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Abstract: This work aims to show the potential of imaging spectroscopy in assessing water quality
and aquatic vegetation in Lake Trasimeno, Italy. Hyperspectral reflectance data from the PRISMA,
DESIS and EnMAP missions (2019–2022, summer periods) were compared with in situ measurements
from WISPStation and used as inputs for water quality product generation algorithms. The bio-optical
model BOMBER was run to simultaneously retrieve water quality parameters (Chlorophyll-a (Chl-a)
and Total Suspended Matter, (TSM)) and the coverage of submerged and emergent macrophytes (SM,
EM); value-added products, such as Phycocyanin concentration maps, were generated through a
machine learning approach. The results showed radiometric agreement between satellite and in situ
data, with R2 > 0.9, a Spectral Angle < 10◦ and water quality mapping errors < 30%. Both SM and EM
coverage varied significantly from 2019 (135 ha, 0 ha, respectively) to 2022 (2672 ha, 343 ha), likely
influenced by changes in rainfall and lake levels. The areas of greatest variability in Chl-a and TSM
were identified in the littoral zones in the western side of the lake, while the highest variation in the
fractional cover of SM and density of EM were observed in the south-eastern region; this information
could support the water authorities’ monitoring activities. To this end, further developments to
improve the reference field data for the validation of water quality products are recommended.

Keywords: PRISMA; DESIS; EnMAP; shallow lake; water reflectance; phytoplankton; aquatic vegeta-
tion; bio-optical model; machine learning

1. Introduction

Lake ecosystems emerge as reliable sentinels of contemporary climate change and
anthropogenic processes by providing direct and indirect climate indicators [1,2] and by
reflecting alterations in climate patterns and human-induced activities. Monitoring how
lakes respond to these influences is crucial because freshwater ecosystems provide a multi-
tude of ecosystem benefits and serve as critical resources for drinking water, agricultural
irrigation, biodiversity conservation, industry and recreation [3]. To this end, several regu-
lations have been developed at national and international levels; in particular, the European
Commission adopted the Water Framework Directive (WFD, Directive 2000/60/EC), which
establishes a unified framework for integrated water resource management in the European
Union (EU) [4,5]. Its central purpose is to establish a comprehensive framework dedicated
to safeguarding and promoting the sustainable management of water resources throughout
the EU member states, with the aim of collectively achieving a “good ecological status”
for all water bodies. The WFD is applicable to inland, transitional and coastal surface

Remote Sens. 2024, 16, 1704. https://doi.org/10.3390/rs16101704 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16101704
https://doi.org/10.3390/rs16101704
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0009-0006-8025-9179
https://orcid.org/0000-0002-7185-8464
https://orcid.org/0009-0002-4152-3409
https://orcid.org/0000-0001-5289-8842
https://orcid.org/0000-0003-1756-0947
https://orcid.org/0000-0002-3937-4988
https://doi.org/10.3390/rs16101704
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16101704?type=check_update&version=2


Remote Sens. 2024, 16, 1704 2 of 22

waters, as well as groundwater, and indicates the parameters to be monitored and the
frequency of monitoring, thus helping inform adaptive strategies for managing these vital
natural resources [6]. Among those indicated for monitoring, the key parameters are those
related to the ecological status of water bodies, in particular Chlorophyll-a (Chl-a), which
is considered a proxy for phytoplankton biomass and therefore contributes to defining
the trophic status of a water body [7]; Total Suspended Matter (TSM), which is a tracer
for inflowing pollutants and is related to water transparency [8,9] and Phycocyanin (PC),
which is a photosynthetic auxiliary pigment that is abundant in cyanobacteria [10–12].

Macrophytes are important elements of inland waters [13,14], increasing their ecosys-
tem services (e.g., carbon sequestration, habitat provision, nutrient uptake) and fulfilling
a central role in the cycling of elements in aquatic ecosystems [15,16]. The complex in-
teractions between physical, chemical and biological processes in surface waters lead to
significant challenges for in situ monitoring and often limit the ability to adequately capture
the dynamics of aquatic systems and to understand their status, functioning and response
to pressures. In this context, the use of remote sensing allows for wide spatial coverage
and regular monitoring frequency, providing information on water conditions, bottom
properties and the presence and abundance of aquatic plants, distinguishing them into
different association types; this complements traditional in situ measurements [17–22]. The
reviews reported in [23,24] highlighted the significant increase in remote sensing studies
of inland water quality, due both to improved access to Earth Observation (EO) data and
increasing computational capabilities. Particularly, imaging spectroscopy has gained wide
interest [25–28], as the collection of data in narrower, contiguous bands is improving aquatic
ecosystem mapping for the simultaneous retrieval of parameters describing water quality
and aquatic vegetation (e.g., biomass [29] and the identification of invasive species [30]).
In the last few years, hyperspectral spaceborne and airborne images have been providing
significant advances in algorithm development and innovative mapping tools [31,32]. For
instance, the PRecursore IperSpettrale della Missione Applicativa (PRISMA) and the DLR
Earth Sensing Imaging Spectrometer (DESIS) products were exploited for the estimation
of optically active parameters (Chl-a, TSM) in Italian lakes with different optical prop-
erties [33], and for one of these lakes (i.e., Trasimeno), PRISMA water quality products
were evaluated with respect to Sentinel-2 in [34]. DESIS data were also used for mapping
water quality parameters in lagoons and estuaries [35]. Furthermore, PRISMA spectral
features enabled distinctions to be made between shallow and turbid waters [36], while
in [37], PRISMA products were used to develop novel algorithms for the estimation of
cyanobacteria biomass in lake Trasimeno. PRISMA products were also exploited for the de-
tection of floating plastic materials through unsupervised and supervised machine learning
approaches [38].

In the wake of these works, this study presents a relevant multitemporal dataset
compiled using three flying spaceborne imaging spectroscopy missions for enabling aquatic
ecosystem mapping. A set of sensor-independent algorithms for deriving water quality
parameters in optically complex waters is applied to all imagery data. In particular, the
study builds on 13 hyperspectral reflectance products of Lake Trasimeno (Italy) provided
by PRISMA, DESIS and the Environmental Mapping and Analysis Program (EnMAP). The
dataset covers the summer periods from 2019 to 2022 (from early June to mid-October)
to assess changes in water quality parameters and aquatic vegetation coverage and type,
upon having verified the accuracy of satellite-derived products with corresponding in situ
measurements [39–45] in terms of remote sensing reflectance (Rrs), a key parameter that is
widely used for aquatic applications [46]. Reference in situ measurements are provided
by the WISPStation, an autonomous fixed-position radiometer that provides continuous
Rrs measurements, from which an estimate of bio-geophysical parameters can also be
derived [47]. The Rrs products derived from spaceborne hyperspectral observations are
then exploited as inputs for the simultaneous mapping of water quality (Chl-a, TSM, PC)
and aquatic vegetation. Several environmental parameters, such as water level fluctuations,
are considered to discuss the spatio-temporal changes.
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2. Data and Methods
2.1. Study Area

Lake Trasimeno, which is located in central Italy (43.138N, 12.113E), is the only Italian
lake of tectonic origin and fourth in size, with an area of 124 km2. The lake is nearly
round in shape with a diameter of about 12 km, with three small islands. It is a closed
lake, with un-stratified and very shallow waters (average bottom depth, 4.7 m; maximum
depth, 6 m) characterized by banks with minimal slopes and, in the south-eastern area, an
open bay colonized by aquatic vegetation: permanently submerged (e.g., Chara globularis)
and semi-emergent macrophytes (in some seasonal phases of their life cycle, they can
emerge from the water–atmosphere interface with flowers, fruits and part of the plant
body, e.g., Potamogeton pectinatus, P. perfoliatus, Myriophyllum spicatum and Ceratophyllum
demersum) [48]. These are among the most common species present in Italian lakes; they
are also found in the large subalpine lakes of Northern Italy [49,50]. The lake is part of
Tevere River Basin, which is connected to the hydrographical network of the Nestòre River
by an artificial outfall built with the function of flood regulation. The gradual lowering of
the lake’s level, though, has made this connection non-functional for almost a decade; the
waters have not reached the overflow level since 2015 [51]. Stopping—or at least drastically
decreasing—water withdrawals may not be the ultimate solution to the basin’s hydrological
problems. Nevertheless, it would be a substantial benefit for a lake that depends on water
resources that are crucial to maintaining the balance of its delicate environmental state, and
to sustain several vital economic activities, such as agriculture, fishing and tourism. The
lacustrine ecosystem is an area of exceptional value due to its wealth of flora and fauna
and its diversity of species, and in 1995, it was declared a protected area (regional law L.R.
9, 03/03/1995). Tourism, agriculture and livestock farming are the most present activities
in the Lake Trasimeno area; approximately 70% of the lake’s catchment area is enveloped
by cultivated land, while intensive agriculture requiring irrigation occupies 28% of this
territory. As a result, these activities have contributed to the eutrophication phenomenon
in the lake [52]. The lake ranges from mesotrophic to eutrophic conditions [43], where the
principal critical parameters for the ecosystem status are phosphorous and nitrogen. In
the past few years, the lake has hence encountered challenges in recovering equilibrium
as recommended by the WFD. This situation is aggravated by the lack of natural outlets
and a limited water inflow (Paganico and Pescia streams); for its water supply, the lake
relies exclusively on small streams and precipitation. The water level began to decline in
the 1990s, and at the end of 2022, it was 1.3 m below the hydrometric zero [53]. Therefore,
the hydrographic characteristics of the lake (width, shallowness, low water exchange, etc.)
determine a strong influence of temperature and light conditions, which favor an increase
in Chl-a, especially starting from spring and reaching its peak at the end of summer. This
phenomenon is indeed closely linked to the presence of and increase in aquatic plants and
algal blooms.

2.2. Data Collection
2.2.1. In Situ Data

Reference data were obtained from the Remote Sensing for Trasimeno lake Observatory
(RESTO) field infrastructure, where high-frequency in situ measurements are collected by
means of a WISPStation mounted on a platform located 100 m north of Polvese island
(Figure 1) [19,20].

From April 2018, the WISPStation has been collecting, every 15 min, Rrs data (in the
spectral range of 350–900 nm with a spectral resolution of 4.6 nm) along with Chl-a, TSM
and PC concentrations, as derived from the measured Rrs through standard water quality
algorithms [54–58]. For both Rrs and water quality data, a set of three measurements closest
to the acquisition time of the satellite overpasses were selected to calculate the mean and
standard deviation. The Rrs data collected by the WISPStation were spectrally resampled
to the band settings of PRISMA, DESIS and EnMAP to perform a radiometric comparison.
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Figure 1. On the left, a true color composition image as acquired by DESIS on 4 August 2019 showing
the position of the WISPStation (43.122, 12.134—red box); on the right, a picture of the platform with
the WISPStation.

With ±5 days close to the dates of the images’ acquisitions, ad hoc in situ campaigns
were also organized to survey the optically deep and optically shallow areas, and for
the latter to detect the different cover classes, with the visual GPS positioning method,
as used in [59]. GPS ground truths were then used for an accuracy assessment of the
satellite-derived maps.

The hydrographic service of the Umbria region [53] provided air temperature, pre-
cipitation data and lake water levels for the investigated temporal range from January
2019 to December 2022, as shown in Figure 2. The inventory of the sampling of birds
feeding on macrophytes (e.g., Anas sp., Aythya sp. and Fulica sp.) provided by “Regione
Umbria—Osservatorio Faunistico Regionale” [60] showed the following number of birds
for the study period: 43′397 (in 2019), 29′377 (in 2020), 43′382 (in 2021) and 40′707 (in 2022).
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Figure 2. Time series of the environmental data: air temperature (◦C) shown in orange, precipitation
(mm) shown in light blue and lake level (m) shown in green. The four summer periods in which
satellite images were acquired are highlighted in grey with dashed lines.
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2.2.2. Spaceborne Data

The imagery data used in this study were gathered from three hyperspectral space-
borne missions: PRISMA, DESIS and EnMAP. The data can be downloaded from the
respective catalogues, at different levels of processing: Level 1 (L1) are images in terms
of the radiance measured at the sensor (Top of Atmosphere, TOA) and Level 2 (L2) rep-
resents the atmospherically corrected ground reflectance (Bottom of Atmosphere, BOA)
data. Following a short overview of the three sensors and their main applications, the key
characteristics of each are shown in Table 1.

PRISMA, operated by the Italian Space Agency (ASI), is a single satellite placed in
low-Earth Sun-synchronous orbit (SSO-LTDN), with a revisit time of 29 days, a period that
can be reduced to 7 days thanks to platform roll maneuvers [61]. The payload includes
a medium-resolution hyperspectral camera (HYP) and a high-resolution panchromatic
camera (PAN), which may support finer-scale mapping [62]. The PRISMA mission was
designed to advance technology qualifications, develop applications and provide envi-
ronmental observation and risk management products to both institutional and scientific
users [63]. PRISMA L2 products (version 02.05) are those obtained from TOA radiance
products (L1) after automatic land-based atmospheric correction based on MODTRAN v
6.0 [43,44].

DESIS is a hyperspectral instrument integrated into the Multi-User-System for Earth
Sensing (MUSES) platform installed on the International Space Station (ISS). The mission
is operated by the German Aerospace Center (DLR). The spectral and spatial resolution
of the sensor allow new developments for a wide range of applications in very different
environments, such as inland and coastal waters, the cryosphere and vegetation [64,65].
DESIS L2 products (version 2.20) are those obtained from TOA radiance products (L1) after
automatic land-based atmospheric correction performed with Python-based Atmospheric
Correction (PACO) [66].

EnMAP is a high-resolution imaging spectroscopy remote sensing mission, operated
by the DLR, placed in SSO-LTDN. The across-track tilt-capability of 30◦ enables revisit
times of less than four days [67]. The primary objective of the mission is to assess and
examine surface variables, both qualitative and quantitative, that characterize essential
Earth processes [68]. These variables are obtained on a global scale in a routine and
consistent way. EnMAP L2 products (version v01.04.00) can be obtained through two
individual sub-processors for the atmospheric correction of orthorectified TOA radiance
both over land (PACO) and water surfaces (Modular Inversion Program, MIP [69]) [70].

Table 1. List of the main features of the PRISMA, DESIS and EnMAP payloads [71–73].

PRISMA DESIS EnMAP

Launch 22 March 2019 29 June 2018 1 April 2022

Coverage 70◦N to 70◦S 55◦N to 52◦S Global in near-nadir
mode

Ground sampling
distance HYP: 30 m; PAN: 5 m 30 m 30 m

Number of bands HYP: 240 [400–2500 nm]
PAN: 1 [400–700 nm]

235 (no binning)
60 (binning)

[400–1000 nm]
246 [420–2450 nm]

Radiometric
resolution 12 bits 13 bits + 1 bit gain ≥14 bits

Atmospheric
correction

MODTRAN v 6.0
(land based) PACO (land) PACO (land)

MIP (water)

Overall, a total of 13 hyperspectral data with cloud coverage of less than 10% (apart
from PRISMA acquired on 3 June 2020) were available for Lake Trasimeno, as presented in
Table 2.
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Table 2. Spaceborne data of Lake Trasimeno: sensor, date and UTC acquisition time.

Sensor Date UTC Time

PRISMA 4 June 2019 10:15
PRISMA 26 July 2019 10:13

DESIS 4 August 2019 13:33
DESIS 5 September 2019 06:49

PRISMA 3 June 2020 10:10
PRISMA 25 July 2020 10:07

DESIS 4 June 2021 12:20
DESIS 15 October 2021 13:47
DESIS 19 June 2022 16:10

PRISMA 20 July 2022 10:08
DESIS 7 August 2022 10:50

PRISMA 12 August 2022 10:04
EnMAP 5 October 2022 10:40

2.3. Methodology Process Flowchart

This section reports a flowchart (Figure 3) of the methodology used in this study,
from the hyperspectral reflectance data gathered by PRISMA, DESIS and EnMAP to the
spatio-temporal analysis of the changes in Lake Trasimeno that occurred in terms of water
quality parameters and bottom coverage.
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Figure 3. Flowchart of the methodology applied in the study. The oval with a black outline represents
the input products where the study started from. Grey boxes indicate the methodology applied.
Green diamond shapes stand for decision-making steps in the process. Blue parallelograms represent
products generated, and the violet oval indicates the end point of the process.

In the following Sections (Sections 2.4–2.7) a detailed description of the methodology
is presented.
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2.4. Image Pre-Processing

The PRISMA, DESIS and EnMAP (MIP-based atmospheric correction) L2 products
were downloaded in the visible–near-infrared (VNIR, i.e., 400–1000 nm) region of the
spectrum from the respective space agencies’ portals, and a division operation by π was
performed to obtain the most used quantity in aquatic applications, which is Rrs. One
image (DESIS, 7 August 2022) was affected by sun glint, which represents a disturbance and
alteration of the Rrs. Hence, a sun glint correction method based on a negligible signal in
the near-infrared (NIR) part of the spectrum was performed, using the algorithm proposed
in [74]. Particularly, the relative intensity of the solar glint in the image was obtained from
the NIR brightness and the light in the visible (VIS) band using a set of pixels that could be
homogeneous were it not for the presence of the glint. By establishing a linear relationship
between the NIR bands and each VIS band, the contribution of the sun glint could be
removed. The removal was performed by applying the de-glint processor implemented
in the SNAP software (version 9.0.0) “Sen2Coral toolbox”, providing the DESIS L2 Rrs
product as an input.

Before the Rrs data could be used as inputs in the product generation algorithms,
several operations were carried out to improve the products themselves, aiming to obtain
final maps that are more accurate and representative of the real state of the target [75,76].
First, co-registration of the images was carried out both to adjust the georeferencing and to
identify the lake area by using the shapefile of the lake delivered by OpenStreetMap. The
cloudy pixels were masked using the threshold proposed by [77]. Given the low signal
of the water bodies, the machine learning algorithm could add a salt-and-pepper noise
effect to the results; hence, a deconvolution—with a 5-pixel median window filter—was
applied to increase the signal [78]. As recommended by [44] concerning PRISMA data
specifically, the preserved spectral range (450–800 nm) was standardized for all the sensors,
resulting in having 40 bands for PRISMA, 34 for DESIS and 61 for EnMAP images. The
last step before product generation was to identify the portion of the lake covered by
emergent macrophytes. To this end, the WAVI index [79] was calculated to detect the
coverage of emergent macrophytes (positive values of WAVI) and to assess indications of
their morphological traits (as a proxy of biomass index).

2.5. Algorithms for Aquatic Ecosystem Mapping
2.5.1. BOMBER

The spectral inversion procedure was performed with the BOMBER (‘Bio-Optical
Model-Based tool for Estimating water quality and bottom properties from Remote sensing
images’) code, which implements the algorithms presented in [80,81] for deriving water
column and bottom properties via a non-linear optimization technique. The software
employs bio-optical models for both optically deep and shallow waters; the model de-
termines mathematical equations between the Rrs and the inherent optical properties of
the optically active constituents, as well as the concentrations of water quality parameters
and bottom properties (e.g., fractional cover up to three bottom types). As inputs to the
code, the imagery data atmospherically corrected to Rrs, the mask of the area of interest,
the definition of the model type (deep or shallow mode) and the setting of the model pa-
rameters (absorptions and backscattering coefficients, starting values, etc.) were provided.
In this work, BOMBER, parameterized with the intrinsic optical properties specific for
Lake Trasimeno [33], was run for all the images in deep water mode to generate Chl-a and
TSM concentrations. The model was initialized with the average values of water quality
parameters resulting from coincident measurements of Chl-a and TSM inferred from Rrs
data gathered at the time of sensor overpasses from the WISPStation. The absorption of
Colored Dissolved Organic Matter (CDOM) at 440 nm was not retrieved due to the lack
of in situ data for its parametrization, but it was set constant to the average concentration
of the lake and equal to 0.25 m−1. The specific absorption spectra of phytoplankton for
Lake Trasimeno were selected depending on the month/period, due to the change in
phytoplankton concentration and composition (June: clear water without cyanobacteria,
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July–October: higher phytoplankton biomass and higher presence of surface cyanobacteria).
Other parameters whose change might have an impact on the retrieval of water quality
parameters, such as the conversion factor of the absorption of Non-Algal Particles at 440 nm
to TSM, were adjusted based on the optical closure between the modeled Rrs and measured
Rrs over the deep water station of the WISPStation. In the areas where the optical closure
error was greater than 10% [31], the model was then run in shallow water mode. The three
bottom coverage classes—named in BOMBER as “b0”, “b1” and “b2”—were thus assigned:
b0 = high-albedo vegetation (semi-emergent macrophytes); b1 = low-albedo vegetation
(permanently submerged macrophytes); b2 = un-colonized pixels (sand).

2.5.2. Mixture Density Network

The Mixture Density Network (MDN) algorithm was calibrated in [37] considering
resampled in situ radiometric measurements for the Hyperspectral Imager for the Coastal
Ocean (HICO) and PRISMA sensors. The dataset of the mentioned work consisted of a
large number of samples of in situ measurements of Rrs, Chl-a and PC for water bodies
worldwide (including Lake Trasimeno). The MDN uses band ratios, line heights and
operational algorithms based on the correlation between Rrs and PC. Since the algorithm
does not allow any setting of additional parameters, the MDN was applied in the default
mode [82]. As inputs to the model, PRISMA images were provided considering the specific
subset of bands from 504 to 723 nm. To exploit the entire dataset, DESIS and EnMAP
images were resampled according to the spectral configuration of PRISMA between 504
and 723 nm, for which the retrieving PC algorithm was validated. PC concentration maps
were generated for the imagery data showing a Chl-a concentration greater than 10 mg/m3,
as recommended by [83].

2.6. Product Validation

Common statistical metrics were used to assess the agreement of Rrs and water quality
products between satellite and in situ data. In the following equations, n represents the
number of concurrent observations, and xi and yi are the sensors-estimated Rrs data and in
situ measurements, respectively. For the comparison, Regions of Interest (ROIs) with a size
of 5 × 5 pixels were extracted from the satellite images and water quality maps and the
mean and standard deviation were calculated.

The coefficient of determination (R2), that is, the proportion of the variance in the
dependent variable that is predictable from the independent variable, was computed
as follows:

R2(/) =
[∑ (xi − x)(yi − y)]2

∑ (xi − x)2∑(yi − y)2

The Root Mean Square Difference (RMSD), that is, a measure of the differences between
values predicted by an estimator and the values observed, was calculated as follows:

RMSD
(

sr−1
)
=

√
∑(xi − ŷi)

2

n

The Spectral Angle (SA), that is, a measure for directly comparing image spectra to in
situ spectra, and determining how similar the spectra shapes are, was derived as follows:

SA (◦) = cos−1 ∑ yixi√
∑ y2

i

√
∑ x2

i

The Mean Absolute Percentage Difference (MAPD), that is, a measure used to quantify
the average percentage difference between two samples, was obtained as follows:

MAPD (%) =
100
n ∑

∣∣∣∣ xi − yi
yi

∣∣∣∣
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Control points were used to compare in situ data and satellite-derived maps. The
product accuracy was quantified using a confusion matrix, selecting four different classes.

2.7. Spatio-Temporal Analysis

Following the validation of the products, a spatio-temporal analysis was carried out
to quantify the changes in primary producers’ community abundance and coverage in the
different summer periods investigated. To quantify the presence of aquatic vegetation, the
areas of submerged macrophytes (obtained by summing the two cover classes provided by
BOMBER, “b0” and “b1”) and emergent macrophytes were first calculated. Additionally, a
more detailed analysis of the three bottom coverage classes was carried out by calculating
the fractional cover by labeling a pixel as “sand” where b2 > 0.66 (66%) and distinguishing
three different classes of submerged macrophytes as follows: sparse (0 < b0 + b1 < 0.4),
moderate (0.4 < b0 + b1 < 0.7) and dense (b0 + b1 > 0.7). This was carried out following
similar work [50] conducted over Lake Garda, where the same macrophyte species are
present as on Lake Trasimeno, and in both cases, the method for classifying the colonized
substrate as “sparse”, “moderate” and “dense” is generic and does not depend on the
characteristics of the site, so similar thresholds can be used. Finally, to assess the variability
in the water quality parameters and of the aquatic vegetation, the products obtained were
integrated to perform a spatio-temporal analysis with the GRASS GIS algorithm “r.series”,
which allowed us to make each output pixel value a function (i.e., mean and standard
deviation) of the values associated with the corresponding pixels in the input list of maps.

3. Results
3.1. Radiometric Validation

The removal of the sun glint from the image affected by this disturbance (DESIS 7
August 2022) led to the result shown in Figure 4.
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deglint”, light blue) sun glint removal. In situ data are displayed in orange. Statistical results are
displayed in the boxes.
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As can be seen, the level of agreement between the satellite data and in situ mea-
surement increased after the sun glint correction. There is an improvement in the fitting
between the Rrs spectra in terms of magnitude (MAPD reduced by 95%), while the SA
value, referring to the spectral similarity, remains almost constant.

Figure 5 shows the radiometric validation of all the satellite-derived Rrs products,
based on the comparison with in situ data.
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Figure 5. Comparisons of the average Rrs values gathered from the spaceborne data and correspond-
ing in situ Rrs data. The variability in the mean spectra of PRISMA (6 images) and DESIS (6 images)
is displayed as blue curves, with the shaded blue area representing the standard deviation. The mean
and standard deviation of the in situ data are equivalently shown in orange. In the case of the EnMAP
data, the comparison is limited to a single image, and it is shown with the same color configuration.
In this case, the standard deviation refers to the variability present in the ROI and in the set of three
measurements of the in situ data. The statistical results are displayed in the boxes.

Overall, the Rrs data derived from the three missions show agreement with the in
situ measurements, over the entire spectrum between 450 and 800 nm, with values of SA
below 10◦ and values of MAPD below 30%. The satellite-derived Rrs data consistently
show spectral features due to the presence of PC (620, 650 nm) and Chl-a (680, 700 nm).

3.2. Water Quality Product Generation and Validation

Proceeding forward, the generated water quality maps (Chl-a, TSM, PC) are shown
along with their validation (Table 3, Figure 6). The last row of the table (*) shows the
validation considering samples containing all the data from the different sensors.

Table 3. Statistical validation of Chl-a, TSM and PC concentration maps, in terms of RMSD and
MAPD. N is the number of the images in the sample.

Chl-a TSM PC

Product N RMSD
(mg/m3) MAPD N RMSD

(g/m3) MAPD N RMSD
(mg/m3) MAPD

PRISMA 6 3.30 29.8% 6 3.10 19.9% 4 3.85 27.3%
DESIS 6 3.92 25.2% 6 1.85 9.6% 4 2.70 22.4%

EnMAP 1 1.42 6.5% 1 3.38 20.2% 1 2.50 25.5%
* 13 3.32 23.8% 13 2.71 15.6% 9 3.31 25.3%

Considering PRISMA and DESIS, which present a greater number of images in the
dataset, for the Chl-a and TSM products generated by the BOMBER bio-optical model, the
highest level of agreement is obtained in the case of the maps generated from DESIS images
for the estimation of TSM (MAPD = 9.6%). Regarding the estimation of Chl-a, the level
of agreement is lower, with a MAPD of over 20% both in the case of PRISMA and DESIS
products. The statistical analysis of EnMAP is slightly weaker (N = 1), but it achieved
RMSD and MAPD values comparable with those of PRISMA and DESIS and the highest
level of agreement in the case of Chl-a estimation. In the case of the PC products generated
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through the MDN, the level of agreement obtained by the three sensors is similar, with
slightly higher accordance in the case of the product given by EnMAP. Overall, MAPD
values ≤ 30% are obtained in all cases.

The validation through visual GPS positioning led to an Overall Accuracy of 89.1% for
the four classes considered, as shown in Table 4.

Table 4. Confusion matrix for the validation of the four classes selected: b2 (sand), b0 + b1 (submerged
aquatic vegetation), EM (emergent macrophytes), deep water.

Spaceborne Images

b2 b0 + b1 EM Deep Water Total

b2 7 2 9
b0 + b1 2 13 15

In situ EM 6 6
Deep Water 1 15 16

Total 9 16 6 15
Overall Accuracy 89.1%

Next, Figure 6 illustrates the entire dataset of the water quality products in terms of
Chl-a, TSM and PC in the portion of the lake that presented optically deep waters and, in the
last column, the mapping of the emergent macrophytes and the three types of bottom cover
classes (sand, permanently submerged and semi-emergent macrophytes) in the portion
that presented optically shallow waters. The areas of the images affected by clouds are
indicated by a grey color.
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Figure 6. Water quality maps and bottom characterization for the 13 images of the available dataset.
From left to right: Chl-a, TSM and PC maps; bottom characterization products, in terms of emer-
gent macrophytes and the three cover classes: b0 (semi-emergent macrophytes), b1 (permanently
submerged macrophytes), b2 (sand).
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The maps show the temporal and spatial variation in the water quality parameters in
the lake from June 2019 to October 2022 (summer periods). As is evident from the maps, the
lowest values of Chl-a (up to 1 mg/m3) and TSM (up to 1 g/m3) are detected in June. Higher
values, instead, occur in the following summer months for both parameters; the maximum
values are generally observed in September–October. PC maps were generated for images
from which a Chl-a value higher than 10 mg/m3 was derived. Indeed, there are no PC maps
for the months of June; the highest PC values are achieved in September. Regarding the
optically shallow water areas, the area of submerged and emergent macrophytes increases
over the years, not only in the south-easternmost part of the lake, but also along the littoral
zone of the northernmost part of the lake.

3.3. Spatio-Temporal Analysis

The area of the submerged (sum of “b0” and “b1”, whatever the coverage degree) and
emergent macrophytes (positive WAVI) retrieved for the period investigated is shown in
Table 5. The percentages were calculated with respect to the water cloud-free pixels’ area.

Table 5. Area in hectares of submerged and emergent macrophytes across various dates in the dataset.
In brackets, the percentages that the values represent over the total number of water pixels not
covered by clouds.

Product Submerged Macrophytes Emergent Macrophytes

PRISMA 4 June 2019 135 ha (1.1%) 0 ha
PRISMA 26 July 2019 287 ha (2.4%) 0 ha
DESIS 4 August 2019 1140 ha (10.1%) 52 ha (0.5%)

DESIS 5 September 2019 1190 ha (10.3%) 25 ha (0.2%)
PRISMA 3 June 2020 300 ha (3.4%) 19 ha (0.2%)
PRISMA 25 July 2020 878 ha (7.9%) 37 ha (0.3%)

DESIS 4 June 2021 1523 ha (13.6%) 33 ha (0.3%)
DESIS 15 October 2021 601 ha (5.1%) 3 ha (<0.1%)

DESIS 19 June 2022 1790 ha (16.7%) 149 ha (1.4%)
PRISMA 20 July 2022 2672 ha (23.0%) 336 ha (2.9%)
DESIS 7 August 2022 1350 ha (12.3%) 324 ha (3.0%)

PRISMA 12 August 2022 1223 ha (11.7%) 343 ha (3.3%)
EnMAP 5 October 2022 344 ha (3.0%) 199 ha (1.7%)

These values reveal that, in addition to the seasonal vegetative cycle with growth
starting in early summer and a senescence period in late summer for both submerged
and emergent macrophytes, there is an unprecedented increase—in terms of area—in July
2022, leading to an increase of approximately 160% in submerged macrophytes and 600%
in emergent macrophytes compared to the average values for the period 2019–2021. The
values of the WAVI index show that in 2022, at the maximum area of emergent macrophytes
(343 ha, 12 August 2022), the maximum WAVI value was recorded to be 0.38, which
corresponds to an increase of about 240% compared to the date with the lowest WAVI value
(0.11, on 15 October 2021).

The fractional coverage analysis during the study period is shown in Figure 7.
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ronmental noise over water. Notably, only one of the 13 images was affected by sun glint, 

Figure 7. Distributions of sand and submerged macrophyte cover classes (sparse, moderate and
dense) in the four-year study period. Un-colonized (sand) pixel percentage is represented in yellow;
sparse, moderate and dense submerged macrophytes are shown with a gradient of green from lightest
to darkest.

These results show how the fractional cover of the different classes changed over the
study period. Un-colonized pixels representing a substrate covered by sand, for instance,
decreased considerably in 2021 and 2022, compared to the initial value in 2019. At the
same time, the substrate covered by submerged macrophytes increased (moderate and
dense classes).

The results of the spatio-temporal analysis showing the areas of highest variability in
water quality parameters (Chl-a, PC, TSM), submerged macrophytes’ fractional cover and
emergent macrophytes’ density are presented in Figure 8.
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Figure 8. From left to right, standard deviation maps of Chl-a, PC, TSM, submerged macrophytes’
fractional cover and emergent macrophytes’ density (WAVI).

The Chl-a values show greater variability (up to 20 mg/m3) in the portions of the lake
closer to the littoral zone. The PC concentrations show higher variability in the littoral part
of the lake (up to 17 mg/m3) than for Chl-a, and in the open water part of the lake (up to
10 mg/m3). The TSM concentrations show higher variability close to the tributary inflow in
the south-western part of the lake, with values around 15 g/m3. Macrophytes show higher
variability in terms of fractional cover (up to 50%) and density in the south-eastern part of
the lake where the aquatic vegetation is well established.

4. Discussion

Rrs is the core product of the optical remote sensing of water bodies and is used to
retrieve water quality parameters. Given the importance of its function, it is therefore crucial
to assess its accuracy [84–88]. In the present study, Rrs data from hyperspectral sensors
PRISMA, DESIS and EnMAP over Lake Trasimeno were validated through comparison
with in situ data, provided by the WISPStation. A total of 13 standard L2 products provided
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by the respective space agencies were pre-processed to ensure geographic co-registration,
to mask clouds, to remove sun glint when present and to decrease the environmental noise
over water. Notably, only one of the 13 images was affected by sun glint, most likely due to
favorable observation/illumination geometries. Although the process of sun glint removal
resulted in the loss of bands in the NIR region for the DESIS data acquired on 7 August 2022,
there is a significant improvement in agreement with the in situ measurement. The MAPD
value is significantly reduced, while the SA value, related to spectral similarity, remains
almost constant; this result is consistent with assumption that the sun glint disturbance
leads to an alteration mainly in the magnitude of the signature, rather than the shape [89].
The validation of all satellite-derived Rrs versus in situ measurements was then shown,
proposing an aggregated representation for each of the three satellites. The local maximum
of Rrs in the green region varies in the range of 0.020–0.030 sr−1 for PRISMA images, and
from 0.025 to 0.035 sr−1 for DESIS images. The statistical results obtained in the case of
PRISMA are comparable with those obtained in [34], i.e., R2 = 0.87, and those obtained
in [43], i.e., SA around 10◦ and MAPD around 30%. The in situ data synchronous with the
DESIS images show greater variability than the other in situ measurements. The DESIS-
derived Rrs show, on average, the best agreement in terms of spectral shape (statistically
represented by SA), while the best agreement in terms of magnitude (RMSD, MAPD) is
obtained for the EnMAP image. This could be attributed to the model implemented for
atmospheric correction, which is designed specifically for water targets.

Once the Rrs products were validated and preliminary steps—such as the removal
of noisy bands—were carried out, they were used as inputs into models for generating
water quality products, which were then validated again by comparison with the in situ
measurements, as performed in [90–92]. From the results of the statistical analysis, the
finding that the highest level of agreement is obtained in the case of the TSM concentration
maps generated by DESIS images may stem from the fact that in the radiometric statistical
analysis of DESIS resulted in the lowest SA value and therefore the sensor with the highest
spectral similarity compared to the in situ measurement. Generally, the maps obtained from
the DESIS Rrs products seem to show greater variability in Chl-a and TSM concentrations;
such an outcome may have arisen from the fact that, at the radiometric level, the standard
deviation of both the satellite and in situ measurements was high, in the 700–800 nm range.

The synergetic use of the three hyperspectral sensors is a great advantage for carrying
out a temporal analysis, useful, for instance, in understanding the dynamics of phyto-
plankton and TSM. Since the lake presents meso-eutrophic conditions with high seasonal
variability, this variability can also be seen in the TSM concentrations, showing higher
values near the tributary inflow, which is likely to transport suspended sediment loads from
the catchment into the lake. The Chl-a values are, on average, increased in 2022, compared
to previous years, at the same time as the lake level is decreasing; these two parameters
are indeed negatively correlated, as stated in [93], a study conducted on Lake Trasimeno.
The maximum values of PC and TSM are negatively correlated with lake levels (Pearson
correlation, respectively: r = −0.942 and p value < 0.001; r = −0.678 and p value < 0.05),
suggesting key roles of these parameters in lake ecology. In this work, it was possible to
identify the trend of these optically active parameters and aquatic vegetation over the sum-
mer/late summer seasons of four years. The PC values range mainly from 0 to 25 mg/m3,
which represents the suggested range for the use of the MDN, as reported by [37]. Once
more, the statistical results achieved by comparing the products obtained from PRISMA
images with the in situ measurements show comparable values with previous comparisons
with Sentinel-2 [34], e.g., RMSD = 1.23 mg/m3 for the TSM concentration maps.

Both the coverage area and the WAVI vegetation index, a proxy for biomass density,
calculated on emergent macrophytes, show a significant increase in 2022 compared to 2019,
with several areas of the lake affected by this phenomenon. In a previous study [31] the
aquatic vegetation of Lake Trasimeno was observed from an airborne AVIRIS image, and the
results showed that the south-eastern zone was colonized by the three different submerged
classes but not yet by the emergent macrophytes. In fact, this portion of the lake, in the
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present study, exhibits a high level of variability (i.e., high standard deviation values) both
for submerged and emergent macrophytes. To improve knowledge of the complex relations
between primary producers (i.e., rooted macrophytes, phytoplankton and cyanobacteria),
TSM and water clarity, hyperspectral maps can be a useful tool to support lake ecosystem
analysis. It is well known that the loss of aquatic vegetation threatens water transparency
due to the absence of mechanical and chemical processes mediated by macrophytes (e.g.,
the stabilization and prevention of sediment resuspension, refuges for zooplankton that
feeds on microalgae, competition for nutrients and light and the production of allelopathic
substances that counteract algal proliferation and dominance) [94,95]. In the limited dataset
of this work, it indeed turns out that the average TSM values are generally lower on the
dates with higher area values of submerged macrophytes. The widespread expansion of
submerged macrophytes and the appearance of semi-emergent macrophytes above the
water surface in 2022 should be actively monitored, as this is likely to be mainly due to the
sharp drop in lake levels, accompanied by a reduction in both cumulative early June rainfall
(−32% compared to 2021) and total annual rainfall (−20% compared to 2021). Indeed,
the lake water level is significantly negatively correlated with the area of submerged and
emergent macrophytes (Pearson correlation, respectively: r = −0.659 and p value < 0.05;
r = −0.959 and p value < 0.001). In addition to water levels, the component of avifauna that
feeds on submerged macrophytes turns out to be an important element in the variability of
submerged macrophyte cover. Aquatic plants are a fundamental element of biodiversity,
i.e., the number of herbivores in Lake Trasimeno [96]. In fact, in 2020, when the submerged
macrophytes were more abundant than in the previous and in the following years, the
number of herbivorous birds was much lower (about 30%); this number then became more
stable as the submerged macrophytes stabilized. Although the present study provides
promising insights into the mapping of aquatic ecosystems with hyperspectral images,
it is important to acknowledge several limitations. Firstly, to increase the robustness of
the analysis, it would be necessary to assess the uncertainty related to the atmospheric
correction that can propagate into errors in the retrieved satellite products. Additionally,
expanding the dataset would provide wider temporal coverage, crucial for this kind of
analysis. Finally, in the fundamental step of satellite products validation, it would be
essential to collect more spatially distributed in situ samples to increase the robustness
of the statistics, and to consider the use of water quality data as derived from laboratory
analyses of water samples, which, unfortunately, were not planned to be collected at the
time of satellite overpasses. According to [23], efforts have still to be made toward the
integration of remote sensing with traditional monitoring programs for coordinating water
authorities’ strategies with the remote sensing observation requirements.

5. Conclusions

This study demonstrates the feasibility of the use of standard L2 products provided
by the spaceborne hyperspectral PRISMA, DESIS and EnMAP missions to detect spatio-
temporal variations in water quality parameters and aquatic vegetation in optically deep
and shallow inland waters characterized by moderately high Rrs values. The validation
results showed that hyperspectral satellite images can be successfully used to capture a
comprehensive picture of Lake Trasimeno’s water quality that can be integrated with con-
ventional ground-based monitoring programs. The results obtained confirm the advantage
of hyperspectral data, characterized by numerous narrow bands in the VNIR domain, in or-
der to be able to simultaneously quantify concentrations of phytoplankton pigments, such
as Chl-a and PC; TSM; and the extent and type of submerged and emergent macrophytes,
hence contributing to the satellite-based mapping of standard (e.g., Chl-a, TSM) and ad-
vanced (e.g., PC, shallow waters) aquatic ecosystem products. The method outlined in this
paper confirms the robustness of sensor-independent approaches such as the bio-optical
model BOMBER, while the similar spectral setting of the three missions allowed us to adapt
the MDN, originally tested for PRISMA, to DESIS and EnMAP imagery data. Nonetheless,
pre-processing techniques, necessary, for instance, to remove sun glint and decrease the
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environmental noise of imagery data, might be necessary for applying similar approaches
to other inland waters, at least for those with optical water types similar to the one analyzed
in this study. These results highlight the significant degree of temporal and spatial changes
in the primary producers and aquatic vegetation in Lake Trasimeno; it has been shown
that the water level is a fundamental factor in determining the ecosystem conditions of
Lake Trasimeno and, hence, in conditioning its biodiversity and the complex trophic and
physical relations that govern the management of these areas. Further analyses would
increase the robustness of this study, for instance, by testing different atmospheric correc-
tion models, increasing the dataset and collecting multiple radiometric measurements and
water samples for more distributed and comprehensive validation of the satellite products.
Such additional work will also boost the advantages of exploiting hyperspectral satellite
data for monitoring dynamic processes and changes over time, laying the foundation for
routine monitoring, in view of future operative hyperspectral missions (e.g., CHIME, SBG
and PRISMA 2nd generation).
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