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Abstract: People with HIV exhibit persistent inflammation that correlates with HIV-associated comor-
bidities including accelerated aging, increased risk of cardiovascular disease, and neuroinflammation.
Mechanisms that perpetuate chronic inflammation in people with HIV undergoing antiretroviral
treatments are poorly understood. One hypothesis is that the persistent low-level expression of
HIV proviruses, including RNAs generated from defective proviral genomes, drives the immune
dysfunction that is responsible for chronic HIV pathogenesis. We explore factors during HIV infection
that contribute to the generation of a pool of defective proviruses as well as how HIV-1 mRNA and
proteins alter immune function in people living with HIV.
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1. Introduction

People with HIV (PWH) exhibit persistent immune dysregulation and inflammation
associated with comorbidities that include neurological deficits, frailty, cardiovascular
disease and general accelerated aging and associated inflammation or inflammaging [1,2].
These HIV-associated diseases do not always correlate with HIV viral load and are observed
in PWH undergoing antiretroviral treatment (ART) [3–6]. The mechanisms responsible for
persistent inflammation and immune dysfunction in PWH are poorly understood and may
contribute to viral persistence and recrudescence upon ART cessation.

Long-lived latently infected cells are a barrier to a cure, and, upon treatment inter-
ruption, these cells support the rebound of HIV. This population of latently infected cells
includes quiescent T cells, such as memory cell subsets, that are generated following the
infection of activated cells transitioning back to a resting state or the direct infection of
resting memory and naïve cells [7–9] and tissue-resident macrophages [10–13]. Further-
more, the reservoir of persistent HIV-1 proviruses is dynamic, being shaped over time
by the immune clearance of cells expressing HIV-1 proteins, clonal expansion, and the
homeostasis of memory T cell subsets that harbor HIV-1 proviruses [8,14,15]. This selection
and expansion of the HIV reservoir leads to an accumulation of defective HIV-1 provi-
ral genomes that harbor detrimental mutations that compromise HIV transcription and
replication [15–17]: defective proviral genomes make up the majority of persistent HIV in
people chronically living with HIV that are undergoing treatment [16,17]. Although these
viruses cannot replicate, they express HIV-1 RNAs and proteins [18–20]. We hypothesize
that the residual expression of HIV RNAs and proteins perpetuate inflammation in PWH.
As summarized in Figure 1, we will review events that contribute to the generation of
defective HIV genomes and the transcriptional regulation and expression of these genomes.
Finally, we will speculate on the contribution of defective proviruses to HIV-associated
diseases in PWH.
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Figure 1. General overview of the generation of defective HIV proviruses and how they may con-
tribute to chronic inflammation. 

Generation of defective HIV genomes. The generation of defective HIV proviruses 
reflects a combination of cell restrictions, infidelity in the steps of the HIV replication cy-
cle, and the selection of defective proviral genomes by immune mechanisms and clonal 
expansion in PWH receiving treatment. Defective HIV-1 proviruses are diverse and in-
clude populations that contain large internal deletions, 5′ or 3′ truncations, hypermuta-
tions and packaging signal deletions [16,17]. Cells harboring defective proviruses can 
produce HIV-1 RNA, proteins, and detectable levels of p24 antigen [18–21]. Additionally, 
there is evidence of defective proviruses containing internal deletions that acquire alter-
native splicing events leading to irregular RNA products and potentially anomalous vi-
ral proteins [20]. Cells containing these defective proviruses may escape negative im-
mune selective pressures and expand over time [7,10,15,22,23]. 

One limiting step that contributes to the generation of defective proviruses is re-
verse transcription (RT). Reverse transcriptase has an error rate estimated to be 1.4 × 10–
5 mutations per base pair per cycle [24–26] and it lacks proofreading capabilities [27]. In 
addition, template switching during reverse transcription can generate mutations and 
deletions [28]. Furthermore, the process of reverse transcription involves the dissociation 
and re-initiation of the RT on the RNA genome template, which can generate mutated 
and truncated HIV DNA intermediates. The completion of reverse transcription may re-
flect cell metabolism, nucleotide availability, and the expression of cell-associated re-
striction factors. For example, HIV infection of resting CD-4+ T cells, monocyte-derived 
macrophages, and macrophages generated from inducible pluripotent stem cells have 
been observed to be biased towards defective proviral genomes [29,30], possibly reflect-
ing the expression of Sterile Alpha Motif and HD-domain-containing protein 1, 
SAMHD1, a host viral restriction factor which reduces intracellular nucleotide concen-
trations, limiting the completion of reverse transcription in myeloid cells and resting 
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contribute to chronic inflammation.

Generation of defective HIV genomes. The generation of defective HIV proviruses
reflects a combination of cell restrictions, infidelity in the steps of the HIV replication
cycle, and the selection of defective proviral genomes by immune mechanisms and clonal
expansion in PWH receiving treatment. Defective HIV-1 proviruses are diverse and include
populations that contain large internal deletions, 5′ or 3′ truncations, hypermutations and
packaging signal deletions [16,17]. Cells harboring defective proviruses can produce HIV-1
RNA, proteins, and detectable levels of p24 antigen [18–21]. Additionally, there is evidence
of defective proviruses containing internal deletions that acquire alternative splicing events
leading to irregular RNA products and potentially anomalous viral proteins [20]. Cells
containing these defective proviruses may escape negative immune selective pressures and
expand over time [7,10,15,22,23].

One limiting step that contributes to the generation of defective proviruses is reverse
transcription (RT). Reverse transcriptase has an error rate estimated to be 1.4 × 10−5 mutations
per base pair per cycle [24–26] and it lacks proofreading capabilities [27]. In addition, template
switching during reverse transcription can generate mutations and deletions [28]. Furthermore,
the process of reverse transcription involves the dissociation and re-initiation of the RT on the
RNA genome template, which can generate mutated and truncated HIV DNA intermediates.
The completion of reverse transcription may reflect cell metabolism, nucleotide availability, and
the expression of cell-associated restriction factors. For example, HIV infection of resting CD-4+
T cells, monocyte-derived macrophages, and macrophages generated from inducible pluripo-
tent stem cells have been observed to be biased towards defective proviral genomes [29,30],
possibly reflecting the expression of Sterile Alpha Motif and HD-domain-containing protein 1,
SAMHD1, a host viral restriction factor which reduces intracellular nucleotide concentra-
tions, limiting the completion of reverse transcription in myeloid cells and resting CD4+
T cells [31–38]. APOBEC3G, a cellular cytosine deaminase, is another restriction factor that
contributes to the generation of defective proviral genomes by targeting single-stranded DNA
intermediates during reverse transcription to induce guanine-to-adenine changes in the HIV
cDNA [16,17,39–42].



Viruses 2024, 16, 751 3 of 14

DNA damage repair and HIV integration. Another error-prone process that poten-
tially contributes to generating defective proviruses is integration. Briefly, the process of
integration begins with HIV-1 cDNA complexed with viral integrases, capsid proteins, and
several host nuclear proteins, to form a pre-integration complex (PIC) [43–48]. Within the
PIC, viral integrases multimerize at the ends of the linear cDNA, forming an intasome,
which facilitates two critical catalytic activities, 3′ processing, and strand transfer. First,
integrase hydrolyzes the dinucleotides GT at the 3′ ends of the viral cDNA, leaving a
conserved CA dinucleotide end with a reactive hydroxyl group. Integrase then mediates
the strand transfer using the 3′ hydroxyl group to cut chromosomal DNA in a staggered
manner and joins the viral cDNA ends to the 5′ phosphate groups of the 3′ strand of chro-
mosomal DNA. This process produces hemi-integrated products as the 5′ ends of the viral
cDNA are not joined to the host DNA, generating 5′ flaps or two-nucleotide overhangs and
3′ single-strand gaps (3′ strand) at the integration sites [49]. The resolution of the 5′ flap
and 3′ gap requires host DNA damage response proteins [49]. DNA damage responses
are error-prone mechanisms that we speculate contribute to the initial pool of defective
proviruses (Figure 2).
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To maintain genome integrity and overcome the barrage of insults to chromosomal
DNA, cells have evolved complex networks of mechanisms collectively referred to as the
DNA damage response (DDR). DDR pathways enable cells to sense DNA damage and
initiate signaling cascades that promote DNA repair, cell cycle arrest, senescence, and
apoptosis [50]. Three kinases from the phosphoinositide-3-kinase-related protein kinase
(PIKK) family are critical mediators of the DDR signals and are responsible for a majority
of DDR-mediated signaling and repair [51]; ataxia telangiectasia and Rad3 related (ATR),
ataxia telangiectasia mutated (ATM), and DNA-dependent protein kinase (DNA-PK) [51,52]
(Figure 3). In general, ATR senses single-stranded breaks, ATM senses double-stranded
breaks, and DNA-PK is activated by general DNA damage. In addition, there is PARP-1,
which functions as a poly(ADP)ribosylate enzyme and has roles in DDR that include the
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early sensing of damage, mediating repair pathways, stabilizing replication forks, and
influencing chromatin dynamics. The triggering of DDR leads to DNA repair through
non-homologous end joining (NHEJ) or homologous recombination (HR), depending on
cell signaling events.
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There is redundancy in DDR pathways, with components of the cascades having
multiple functions and targeting different cellular processes including DNA replication,
transcription, chromatin changes, the cell cycle, and cell death [50–55].

Studies exploring how DDR pathways influence HIV-1 integration and replication
have led to conflicting results. The inhibition of the ATR or ATM kinases via shRNA
knockdowns or chemical inhibition using wortmannin and caffeine, respectively, have
suggested these pathways are not required for establishing HIV infection [56]. Furthermore,
knockdown experiments have led to similar conclusions that DNA-PK is not necessary for
HIV infection [56]. The data implicating PARP-1 in provirus integration have been less
clear, with reports implicating PARP-1 in HIV provirus integration, while other studies
suggest that PARP1 is dispensable for infection [56–59]. However, several factors involved
in DNA damage do appear to influence HIV integration and the establishment of the
provirus. For example, Ku70, which binds DNA ends and recruits DNA-PK to these
damage sites, has been shown to be part of the retroviral pre-integration complexes of
HIV-1 and physically interacts with HIV-1 integrase [60,61]. Additionally, it has been
reported that HIV-1 infection activates the Fanconi anemia (FA) DNA repair pathway
through HIV-1 integrase binding to FANCD2, a key mediator in the FA pathway and
an effector of both ATR and ATM pathways [62]. The depletion of FANCD2 as well as
downstream FA proteins including REV1, FAN1, POLH, POLI and POLK inhibit HIV-1
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integration [62]. Other proteins linked to genome integrity and DNA damage that have
been recently implicated in HIV-1 infection include SUN1 and SUN2, and the helicase
CHD1L, which was identified through a genome-wide association study looking for genes
associate with diminished viral loads [63,64]. The essential components of NHEJ DNA
repair have been linked to early HIV-1 infection and shown to be necessary for forming
unintegrated 2-LTR circular HIV-1 cDNA [61,65,66]. Furthermore, it has been shown
that nuclear retinoic acid-inducible gene I (RIG-I), best described as a cytosolic RNA
sensor, suppresses NHEJ and the integration of reverse-transcribed retroviral genomes
by interacting with XRCC4 and preventing the XRCC4/LIG4/XLF complex from binding
to DNA double-strand breaks that need repair [67]. Some key factors implicated in HIV
integration are highlighted in Figure 2.

The suspected link between DNA damage and HIV replication may be best supported
by the Vpr interactome, which suggests that Vpr targets several proteins implicated in
DDR and genome stability [68–72]. Vpr is a multifunctional accessory protein that is
evolutionarily conserved across primate lentiviruses, and although its full range of activ-
ities is still being explored, Vpr has been shown to induce DNA damage, block G2 cell
cycle progression and influence HIV transcription in macrophages and dendritic cells [69].
Vpr is packaged in virions, at concentrations that potentially influence activities that are
necessary for the early steps of HIV infection. The ability of Vpr to alter cell function is,
in part, due to its binding and co-opting of the host E3 ubiquitin ligase complex Cullin
Ring Ligase 4/DDB1, Cul4 Associated Factor 1 complex, and the CRL4DCAF E3 ubiquitin
ligase complex [35,73]. It has been shown that Vpr induces the CRL4DCAF E3-mediated
ubiquitination and proteasomal degradation of DDR factors including CCDC137 [74],
HLTF [72], UNG2 [72,75,76], MUS81/EME1 [36,77], EXO1 [78], TET2 [79], MCM10 [80] and
components of the SLX4 complex [77,81]. It has also been reported that Vpr represses the
repair of double-strand DNA breaks through DCAF1 as well as inducing DNA damage [82].
Recent experiments utilized a Vpr overexpression system to suggest that Vpr alone, absent
of other viral molecules, was sufficient in triggering DNA damage and downstream ATR
activation [83,84]. While these observations suggest that an important role of Vpr is to
engage and modulate HIV–DDR interactions, how or to what extent Vpr-mediated DNA
damage responses influence the outcome of HIV-1 infections, such as the generation of
intact versus defective viruses, has not been explored.

Although it is intuitive that DDR pathways are necessary for early HIV infection,
linking specific repair mechanisms to HIV integration has been challenging. This may
reflect the redundancy of these pathways as well as the fact that HIV engages multiple
pathways, perhaps as part of a bias for successful integration. The redundant nature of
DDR pathways in cells could also allow for compensation if one or another pathway is
disabled, masking specific roles for any individual pathway. Furthermore, the multiple
roles of DDR factors in DNA damage, genome stability, replication, and transcription
complicates the assessment of their influence on HIV infection and replication. Regardless,
the error-prone processes of DNA repair do suggest the hypothesis that DDR influences
the establishment of the initial reservoir of defective proviruses during acute infection.

HIV-1 transcriptional regulation and chronic expression of HIV RNAs. The combina-
torial mechanisms that contribute to HIV-1 transcription and latency have been extensively
studied and reviewed [85–88]. Briefly, the 5′ long terminal repeat (LTR) functions as an
enhancer and promoter that recruits host cell transcription factors, chromatin remodeling
complexes and RNAP II to initiate transcription. Transcription elongation is facilitated by
the viral factor Tat, which binds an RNA stem loop structure, TAR, at the 5′ end of the
initiated transcript and recruits the P-TEFb complex to enhance RNAP II activity [89–91].
Epigenetic regulation, the recruitment of repressive transcription complexes, the lack of
transcriptional activators, limited RNAP II activity, and promoter interference are some
of the mechanisms that contribute to latency [85–88,92]. However, much of the persistent
proviral sequences found in PWH on ART are defective, harboring mutations that alter
LTR function, major splice donor sequences and the psi packaging element [16,17,88,93].
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Furthermore, defective proviral genomes include large deletions and inversions introduced
during negative strand synthesis in reverse transcription or integration. These defective
viruses may generate novel open reading frames (ORFs), which support the generation of
non-canonical HIV-1 transcripts [20,94]. HIV-1 transcripts are detected from both intact
and defective HIV genomes in PBMC samples from PWH treated with ART [30,95–97].
Figure 4 illustrates the potential transcripts generated in HIV-infected cells. The detection
of RNAs which lack 5′ UTRs in PBMCs from PWH treated with ART suggests transcription
can be facilitated by mechanisms independent of the 5′ LTR and indicate that defective
proviruses are transcriptionally active [19,30,94]. Therefore, even with ART treatment,
there is the detectable expression of a spectrum of fully spliced, partially spliced, and
non-canonical RNAs that are detected at low levels in PWH. Transcription from defec-
tive proviral genomes can be mediated by the utilization of alternative splice donor and
acceptor sites [20,94], antisense transcription from the 3′ LTR [98–101] and intragenic cis-
acting elements, including promoters or cis-acting repressive sequences [30,102–104]. The
functions of these non-canonical or cryptic viral RNAs in HIV-1 replication and pathogene-
sis are not well defined. We hypothesize that these HIV-1 RNAs induce and perpetuate
inflammatory responses.
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HIV-1 RNAs inducing inflammatory signals. During chronic infection, PWH on ART ex-
perience persistent immune activation even in the absence of detectable viral replication [3–5].
Elevated levels of proinflammatory cytokines are observed in the serum of PWH, although it
remains undetermined what drives this persistent chronic inflammation. Persistent inflam-
mation also mediates the exhaustion and dysregulation of the immune system including
compromising CD4+ and CD8+ T cell activity [4,5]. Potential drivers of inflammation are HIV
RNAs acting as intracellular pathogen-associated molecular patterns (PAMPs) and initiating
inflammation through detection by pathogen recognition receptors (PRRs) (Figure 5) [105].
Intracellular PRRs that detect viral nucleic acids include the cytosolic DNA sensor cyclic guano-
sine adenosine synthase (cGAS) [106–109] and interferon-inducible protein 16 (IFI16) [110],
and the cytosolic RNA sensors retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs),
melanoma differentiation-associated protein 5 (MDA5) [111], and laboratory of genetics and
physiology 2 (LGP2) [112]. Other PPRs that sense nucleic acids include a subset of Toll-like re-
ceptors (TLR-3, -7, -8, -9 and -13), and nucleotide-binding oligomerization domain (NOD)-like
receptors (NLRs) [25,113–116]. Furthermore, nucleic acids have been suggested to activate the
NLRP1 inflammasome, cytokine expression and the pyroptosis of CD4+ T cells [25,116–119].
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HIV DNA and RNA have been demonstrated to trigger inflammatory responses through
multiple intracellular PRRs [120–123]. HIV-1 RT products are associated with the activation of the
pathways of the DNA sensors cGAS and IFI16, which activate STING, leading to the induction
of interferon-stimulated genes (ISGs), inflammatory cytokines, and the proptosis of CD4+ T cells
and myeloid cells [123–127]. Unspliced or intron-containing HIV-1 transcripts stimulate innate
immune sensing in myeloid cells through a MAVS-dependent pathway following nuclear
export through a CRM1-dependent pathway [94,111,128–130]. RIG-1 detects HIV-1 genomic
RNA early in infection [112,131–133] and TLR-3, -7, and -8 sense HIV-1 ssRNAs [114,134,135] to
initiate signaling cascades that culminate in the induction of interferon type 1 responses and
inflammatory cytokines. However, whether non-canonical RNAs, such as those generated by
defective viruses or antisense transcription, are recognized by these PRR pathways still needs to
be demonstrated.

Although HIV transcripts and the translation of these RNAs may act as PAMPs
that are directly being recognized by cytoplasmic PRRs, it is possible that HIV products
could be indirectly activating inflammatory pathways. For example, the transcription
and translation of RNAs from a subset of human endogenous retroviruses (ERVs), which
make up approximately 8% of our genomes, have been associated with a number of
conditions, including aging, neurodegenerative diseases, and chronic inflammation [136].
Although ERVs are typically repressed by multiple combinatorial mechanisms of epigenetic
regulation, they can be derepressed by environmental factors including several viruses [136].
Relevant to this review, HIV infection has been correlated with enhanced HERV-K trans-
activation of transcription and increased HERV-K proteins, in part through Tat promoting
transcription at the HERV-K LTR [137,138] and Rev-mediated transport of HERV-K RNAs
from the nucleus to the cytoplasm for translation [139]. These HERV products could
provide an additional set of PAMPs that contribute to the persistent inflammation observed
in PWH.

HIV employs several mechanisms to avoid detection by the innate immune sys-
tem [140–142]. For example, the HIV-1 capsid has been proposed to traffic into the nucleus,
where uncoating, reverse transcription and integration takes place, shielding HIV-1 from
cytoplasmic sensors [143,144]. Additionally, HIV-1 proviral mRNA transcripts, similar to
cellular mRNAs, are modified by post-transcriptional modifications including 5′ capping
and the addition of a poly-A tail and/or post-transcriptional modification of RNAs such as
m6A, evading detection by cell intrinsic innate immune responses [145,146]. In the context
of defective viruses, mechanisms mediated by accessory genes such as Vpr, Nef or Vpu
to antagonize innate immune pathways would be altered by deletions, mutations, and
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frameshifts associated with the defective genomes [147–151]. Understanding mechanisms
that trigger hyperinflammation, including the role of different HIV-1 RNAs and their sen-
sors, will provide insights into the mechanisms of HIV-mediated inflammation and identify
potential therapeutic targets that would improve the quality of life for PWH by relieving
comorbidities associated with chronic HIV-1.

Persistent expression of HIV-1 proteins. Several mechanisms can lead to non-
canonical translation and the generation of aberrant or cryptic epitopes that potentially
influence CD4+ and CD8+ T cell function. For example, translation products from defective
HIV proviruses could be generated by defective ribosomal products [152], the use of alterna-
tive reading frames [153], the translation of antisense RNAs [154], alternative translational
start codons [155], and leaky ribosomal scanning [156]. Evidence for HIV-1 RNAs being
translated into protein in PWH on ART and latently infected cells include the detection of
HIV “blips”, HIV-1 proteins and antisense protein (ASP) [19,94,99,154]. Furthermore, the
isolation and in vitro expression of HIV-1 clones harboring defects in splice donor sites, or
large internal deletions that removed many of HIV’s accessory proteins still produced gag
and nef proteins [19]. The translation of HIV proteins may drive immune dysregulation and
alter adaptive immune responses in chronically infected individuals. For example, HIV-1
Gag generates defective ribosomal products (DRiPs) that are degraded by the proteasome
and presented by MHC-I molecules [152,157,158]. In addition, the synthesis of predicted
HIV-1 peptides from the many alternative reading frames and antisense messages activate
CD8+ T cells from PWH on ART, suggesting that repeated exposure to viral proteins and
their immunostimulatory activity are sustained during ART [20]. The generation of viral
transcripts and proteins from defective HIV-1 proviruses raises the question of whether
these viral ligands play an immunostimulatory role in chronically infected individuals
and how this affects the host immune responses. Although speculative, these aberrant
protein products could also be presented on MHC II and shape CD4+ T cell functions
and responses, possibility increasing the pool of CD4+ T cells susceptible to HIV infection
and/or altering the ability of CD4+ T cells to mediate both adaptive and innate immune
responses. The potential impact of HIV-1 proteins translated from the spectrum of HIV-1
mRNAs generated by intact and defective proviruses could also be reflected by the immune
exhaustion observed in chronic HIV infection.

2. Conclusions

The generation of viral transcripts and proteins from defective HIV-1 proviruses
begs the questions of whether these viral products play an immunostimulatory role in
chronically infected individuals and how this chronically affects the host immune response.
The majority of the proviral genomes in the reservoir do not contribute to active viral
replication but do produce HIV-1 mRNAs and proteins. Due to the abundance of defective
proviral genomes, even low levels of transcription and translation from these persistent
proviruses may be sufficient to trigger and perpetuate inflammatory responses and immune
dysfunction. The careful study of the nature of defective HIV virus products and their
potential impacts on HIV replication, latency, inflammation, and chronic pathogenesis is
critical for understanding the impact of chronic HIV infection on aging and other risks of
inflammatory diseases in PWH.
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