ITSDT)

0◦/90◦/90◦/0◦ 0.7621 0.5563 0.4170 0.0270 0.2561 0.1223
0◦/60◦/60◦/0◦ 0.7091 0.5318 0.2529 0.0384 0.2868 0.1035
0◦/45◦/45/◦0◦ 0.6694 0.5195 0.1486 0.0348 0.3073 0.0866
0◦/30◦/30◦/0◦ 0.6514 0.5269 0.0761 0.0302 0.3255 0.0658

CCCC
Present study

(ITSDT)

0◦/90◦/90◦/0◦ 0.3724 0.2340 0.2802 0.00138 0.0932 0.1171
0◦/60◦/60◦/0◦ 0.3745 0.2411 0.1606 0.00310 0.1203 0.0942
0◦/45◦/45/◦0◦ 0.3654 0.2434 0.0892 0.00356 0.1461 0.0732
0◦/30◦/30◦/0◦ 0.3460 0.2427 0.0391 0.00316 0.1667 0.0539

SSSC
Present study

(ITSDT)

0◦/90◦/90◦/0◦ 0.6230 0.4542 0.3786 0.0241 0.2108 0.1261
0◦/60◦/60◦/0◦ 0.6194 0.4617 0.2452 0.0358 0.2447 0.1053
0◦/45◦/45/◦0◦ 0.6139 0.4727 0.1478 0.0337 0.2812 0.0874
0◦/30◦/30◦/0◦ 0.6153 0.4949 0.0758 0.0298 0.3111 0.0666

FFCC
Present study

(ITSDT)

0◦/90◦/90◦/0◦ 0.6987 0.1491 0.4889 0.00204 0.0271 0.2017
0◦/60◦/60◦/0◦ 0.9761 0.1301 0.4157 0.02197 0.0392 0.1954
0◦/45◦/45/◦0◦ 1.3678 0.1145 0.2922 0.02534 0.0513 0.1871
0◦/30◦/30◦/0◦ 1.8193 0.1051 0.1509 0.01248 0.0562 0.1769

SSCC
Present study

(ITSDT)

0◦/90◦/90◦/0◦ 0.5108 0.3569 0.3474 0.00655 0.1738 0.1567
0◦/60◦/60◦/0◦ 0.5394 0.4003 0.2386 0.00972 0.2222 0.1342
0◦/45◦/45/◦0◦ 0.5613 0.4292 0.1472 0.01174 0.2645 0.1096
0◦/30◦/30◦/0◦ 0.5802 0.4641 0.0756 0.01247 0.2975 0.0861

FFFC
Present study

(ITSDT)

0◦/90◦/90◦/0◦ 5.8280 0.1572 0.6419 0.00079 0.0254 0.00102
0◦/60◦/60◦/0◦ 9.4968 0.1352 0.4419 0.00538 0.0429 0.00908
0◦/45◦/45/◦0◦ 14.2504 0.1684 0.2569 0.00235 0.0722 0.00898
0◦/30◦/30◦/0◦ 19.1944 0.2036 0.1567 0.00006 0.0524 0.00297
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Table 8. New results for four-layer laminated porous plate (p = 0.1).

Boundary
Conditions

Reference
(Theory) Orientation Angle w × 102 σxx σyy σxy σxz σyz

SSSS
Present study

(ITSDT)

0◦/90◦/90◦/0◦ 0.7275 0.5497 0.4023 0.0292 0.2588 0.1199
0◦/60◦/60◦/0◦ 0.6766 0.5252 0.2456 0.0408 0.2876 0.1011
0◦/45◦/45/◦0◦ 0.6394 0.5135 0.1458 0.0373 0.3074 0.0847
0◦/30◦/30◦/0◦ 0.6237 0.5210 0.0753 0.0325 0.3254 0.0642

CCCC
Present study

(ITSDT)

0◦/90◦/90◦/0◦ 0.3504 0.2299 0.2425 0.00151 0.0974 0.1156
0◦/60◦/60◦/0◦ 0.3514 0.2370 0.1554 0.00331 0.1248 0.0922
0◦/45◦/45/◦0◦ 0.3421 0.2396 0.0867 0.00377 0.1504 0.0719
0◦/30◦/30◦/0◦ 0.3234 0.2392 0.0384 0.00335 0.1708 0.0518

SSSC
Present study

(ITSDT)

0◦/90◦/90◦/0◦ 0.5854 0.4492 0.3692 0.0262 0.2131 0.1245
0◦/60◦/60◦/0◦ 0.5916 0.4565 0.2399 0.0382 0.2463 0.1029
0◦/45◦/45/◦0◦ 0.5869 0.4677 0.1456 0.0362 0.2822 0.0854
0◦/30◦/30◦/0◦ 0.5894 0.4897 0.0752 0.0322 0.3117 0.0649

FFCC
Present study

(ITSDT)

0◦/90◦/90◦/0◦ 0.6735 0.1461 0.4873 0.00220 0.0265 0.2024
0◦/60◦/60◦/0◦ 0.9443 0.1282 0.4156 0.02291 0.0388 0.1961
0◦/45◦/45/◦0◦ 1.3297 0.1133 0.2936 0.02667 0.0512 0.1876
0◦/30◦/30◦/0◦ 1.7766 0.1046 0.1529 0.01349 0.0560 0.1780

SSCC
Present study

(ITSDT)

0◦/90◦/90◦/0◦ 0.4883 0.3675 0.3425 0.00720 0.1759 0.1569
0◦/60◦/60◦/0◦ 0.5156 0.3961 0.2352 0.01063 0.2239 0.1316
0◦/45◦/45/◦0◦ 0.5369 0.4250 0.1454 0.01274 0.2657 0.1086
0◦/30◦/30◦/0◦ 0.5558 0.4596 0.0751 0.01346 0.2983 0.0855

FFFC
Present study

(ITSDT)

0◦/90◦/90◦/0◦ 5.7701 0.1537 0.6435 0.00083 0.0247 0.00092
0◦/60◦/60◦/0◦ 9.3555 0.1349 0.4484 0.00524 0.0418 0.00885
0◦/45◦/45/◦0◦ 14.0553 0.1685 0.2665 0.00231 0.0716 0.00884
0◦/30◦/30◦/0◦ 19.0045 0.2025 0.1618 0.00002 0.0533 0.00300

Table 9. New results for four-layer laminated porous plate (p = 0.2).

Boundary
Conditions

Reference
(Theory) Orientation Angle w × 102 σxx σyy σxy σxz σyz

SSSS
Present study

(ITSDT)

0◦/90◦/90◦/0◦ 0.6910 0.5419 0.3861 0.0319 0.2607 0.1180
0◦/60◦/60◦/0◦ 0.6428 0.5178 0.2377 0.0439 0.2882 0.1021
0◦/45◦/45/◦0◦ 0.6091 0.5067 0.1428 0.0404 0.3073 0.0863
0◦/30◦/30◦/0◦ 0.5953 0.5143 0.0743 0.0355 0.3252 0.0665

CCCC
Present study

(ITSDT)

0◦/90◦/90◦/0◦ 0.3276 0.2259 0.2337 0.00167 0.1022 0.1139
0◦/60◦/60◦/0◦ 0.3274 0.2329 0.1496 0.00356 0.1297 0.0920
0◦/45◦/45/◦0◦ 0.3181 0.2357 0.0839 0.00403 0.1551 0.0716
0◦/30◦/30◦/0◦ 0.3003 0.2355 0.0377 0.00358 0.1715 0.0529

SSSC
Present study

(ITSDT)

0◦/90◦/90◦/0◦ 0.5667 0.4436 0.3589 0.0287 0.2154 0.1229
0◦/60◦/60◦/0◦ 0.5628 0.4508 0.2341 0.0413 0.2479 0.1039
0◦/45◦/45/◦0◦ 0.5930 0.4621 0.1346 0.0392 0.2832 0.0870
0◦/30◦/30◦/0◦ 0.5628 0.4838 0.0744 0.0351 0.3121 0.0671

FFCC
Present study

(ITSDT)

0◦/90◦/90◦/0◦ 0.6490 0.1427 0.4855 0.00239 0.0259 0.2031
0◦/60◦/60◦/0◦ 0.9127 0.1259 0.4153 0.02393 0.0384 0.1964
0◦/45◦/45/◦0◦ 1.2896 0.1122 0.2390 0.02821 0.0509 0.1881
0◦/30◦/30◦/0◦ 1.7321 0.1042 0.1552 0.01436 0.0556 0.1782

SSCC
Present study

(ITSDT)

0◦/90◦/90◦/0◦ 0.4653 0.3632 0.3368 0.00799 0.1783 0.1571
0◦/60◦/60◦/0◦ 0.4912 0.3915 0.2311 0.01175 0.2257 0.1333
0◦/45◦/45/◦0◦ 0.5120 0.4202 0.1434 0.01396 0.2668 0.1109
0◦/30◦/30◦/0◦ 0.5309 0.4543 0.0745 0.01475 0.2990 0.0885

FFFC
Present study

(ITSDT)

0◦/90◦/90◦/0◦ 5.7061 0.1502 0.6453 0.00088 0.0240 0.00082
0◦/60◦/60◦/0◦ 9.2114 0.1348 0.4558 0.00501 0.0404 0.00799
0◦/45◦/45/◦0◦ 13.8409 0.1686 0.2777 0.00222 0.0706 0.00784
0◦/30◦/30◦/0◦ 18.7936 0.2012 0.1679 0.00004 0.0538 0.00267
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Table 10. New results for four-layer laminated porous plate (p = 0.3).

Boundary
Conditions

Reference
(Theory)

Orientation
Angle w × 102 σxx σyy σxy σxz σyz

SSSS
Present study

(ITSDT)

0◦/90◦/90◦/0◦ 0.6531 0.5328 0.3687 0.0353 0.2626 0.1164
0◦/60◦/60◦/0◦ 0.6081 0.5094 0.2294 0.0471 0.2885 0.1016
0◦/45◦/45/◦0◦ 0.5772 0.4991 0.1394 0.0442 0.3070 0.0865
0◦/30◦/30◦/0◦ 0.5659 0.5067 0.0732 0.0392 0.3247 0.0672

CCCC
Present study

(ITSDT)

0◦/90◦/90◦/0◦ 0.3041 0.2219 0.2236 0.00186 0.1077 0.1119
0◦/60◦/60◦/0◦ 0.3029 0.2288 0.1432 0.00385 0.1353 0.0906
0◦/45◦/45/◦0◦ 0.2935 0.2317 0.0705 0.00433 0.1604 0.0707
0◦/30◦/30◦/0◦ 0.2768 0.2317 0.0368 0.00386 0.1798 0.0524

SSSC
Present study

(ITSDT)

0◦/90◦/90◦/0◦ 0.5370 0.4373 0.3475 0.0319 0.2178 0.1215
0◦/60◦/60◦/0◦ 0.5331 0.4443 0.2477 0.0451 0.2495 0.1035
0◦/45◦/45/◦0◦ 0.5306 0.4556 0.1402 0.0429 0.2841 0.0871
0◦/30◦/30◦/0◦ 0.5351 0.4769 0.0734 0.0387 0.3123 0.0678

FFCC
Present study

(ITSDT)

0◦/90◦/90◦/0◦ 0.6237 0.1392 0.4834 0.02643 0.0253 0.2039
0◦/60◦/60◦/0◦ 0.8953 0.1238 0.4149 0.02512 0.0378 0.1969
0◦/45◦/45/◦0◦ 1.2480 0.1112 0.2969 0.02986 0.0504 0.1887
0◦/30◦/30◦/0◦ 1.6855 0.1038 0.1582 0.01562 0.0550 0.1787

SSCC
Present study

(ITSDT)

0◦/90◦/90◦/0◦ 0.4416 0.3583 0.3301 0.00899 0.1809 0.1573
0◦/60◦/60◦/0◦ 0.4659 0.3863 0.2265 0.01314 0.2275 0.1338
0◦/45◦/45/◦0◦ 0.4863 0.4147 0.1411 0.01514 0.2679 0.1118
0◦/30◦/30◦/0◦ 0.5051 0.4481 0.0737 0.01631 0.2995 0.0895

FFFC
Present study

(ITSDT)

0◦/90◦/90◦/0◦ 5.6497 0.1463 0.6472 0.00943 0.0232 0.00071
0◦/60◦/60◦/0◦ 9.0503 0.1347 0.4647 0.00470 0.0386 0.00731
0◦/45◦/45/◦0◦ 13.5975 0.1685 0.2909 0.00208 0.0691 0.00714
0◦/30◦/30◦/0◦ 18.5514 0.1993 0.1754 0.00013 0.0542 0.00241

New results were analyzed for various boundary conditions, porosity, material proper-
ties, and orientation angles, as presented in Tables 7–10. In Table 7, deflection and stresses
at different points are examined with variation in edge conditions and orientation angle to
the fiber in composites using improved third-order theory. The adjustment in orientation
angle from 0◦/90◦/90◦/0◦ to 0◦/60◦/60◦/0◦ reduces the deflection by 6.9% for a thick-
ness ratio of 10 and a boundary condition of SSSS. It also seems that normalized effective
stress (σxx) is decreased by 6.6% for an orientation angle change from 0◦/90◦/90◦/0◦ to
0◦/60◦/60◦/0◦. For the boundary condition CCCC, normalized deflection is decreased
by 8% with a change in the fiber orientation angle from 0◦/90◦/90◦/0◦ to 0◦/30◦/30◦/0◦.
Effective stress (σyy) is decreased by 44.4% with a variation in orientation angle from
0◦/60◦/60◦/0◦ to 0◦/45◦/45◦/0◦. For an applied sinusoidal load and the SSSC boundary
condition, deflection is decreased by 1.5% and normalized stress (σxy) is increased by 23.6%
with an adjustment in the fiber orientation angle from 0◦/90◦/90◦/0◦ to 0◦/45◦/45◦/0◦ and
0◦/90◦/90◦/0◦to 0◦/30◦/30◦/0◦ , respectively. Here, normalized stress (σxz) is increased
by 15% when the orientation angle is changed from 0◦/60◦/60◦/0◦ to 0◦/45◦/45◦/0◦ with
boundary condition SSCC and a thickness ratio of 10.

A porosity distribution of 0.1 is applied over the whole depth of the plate and results
in effects on the deflection and stresses, as specified in Table 8. For a porosity distribution
of 0.1 and the SSSS boundary condition, normalized deflection is decreased by 4.5% as com-
pared to the case without porosity effects, having a fiber orientation of 0◦/90◦/90◦/0◦ and
a thickness ratio of 10. As shown in Table 8, considering sinusoidal load and porosity effects,
deflection is reduced by 12.1% with a variation in orientation angle from 0◦/90◦/90◦/0◦ to
0◦/45◦/45◦/0◦ for boundary condition CCCC. Here, normalized stress (σxx) is also reduced
by 6.5% for the same boundary conditions. As shown in Table 8, for the boundary condi-
tion SSSC, normalized deflection is decreased by 6% with a porosity of 0.1, compared to
negligible porosity, for the orientation angle of 0◦/90◦/90◦/0◦. For the length-to-thickness
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ratio of 10 and the FFCC boundary condition, normalized stress (σyy) is reduced by 14.71%
with variation in orientation angle from 0◦/90◦/90◦/0◦ to 0◦/60◦/60◦/0◦. For a porosity
distribution of 0.1 and boundary condition SSCC, normalized stress (σxy) is reduced by
16.5% with variation in the fiber orientation from 0◦/60◦/60◦/0◦ to 0◦/45◦/45◦/0◦. For
the boundary condition FFCC, deflection is decreased by 1.5% for a porosity of 0.1, as
compared to negligible porosity, for the orientation angle of 0◦/60◦/60◦/0◦, as specified in
Table 7.

Table 9 shows the results for the application of a porosity distribution of 0.2, taking
into account normalized stresses and deflection under various boundary conditions and
a thickness ratio of 10. For the boundary condition SSSS and an orientation angle of
0◦/90◦/90◦/0◦, normalized deflection is reduced by 6.5% for a porosity distribution of 0.2,
as compared to a porosity of 0.1, as specified in Table 8. With a porosity distribution of 0.2
and boundary condition CCCC, normalized effective stress (σxx) is increased by 4.3% with
a change in orientation angle from 0◦/90◦/90◦/0◦ to 0◦/45◦/45◦/0◦. Here, normalized
stress (σxy) is increased by 13.2% with a variation in orientation angle from 0◦/60◦/60◦/0◦

to 0◦/45◦/45◦/0◦ with all edges fixed. Deflection is decreased by 5.1% with a variation in
fiber orientation from 0◦/45◦/45◦/0◦ to 0◦/30◦/30◦/0◦ and with a porosity effect of 0.2
and boundary condition SSSC. For a length-to-thickness ratio of 10 and boundary condition
FFCC, normalized stresses (σxy) is increased to 17.88% by changing orientation the angle
from 0◦/60◦/60◦/0◦ to 0◦/45◦/45◦/0◦. With a variation in the orientation angle from
0◦/90◦/90◦/0◦ to 0◦/60◦/60◦/0◦, normalized effective stress (σxz) is decreased by 26.58%
under boundary condition SSCC. For the orientation angle of 0◦/90◦/90◦/0◦, deflection is
decreased by 1.2% for a porosity of 0.2, as compared to porosity value of 0.1, under the FFFC
boundary condition, as specified in Table 8. Here, normalized stress (σyz) is also decreased
by 1.8% with a variation in the orientation angle of 0◦/60◦/60◦/0◦ to 0◦/45◦/45◦/0◦, with
a porosity distribution of 0.2 and a thickness ratio of 10.

Table 10 specifies the results for a sinusoidal load applied along with a porosity alloca-
tion of 0.3 in the whole depth of the plate. For the SSSS boundary condition, normalized
deflection is decreased by 5.5%, as compared to the deflection mentioned in Table 9 for an
orientation angle of 0◦/90◦/90◦/0◦. Here, normalized stress (σxx) is also decreased by 6.3%
due to a change in the fiber orientation from 0◦/90◦/90◦/0◦ to 0◦/45◦/45◦/0◦. For a thick-
ness ratio of 10 and the CCCC boundary condition, normalized deflection is reduced by
8.3% with variation of the applied orientation angle from 0◦/90◦/90◦/0◦ to 0◦/30◦/30◦/0◦,
with a porosity of 0.3. It is also observed that effective stress (σyy) is reduced by 35.9%
with variation in the orientation angle from 0◦/90◦/90◦/0◦ to 0◦/60◦/60◦/0◦ under the
same boundary conditions. Normalized deflection is reduced to 1.2% with a change in the
orientation angle from 0◦/90◦/90◦/0◦ to 0◦/45◦/45◦/0◦ under boundary condition SSSC.
For the same boundary conditions, stress (σxy) is reduced to 4.8% with variation in the
orientation angle from 0◦/60◦/60◦/0◦ to 0◦/45◦/45◦/0◦. For a porosity value of 0.3 and
the FFCC boundary condition, normalized stress (σxz) is decreased by 33.3% with variation
in the orientation angle from 0◦/60◦/60◦/0◦ to 0◦/45◦/45◦/0◦.

For the SSCC boundary condition of the plate, it was observed that stress is increased
by 25.75% with variation in the orientation angle from 0◦/90◦/90◦/0◦ to 0◦/60◦/60◦/0◦.
Considering boundary condition FFCC and a thickness ratio of 10, normalized stress
(σyz) is reduced by 2.3% with variation in the orientation angle from 0◦/60◦/60◦/0◦ to
0◦/45◦/45◦/0◦ under a porosity value of 0.3.

Example 3. This example covers the subjecting of a two-layer, square, cross-ply laminate with an orien-
tation angle of 0◦/90◦ to a sinusoidal load of varying intensity of q(x, y) = q0 sin(πx/a) sin(πy/b)
under various boundary conditions. Even though the orientation of each layer varies, the material
characteristics are the same in every layer (E1 = 25 GPa, E2 = 1 GPa; G12 = G13 = 0.5E2,
G23 = 0.2E2; ν12 = 0.25 and ν13 = 0.01). This study is conducted for a thickness ratio of 10.
Results of the validation study are shown in Table 11. In Table 12, new findings are presented. The
normalized central deflection is calculated using Equation (24).
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Table 11. Validation of two-layer laminated plate.

a/h Reference Theory
Normalized Deflection

SSSS SSCC SSFF

10

Present study (16 × 16) ITSDT 1.154 0.534 1.866
Liu et al. [4] FSDT 1.245 0.665 2.031

Khdeir and Reddy [48] FSDT 1.237 0.656 2.028
Vel and Batra [49] Analytical load 1.227 0.648 2.026

Table 12. New results for two-layer laminated plate with various boundary conditions.

Boundary
Conditions Reference Theory Orientation Angle

Normalized Deflections

e = 0 e = 0.1 e = 0.2 e = 0.3

SSSS Present study ITSDT

0◦/90◦ 1.154 1.129 1.095 1.058
0◦/60◦ 0.974 0.948 0.920 0.887
0◦/45◦ 0.868 0.841 0.813 0.780
0◦/30◦ 0.765 0.738 0.709 0.678

SSCC Present study ITSDT

0◦/90◦ 0.534 0.516 0.506 0.491
0◦/60◦ 0.564 0.549 0.534 0.518
0◦/45◦ 0.601 0.585 0.567 0.548
0◦/30◦ 0.636 0.615 0.593 0.569

SSFF Present study ITSDT

0◦/90◦ 1.866 1.854 1.842 1.829
0◦/60◦ 1.711 1.682 1.648 1.610
0◦/45◦ 1.463 1.421 1.375 1.323
0◦/30◦ 1.132 1.087 1.036 0.985

SSSC Present study ITSDT

0◦/90◦ 0.770 0.751 0.732 0.709
0◦/60◦ 0.731 0.712 0.692 0.670
0◦/45◦ 0.719 0.698 0.676 0.652
0◦/30◦ 0.699 0.675 0.650 0.622

SSFS Present study ITSDT

0◦/90◦ 1.560 1.536 1.504 1.478
0◦/60◦ 1.340 1.305 1.279 1.241
0◦/45◦ 1.194 1.158 1.119 1.075
0◦/30◦ 1.023 0.983 0.940 0.892

SSFC Present study ITSDT

0◦/90◦ 1.085 1.068 1.050 1.029
0◦/60◦ 0.998 0.978 0.895 0.931
0◦/45◦ 0.983 0.956 0.925 0.892
0◦/30◦ 0.916 0.882 0.845 0.804

Table 11 shows the results of a validation study performed for a two-layer antisym-
metric cross-ply laminated plate under sinusoidal loading with a thickness ratio of 10. The
work was compared with existing studies (Liu et al. [4], Khdeir and Reddy [48], and Vel and
Batra [49]). In Table 12, new results are presented under various porosity, orientation angle,
and boundary conditions. The applied porosity values amounted to 0, 0.1, 0.2, and 0.3.

Table 12 shows the results for a sinusoidal load applied along with the porosity values
of 0.1, 0.2, and 0.3 in the whole depth of the plate for a thickness ratio of 10. For the SSSS
boundary condition and a porosity of 0.1, normalized deflection is reduced by 11.7%, as
compared to negligible porosity under an orientation angle of 0◦/90◦. Deflection is further
reduced by 16% with variation in fiber orientation from 0◦/90◦ to 0◦/60◦. For a thickness
ratio of 10 and the SSCC boundary condition, normalized deflection is increased by 19.2%
with variation in the applied orientation angle from 0◦/90◦ to 0◦/30◦ and having porosity
of 0.1. Normalized deflection is reduced to 25.35% when the orientation angle is changed
from 0◦/90◦ to 0◦/45◦, under boundary condition SSFF and a porosity of 0.2. For the
porosity effect of 0.2 and the SSSC boundary condition, normalized deflection is decreased
by 11.2% with variation in the orientation angle from 0◦/90◦ to 0◦/30◦/45◦. For a thickness
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ratio of 10 and the SSFS boundary condition, normalized deflection is reduced by 12.5%
with variation in the applied orientation angle from 0◦/60◦ to 0◦/45◦, with a porosity of
0.2. Normalized deflection is reduced to 26.3% when the orientation angle changes from
0◦/90◦ to 0◦/45◦, with boundary condition SSSS and a porosity of 0.3. For the porosity
effect of 0.3 and the SSFC boundary condition, normalized deflection is decreased by 4.2%
with variation in the orientation angle from 0◦/60◦ to 0◦/45◦.

Example 4. This example covers subjecting a three-layer, square, cross-ply laminate with an ori-
entation angle of 0◦/90◦/0◦ to a sinusoidal load of varying intensity of q(x, y) = q0 sin(πx/a)
sin(πy/b) under various boundary conditions. Even though the orientation of each layer varies, the
material characteristics are the same in every layer (E1 = 25 GPa, E2 = 1 GPa; G12 = G13 = 0.5E2,
G23 = 0.2E2; ν12 = 0.25 and ν13 = 0.01). Results of the validation study are demonstrated in
Table 13 for thickness ratios of 5 and 10. New results are given in Tables 12 and 13 for the same
thickness ratios. The normalized central deflection was calculated using Equation (24).

Table 13. Validation of three-layer square laminated plate.

a/h Reference Theory
Normalized Deflection

SSSS SSCC SSFF

5
Present study (16 × 16) ITSDT 1.596 1.018 5.197

Liu et al. [4] FSDT 1.562 1.201 5.249
Vel and Batra [49] Analytical load 1.525 1.180 5.307

10
Present study (16 × 16) ITSDT 0.782 0.441 4.424

Liu et al. [3] FSDT 0.753 0.448 4.335
Vel and Batra [49] Analytical load 0.753 0.446 4.453

Table 13 shows the results of a validation study performed for three-layer cross-
ply laminated plate under sinusoidal loading with a thickness ratio of 10. The work
was compared with existing studies (Liu et al. [5] Vel and Batra [49]). New results were
calculated with the help of in-house FOTRAN code under various porosity, orientation
angle, and boundary conditions, as specified in Tables 14 and 15. The porosity values of 0,
0.1, 0.2, and 0.3 were considered.

Table 14 shows the results for a sinusoidal load applied along with the porosity values
of 0.1, 0.2, and 0.3 over the whole depth of the plate having thickness ratio of 5. For the
SSSS boundary condition and a porosity of 0.1, normalized deflection is reduced by 6.5%, as
compared to negligible porosity, with orientation angle of 0◦/90◦/0◦. Deflection is further
reduced by 19% with variation in fiber orientation from 0◦/90◦/0◦ to 0◦/45◦/0◦. For
a thickness ratio of 10 and the SSCC boundary condition, normalized deflection is increased
by 16.5% with the applied orientation angle changed from 0◦/90◦/0◦ to 0◦/30◦/0◦ and
having a porosity of 0.1. Normalized deflection is reduced to 19.4% when the orientation
angle changes from 0◦/90◦/0◦ to 0◦/45◦/0◦, under boundary condition SSFF and a porosity
of 0.1. For the porosity effect of 0.2 and the SSSC boundary condition, normalized deflection
is decreased by 5.6% by variation in the orientation angle from 0◦/60◦/0◦ to 0◦/45◦/0◦. For
the thickness ratio of 5 and the SSFS boundary condition, normalized deflection is reduced
by 21.8% with an applied orientation angle change from 0◦/60◦/0◦ to 0◦/45◦/0◦, under
a porosity of 0.2. Normalized deflection is reduced to 17.3% when the orientation angle
changes from 0◦/90◦/0◦ to 0◦/45◦/0◦, with boundary condition SSSS and a porosity of 0.3.
For the porosity effect of 0.3 and the SSFC boundary condition, normalized deflection is
reduced by 14.9% with variation in the orientation angle from 0◦/90◦/0◦ to 0◦/60◦/0◦.
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Table 14. New results for two-layer laminated plate with various boundary conditions (a/h = 5).

Boundary
Conditions Reference Theory Orientation

Angle
Normalized Deflections

e = 0 e = 0.1 e = 0.2 e = 0.3

SSSS Present study ITSDT

0◦/90◦/0◦ 1.596 1.492 1.383 1.270
0◦/60◦/0◦ 1.412 1.323 1.232 1.139
0◦/45◦/0◦ 1.288 1.209 1.130 1.050
0◦/30◦/0◦ 1.268 1.188 1.109 1.026

SSCC Present study ITSDT

0◦/90◦/0◦ 1.018 0.958 0.889 0.823
0◦/60◦/0◦ 1.081 1.015 0.945 0.871
0◦/45◦/0◦ 1.147 1.075 0.999 0.921
0◦/30◦/0◦ 1.192 1.116 1.036 0.955

SSFF Present study ITSDT

0◦/90◦/0◦ 5.197 5.098 4.995 4.893
0◦/60◦/0◦ 4.297 4.109 3.910 3.701
0◦/45◦/0◦ 2.792 2.628 2.458 2.281
0◦/30◦/0◦ 1.737 1.627 1.514 1.399

SSSC Present study ITSDT

0◦/90◦/0◦ 1.279 1.199 1.114 1.080
0◦/60◦/0◦ 1.239 1.162 1.082 0.998
0◦/45◦/0◦ 1.216 1.141 1.051 0.984
0◦/30◦/0◦ 1.230 1.152 1.072 0.990

SSFS Present study ITSDT

0◦/90◦/0◦ 3.544 3.396 3.238 3.066
0◦/60◦/0◦ 2.362 2.243 2.118 1.988
0◦/45◦/0◦ 1.875 1.767 1.656 1.541
0◦/30◦/0◦ 1.493 1.402 1.306 1.208

SSFC Present study ITSDT

0◦/90◦/0◦ 2.250 2.143 2.028 1.905
0◦/60◦/0◦ 1.973 1.869 1.762 0.646
0◦/45◦/0◦ 1.769 1.664 1.554 1.440
0◦/30◦/0◦ 1.453 1.361 1.265 1.167

Table 15. New results for two-layer laminated plate with various boundary conditions (a/h = 10).

Boundary
Conditions Reference Theory Orientation

Angle
Normalized Deflections

e = 0 e = 0.1 e = 0.2 e = 0.3

SSSS Present study ITSDT

0◦/90◦/0◦ 0.782 0.744 0.705 0.665
0◦/60◦/0◦ 0.728 0.699 0.668 0.637
0◦/45◦/0◦ 0.681 0.656 0.631 0.605
0◦/30◦/0◦ 0.677 0.652 0.627 0.601

SSCC Present study ITSDT

0◦/90◦/0◦ 0.441 0.412 0.381 0.350
0◦/60◦/0◦ 0.483 0.455 0.426 0.395
0◦/45◦/0◦ 0.541 0.513 0.485 0.456
0◦/30◦/0◦ 0.603 0.577 0.550 0.522

SSFF Present study ITSDT

0◦/90◦/0◦ 4.424 4.379 4.370 4.340
0◦/60◦/0◦ 3.408 3.301 3.179 3.044
0◦/45◦/0◦ 1.848 1.774 1.694 1.608
0◦/30◦/0◦ 0.963 0.927 0.889 0.851

SSSC Present study ITSDT

0◦/90◦/0◦ 0.578 0.543 0.507 0.470
0◦/60◦/0◦ 0.589 0.559 0.528 0.495
0◦/45◦/0◦ 0.605 0.582 0.552 0.524
0◦/30◦/0◦ 0.635 0.613 0.587 0.560

SSFS Present study ITSDT

0◦/90◦/0◦ 2.782 2.699 2.605 2.499
0◦/60◦/0◦ 1.519 1.472 1.424 1.307
0◦/45◦/0◦ 1.119 1.078 1.036 0.992
0◦/30◦/0◦ 0.817 0.786 0.755 0.722

SSFC Present study ITSDT

0◦/90◦/0◦ 1.312 1.257 1.200 1.134
0◦/60◦/0◦ 1.112 1.065 1.016 0.965
0◦/45◦/0◦ 0.988 0.944 0.899 0.851
0◦/30◦/0◦ 0.775 0.743 0.711 0.677
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Table 15 shows the results for a sinusoidal load applied along with the porosity values
of 0.1, 0.2, and 0.3 over the whole depth of the plate having thickness ratio of 10. For the
SSSS boundary condition and a porosity of 0.1, normalized deflection is reduced by 4.8%,
as compared to negligible porosity, with an orientation angle of 0◦/90◦/0◦. Deflection is
further reduced by 12.3% with variation in fiber orientation from 0◦/90◦/0◦ to 0◦/30◦/0◦.
For a thickness ratio of 10 and the SSCC boundary condition, normalized deflection is
increased by 10.4% with an applied orientation angle change from 0◦/90◦/0◦ to 0◦/45◦/0◦

and with a porosity of 0.1. Normalized deflection is reduced to 27.2% when the orientation
angle changes from 0◦/90◦/0◦ to 0◦/60◦/0◦, under boundary condition SSFF and a porosity
of 0.2. For the porosity value of 0.2 and the SSSC boundary condition, normalized deflection
is increased by 8.8% by changing the orientation angle from 0◦/60◦/0◦ to 0◦/45◦/0◦. For
a thickness ratio of 10 and the SSFS boundary condition, normalized deflection is reduced
by 27.2% with an applied orientation angle change from 0◦/60◦/0◦ to 0◦/45◦/0◦, with
a porosity of 0.2. Normalized deflection is reduced to 9% when the orientation angle
changes from 0◦/90◦/0◦ to 0◦/30◦/0◦, under boundary condition SSSS and a porosity of
0.3. For the porosity effect of 0.3 and the SSFC boundary condition, normalized deflection
is decreased by 14.9% with variation in the orientation angle from 0◦/90◦/0◦ to 0◦/60◦/0◦.

4. Conclusions

Improved third-order deformation theory was used throughout the study to examine
the bending of laminated porous composite plates. The analysis included consideration of
various boundary conditions, material attributes, orientation angles, length-to-width ratios,
and modulus ratios. The primary findings for the current study are as follows:

• By increasing the porosity dispersion over the laminated plate thickness, such as at
p = 0, 0.1, 0.2, and 0.3, the normalized deflection is reduced.

• The bending performance of the layered plate is significantly influenced by the angle
at which the fibers are oriented in the composite

• Normalized deflection is reduced at the orientation angle of 0◦/90◦/0◦ as the length–
thickness ratio of the sheet increases.

• In most boundary condition scenarios, the normalized deflection reduces along with
orientation angle change from 0◦/90◦/90◦/0◦ to 0◦/30◦/30◦/0◦.

• As was shown in this study, material characteristics also affect deflection and stresses.
• According to the current research, adding porosities causes a relatively greater change in

deflection than stress, thereby aiding in the development of lightweight constructions.
• Some of the potential research areas in this fascinating field, including thermoelastic

characteristics, viscoelastic characteristics, and thermomechanical stress, can be further
explored using ITSDT evaluation to maximize the performance of the suggested
laminated composite pervious plate and shell construction.
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Abbreviations

ITSDT Improved third-order shear deformation theory
FSDT First-order shear deformation theory
HSDT Higher-order shear deformation theory
HZT Higher-order zigzag theory
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