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Abstract: Mesoscale eddies are ubiquitous oceanic phenomena and play an important role in ocean
circulation, ocean dynamics, and the transport of material energy. Temperature anomalies are a crucial
parameter that reflects the state of mesoscale eddies. This study proposes a Gaussian function model
to fit the vertical temperature anomaly (TA) profile to facilitate the analysis of variations, and the
principle of the model is based on the fact that each TA profile tends to fluctuate around one or more
peaks. The model is extracted and validated using Argo profiles within cyclonic and anticyclonic
eddies in the Northwest Pacific Ocean spanning over the period from 2002 to 2021. The validation
demonstrates that the model can accurately recover the vertical TA profiles with a limited number of
parameters. This makes it suitable for analysing the spatial distribution patterns that require a large
sample count. The analysis indicates that eddies with different TA profiles have a spatial aggregation
effect in geographic distribution. Eddies with lower extreme temperature anomalies, at depths of
200–300 m, are mainly distributed along two bands on the north side of the Kuroshio Extension (KE)
and the North Equatorial Current. Eddies with extreme TAs at the deepest depth (500–600 m) are
distributed along the KE.

Keywords: Argo profiles; Gaussian model; mesoscale eddy; Northwest Pacific Ocean (NWPO);
vertical temperature anomaly structure

1. Introduction

Mesoscale eddies are circular water currents that are ubiquitous in the ocean, extending
tens to hundreds of kilometres over tens to hundreds of days, and serve as a key bridge
in the energy cascade between large-scale and small-scale variability in the ocean [1].
Eddies, which can be classified as cyclonic or anticyclonic depending on their direction
of rotation, are important for understanding long-term climate change as they play a
major role in the transport of freshwater, heat, dissolved carbon, and other biogeochemical
tracers in the ocean [2,3], effectively influencing ocean circulation [4], large-scale water
distribution, and biology [5]. Mesoscale eddies play a pivotal role in ocean mixing and
drive global water circulation [6] with profound effects on climate and ecosystems [7].
Enhanced mixing induced by mesoscale eddies has been observed in regions of the strong
Antarctic Circumpolar Current and the West Boundary Current, such as the Kuroshio
Current [6]. The role of eddies in these areas is a long-standing and observationally
challenging topic and eddy science has therefore become a central theme of modern
oceanography in recent decades. The thermal structure of the eddies is critical for heat
transport [2,8] and air–sea interactions [9,10], including changes in the intensity of tropical
cyclones [11,12]. In particular, eddy-induced heat transport is critical for maintaining the
world’s ocean and climate states [4], and researches have illustrated that eddies can induce
heat fluxes by trapping and transporting water with certain temperature in their cores [2,8].
The vertical temperature anomalies are crucial for heat transport estimation and related
research analysis.
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With the progress of the global Argo project, fast, accurate, and numerous temperature
profiles can be accessed worldwide [13]. The temperature anomaly (TA) profiles derived
from Argo floats surfaced in eddies have been widely used to study the vertical structure of
mesoscale eddies [14,15]. These TA profiles have a complex structure and typically exhibit
one or more peaks, with fluctuations in adjacent depth layers. Laxenaire et al. [16] analysed
the evolution of a single long-lived Agulhas Ring using an eddy tracking algorithm to
uncover its hydrological properties. The track of the single eddy was made possible
by the large extent (100 to 400 km diameter) and intense altimetry signal of Agulhas
Rings [16]. More studies use the composite method to construct the averaged vertical
structures [4,8,15,17–19], which are conducted by compositing sufficient Argo hydrographic
profiles that are concurrently captured by sea surface eddies in certain regions. As an
example, Chaigneau et al. [15] constructed the mean eddy vertical structure of the eastern
South Pacific Ocean by compositing the average of 420 (526) profiles acquired by Argo
floats that surfaced into cyclonic (anticyclonic) mesoscale eddies. Also, the 3-D structures
of composite cyclonic eddies (CEs) and anticyclonic eddies (AEs) were analysed using
collocated altimetry sea surface height anomalies (SSHA) and Argo profiles in the Kuroshio
Extension (KE) region [19], and analysis showed that at the centre of the composite eddy,
a cooling of −2.008 ◦C was observed at a depth of 360 m for the CE, while for the AE, a
warming of 1.788 ◦C was observed at a depth of 410 m.

Regional ocean climate can be estimated more objectively using individual cluster
analysis rather than a fixed region approach. Dong et al. [20] divided the KE region into
9 grids to study the spatial characteristics of the corresponding composite eddies. However,
the coexistence of eddies with different vertical structures in the same grid may affect the
accuracy of the characterisation of the composite eddies. Maze et al. [21] grouped eight
classes of vertically coherent heat patterns in the North Atlantic by using an unsupervised
classification Gaussian Mixture Modelling (GMM) method for Argo temperature profiles.
Meanwhile, its authors also pointed out that the GMM is computationally inefficient and
not satisfactory for large datasets (more than 7000 profiles) [21], which leads to a limitation
of the dataset size and the dimensionality of the vertical depth layers. Therefore, efficient
methods for the analysis of Argo temperature profiles need to be proposed.

Currently, there is no valid mathematical model for the TA profile itself and no study
has focused on automatically extracting multiple fluctuation parameters, including extreme
values, depth of extreme values, and steepness in a TA profile. This study proposes a
Gaussian function model that can be combined with multiple Gaussians (MG) to fit and
extract the fluctuation information. The large dataset of eddy TA profiles can be effectively
divided based on the physical characteristics of thermal structures, such as extreme values,
depth of extremes, and steepness of the profile, with the characteristics being obtained from
model parameters. The MG model presented in this paper is not limited by sample size
when dealing with large datasets. It can objectively calculate the characteristics of tens of
thousands of Argo profiles and efficiently perform spatial pattern analysis.

Numerous eddies occur in the Northwest Pacific Ocean (NWPO), where a large num-
ber of Argo profiles have also been accumulated, and the three-dimensional structures and
transports of mesoscale eddies have been comprehensively investigated using a combina-
tion of satellite data and Argo profiles [19,20]. It is the integral contribution of eddies over
thousands of kilometres in space and years in time that defines their role in the climate
system [4]. Therefore, after applying the MG model to the eddy TA profiles in the region,
the spatial distribution of mesoscale eddies with different types of TA profiles was analysed.

This paper is organized as follows: Section 2 presents the details of the study area
and the data used in this study. Section 3 presents the proposed model to fit the Argo TA
eddy profile. The verification results are presented in this section, while the sensitivity
analyses and comparative analyses of the parameters associated with the model have
also been carried out. The application based on the model parameters, that is spatial
distribution variations analysis, is shown in Section 4. Discussions and conclusions are
drawn in Section 5 and Section 6.
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2. Study Area and Data Processing
2.1. Study Area

For this study, the NWPO was selected as the study area. Specifically, the area between
105–180◦E and 5–60◦N, as shown in Figure 1. The hydrographic setting in the NWPO is
complex. It is one of the most tropical cyclone-prone oceans in the world [11], and is also
strongly associated with ocean features such as eddies [22]. There is a mixed water region,
where the warm Kuroshio current from the south mixes with the cold Oyashio current from
the north, and a recirculation region in the KE [23]. The KE region has a zonal band of high
eddy kinetic energy [24], and the short-term formation of the Kuroshio meander appears to
be closely related to these eddy activities [25,26].

Figure 1. Schematic map of the ocean circulation, and the mean surface geostrophic sea water velocity
for 2022 in m/s. This has been conducted using E.U. Copernicus Marine Service Information; https://
data.marine.copernicus.eu/product/SEALEVEL_GLO_PHY_L4_MY_008_047/description, accessed
on 21 July 2023.

2.2. Data and Processing

Altimetry allows eddies to be observed by measuring sea surface heights, where
currents rotate around local highs and lows due to a geostrophic balance between pres-
sure gradient forces and kurtosis acceleration. In this study, we use the Mesoscale Eddy
Trajectory Atlas product (META3.2 DT allsat), which can be accessed from https://www.
aviso.altimetry.fr (accessed on 21 September 2023) [27]. More specifically, this refers to
the multimission altimetry-derived eddy trajectories in version 3.2 DT (for delayed-time),
computed with upstream data from the “all satellites” constellation maps distributed by the
Copernicus Marine Environmental Monitoring Service (CMEMS). The product provides
anticyclonic and cyclonic eddies detected from the multimission altimetry datasets, with
their location, contours, amplitude, radius speed, and associated metadata, which was
produced by SSALTO/DUACS and distributed by AVISO+ with support from CNES, in
collaboration with IMEDEA.

The atlas was downloaded on 21 September 2023, and covers the period from January
1993 to February 2022. The algorithm used for the product is derived from Mason et al. [28]
and further described in Pegliasco et al. [29]. The dataset employed in this study spans a
period of 20 years, from 2002 to 2021, which is sufficient to establish and validate the model
dedicated to reconstruction of the vertical TA profiles. Similar to the dataset selection in

https://data.marine.copernicus.eu/product/SEALEVEL_GLO_PHY_L4_MY_008_047/description
https://data.marine.copernicus.eu/product/SEALEVEL_GLO_PHY_L4_MY_008_047/description
https://www.aviso.altimetry.fr
https://www.aviso.altimetry.fr
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article [30], this paper has chosen mesoscale eddies with tracking trajectories lasting longer
than 10 days to ensure more stable data. The dataset has been accordingly divided into the
two types, cyclonic eddies (CEs) and anticyclonic eddies (AEs).

Vertical eddy thermal information could be observed with Argo profiles thanks to the
Argo project. The Argo project and its data have contributed to the study and development
of marine science [31], which provide a large number of vertical CTD (conductivity, temper-
ature, and depth) profiles from the upper 2000 m of the ice-free global ocean and currents
from intermediate depths [13]. The delayed mode Argo float profiles were collected and
made freely available by the International Argo Program and the national programs that
contribute to it (https://www.seanoe.org/data/00311/42182/), accessed on 1 March 2023.
The Argo Program is part of the Global Ocean Observing System. Figure 2 shows the Argo
array statistics within the study area on a randomly selected day.

Figure 2. Argo array statistics in the study area on 14 November 2022 (source from https://argo.ucsd.
edu, accessed on 14 November 2022).

All data collected by Argo floats are publicly available in near real-time via the Global
Data Assembly Centers (GDAC) in Brest (France) and Monterey (California) after an auto-
mated quality control. Additionally, the China Argo Real-Time Data Centre synchronises
with the GDAC data server every two days to provide quality-controlled data. In this study,
the Argo profile data of the interested area from January 2002 to December 2021 are chosen,
and they are downloaded from ftp://data.argo.org.cn/pub/ARGO/, accessed on 1 March
2023. Before using the profile data, it is necessary to control quality to ensure the research
results are more reliable. Only profiles with quality markers of ‘good’ or ‘probably good’
are retained, and additional data screening following Chaigneau et al. [15] is applied to
these profiles with rules listed in Table 1.

Table 1. Additional data screening rules for Argo profiles.

Items Condition

Minimum observed depth <10 m
Maximum observed depth >1000 m

Number of valid points >40
Depth interval between 0∼100 m ≤ 25 m

Depth interval between 100∼300 m ≤50 m
Depth interval between 300∼500 m ≤75 m
Depth interval between 300∼1000 m ≤100 m

Then, based on the altimetry-based eddy identification products, the corresponding
Argo profile must be mapped. The decision criterion is whether the position of the profiles

https://www.seanoe.org/data/00311/42182/
https://argo.ucsd.edu
https://argo.ucsd.edu
ftp://data.argo.org.cn/pub/ARGO/
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lies within the effective boundaries of the simultaneously identified eddies. The process is
illustrated in Figure 3. It can be seen that the profiles are extracted in time and space over
both the matching Argo data and the mesoscale eddies. The profile data is then vertically
interpolated at 5 m intervals using cubic spline function to ensure a smooth and accurate
representation of the data.

A

B

C

D

Figure 3. Mapping process of Argo profiles and mesoscale eddy dataset. The left panel shows
the eddies (AEs in red and CEs in blue) and the surface position of Argo profiles (X-shaped black
symbols) within the day of 6 July 2018. The right panel shows an enlarged part of the area with the
four Argo profile locations A, B, C and D. Profiles A and C, located within the eddies, will be selected.

Furthermore, the temperature anomalies of Argo profiles in eddies are obtained by
subtracting the climatological profiles from the Argo temperature measurements. The
World Ocean Atlas 2018 (WOA18) [32] is a set of objectively analysed climatological fields
of in situ temperature, salinity, dissolved oxygen, and nutrients at standard depths for
annual, seasonal, and monthly compositing periods for the World Ocean with 102 depth
levels from the surface to 5500 m. The 2018 release updates previous versions of the World
Ocean Atlas to include approximately 3 million new oceanographic casts added to the
World Ocean Database (WOD) since the previous release, as well as renewed and updated
quality control.

For research purposes, the monthly statistical mean temperature on the 1/4◦ grid for
the decadal periods 2005–2017 is used in this study. The corresponding data are available
at https://www.ncei.noaa.gov/access/world-ocean-atlas-2018/, accessed on 24 February
2024. Similarly, the monthly climate fields from WOA18 corresponding to the position and
month of each Argo profiling float are also interpolated using cubic spline function to have
199 depth levels with 5 m depth steps between 10 and 1000 m. Vertical interpolation was
used to simplify the model regression method so that all data had the same vertical axis
and to avoid occasional gaps. To make best use of the data, and to avoid interference from
surface environmental factors, the shallowest depth level was chosen to be 10 m. Four Argo
temperature profiles, falling within the CEs and AEs on a single day, are randomly selected
and presented in Figure 4a. These profiles exhibit varying near-sea surface temperatures,
with minor temperature fluctuations in the mixed layer and decreasing temperatures
following different gradients with increasing depth. Furthermore, the climatic temperature
profiles corresponding to the same locations and months of these Argo profiles are shown in
Figure 4b. The profiles are smoother than those shown in Figure 4a, and once more, different
characteristics can be observed. To demonstrate the temperature anomalies induced by
mesoscale eddies, it is necessary to perform a comparison operation of the two.

https://www.ncei.noaa.gov/access/world-ocean-atlas-2018/
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(a) (b)

Figure 4. Examples of Argo temperature profiles and the corresponding climatic temperature profiles.
(a) shows the Argo temperature profiles randomly selected on 8 October 2011. 1, 2 are within CEs
with position 171.477◦E, 43.889◦N and 167.831◦E, 18.34◦N, while 3, 4 are within AEs with position
148.604◦E, 34.895◦N and 152.858◦E, 11.12◦N. The corresponding climatic profiles are shown in (b).

As a result, the TA profile data are obtained by subtracting the WOA18 climatology
data at the same or nearby location and month according to each depth level as (1).

T′
i = Ti − TCi (i = 0, 1, 2 . . . . . . 198) (1)

where T and TC are the interpolated vertical temperature profiles and climatic temperatures,
respectively, and i corresponds to the depth index of each layer. There are 199 layers with
5 m as vertical step for range of 10–1000 m.

After processing the above steps, 40,659 cyclonic eddy TA profiles and 44,370 anticy-
clonic eddy TA profiles were obtained for a period of 20 years from the year 2002 to 2021,
and their geographical distributions are as shown in Figure 5, counted in 0.5◦ × 0.5◦ grid.
It can be seen that the obtained TA profile data cover the study area adequately.

(a) (b)

Figure 5. Geographical distribution of vertical profiles of eddies from January 2002 to December 2021
per 0.5◦ × 0.5◦ grid in the NWPO region. (a) is the distribution of profiles for AEs and (b) is for CEs.

3. Method
3.1. Multiple Gaussian Model

In general, normal AEs induce a positive TA while CEs induce a negative TA. However,
there are different types of eddies that cause varying vertical anomalies. For example,
cyclonic warm-core eddies (CWEs) and anticyclonic warm-core eddies (AWEs) induce
positive and negative temperature anomalies at different depths [26].

Based on these research results, most eddies have warm/cold anomalies in the vertical
structure, which consist of more than two peaks/extreme points (in this study, T′

E denotes
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the extreme values of temperature anomaly within the eddy profile). To better fit the TA
profiles, we have used the well-established and computationally convenient Gaussian
function for fitted models as in (2), which fits the bell-shaped curve very well.

f (xn) =
M

∑
i=1

aie
−(xn−ui)

2

2σ2
i (n is 0, 1, 2 . . . 198) (2)

where ui represents the depth of the extreme value of the ‘ith’ Gaussian function. ai and
σi are coefficients representing the amplitude and the standard deviation of the Gaussian
curve, respectively. M represents the number of combinations of Gaussian functions, which
could be 1, 2, or 3 in this research. Furthermore, for profiles fitted with a single Gaussian
function, ai is equal to TEi

′, which implies the extreme values of the profile within the
vertically localised region. The steepness of the Gaussian function is determined by σi.
This value represents the vertical range of influence of the temperature anomaly. For
instance, using the 3σ criterion (Lajda criterion), we consider the range of influence of the
‘ith’ temperature anomaly fluctuation to be [ui − 3σi, ui + 3σi]. These parameters are crucial
for the thermal structure of mesoscale eddies, especially for the vertical distribution and
regulation of heat.

The MG model-fitting procedure developed in this study can automatically extract
the best-fit combination solution of Gaussian functions for the TA profiles. The processing
steps are summarised in Algorithm 1 and described in detail below.

Algorithm 1 Multiple Gaussian Model Algorithm

Require: Eddy TA profiles data as input [p1, p2, ...pm] ∈ Pm
pi = [t′1, t′2, ...t′n] ∈ Xn, n=199

1: for pi ∈ Pm do
2: Get Filtered_pi via Butterworth low pass filter

with N=3, Wn=0.2
3: Get u1,u2,u3

via calculation the relative extrema points of Filtered_pi
4: Build MG model via TripleGauss

//model function is defined as (2)
5: Get ai ∈ (a1i, a2i, a3i),σi ∈ (σ1i, σ2i, σ3i) for pi
6: end for

TripleGauss: pi , (u1i, u2i, u3i)
7: Get pMG_123i (the fitted TA profile via MG model),

(a1i, a2i, a3i),(σ1i, σ2i, σ3i)
8: Get R2_123i //R2 between pMG_123i and pi
9: Get (a1i, a2i),(σ1i, σ2i),R2_12i via DoubleGauss(pi,(u1i, u2i))

10: Get (a1i, a3i),(σ1i, σ3i),R2_13i via DoubleGauss(pi,(u1i, u3i))
11: Get (a2i, a3i),(σ2i, σ3i),R2_23i via DoubleGauss(pi,(u2i, u3i))
12: Compare R2_123i,R2_12i,R2_13i,R2_23i,

return with optimum combination solution.
DoubleGauss: pi and (u1i, u2i)
13: Get pMG_12i,(a1i, a2i),(σ1i, σ2i)
14: Get R2_12i //R2 between pMG_12i and pi
15: Get (a1i), (σ1i),R2_1i via SingleGauss(pi,(u1i))
16: Get (a2i), (σ2i),R2_2i via SingleGauss(pi,(u2i))
17: Compare R2_12i,R2_1i,R2_2i,

return with optimum combination solution.
SingleGaussian: pi and (u1i)
18: Get pMG_1i,(a1i), (σ1i)
19: Get R2_1i // R2 between pMG_1i and pi
20: Return a1i, σ1i,R2

1i

(1) Apply a low-pass filter to the TA profiles. A Butterworth low-pass filter with
specific parameters (filter order N = 3, cut-off frequency Wn = 0.2) is used to smooth out
burrs and jitters in the short distance range while retaining fluctuations in the range of
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more than 50 m. This step aims to improve the accuracy of automatically extracting extreme
points and ensure the correctness.

(2) An algorithm for automatically extracting extreme values of the curve was adopted.
This involves extracting both the positive and negative extreme values of the filtered curve,
sorting them according to their amplitude, and then selecting the three points with the
largest amplitude as expected values of the Gaussian function: u1, u2, and u3. These points
represent the depths at which the extreme points are located in the profile.

(3) The Python function ’scipy.optimize.curve_fit’ is used to fit a given TA profile with
the model defined in (2) and return the remaining model parameters, including a1, a2, a3,
σ1, σ2, and σ3.

(4) In addition, when fitting with triple Gaussian functions, the fit is also compared to
the combination of two Gaussian functions formed using any two of the expected depth
values, including (u1, u2), (u1, u3), (u2, u3). The combination with the highest coefficient of
determination (R2) result is selected. Similarly, when fitting with two Gaussian functions,
the algorithm will attempt to fit them separately and return the best solution.

Note that the procedure automatically extracts extreme points during step 1. If fewer
than 3 extreme points are obtained, the fitting will switch to a Gaussian function with a
lesser number. In this study, the R2 (see (3)) is adopted to measure the degree of fit between
the model fitted values and the observed set of values. It normalises the results during
processing to compare different models. A value of 1 indicates that there is no difference
between the predicted or fitted values and the true values, while a value of 0 indicates that
the model is fitted as well as it would be if the fitted value is set directly to the mean of the
observed data, and a negative value indicates a less effective model.

R2 = 1 − ∑n
i=1

(
T̂′

i − T′
i
)2

∑n
i=1

(
T̄′

i − T′
i
)2 (3)

where T̂′
i is the model-fitted value for depth level i, T′

i is the observed value for the
corresponding level, and T̄′

i is the mean of the observed values for the profile.
To illustrate the fitting procedure, we take the TA profiles of a CE (Figure 6) and an AE

(Figure 7) as examples. In these examples, the MG fitting yields M = 3, which represents a
combination of three Gaussian functions.

The TA profile in Figure 6a identifies three extreme points: P1, P2, and P3, all of which
have negative values. The corresponding depths are u1 = 30 m, u2 = 155 m, and u3 = 375 m,
respectively, with T′

E1 = −4.39 ◦C, T′
E2 = −4.21 ◦C, and T′

E3 = −2.95 ◦C, whereas the three
extreme points identified in Figure 7a exhibit different polarities. The P1 at a depth of
25 m has a negative value of −5.25 ◦C, while P2 and P3 at depths of 555 m and 820 m are
both positive, with values of 5.107 ◦C and 3.13 ◦C, respectively. It can be seen that the TA
profiles of actual mesoscale eddies do not ideally consist of a single peak, but are generally a
composite of two or more peaks in a profile curve, where the polarity (positive or negative)
of the peaks may be the same (Figure 6a) or opposite (Figure 7a). The three extreme points
were found, combined with the low-pass filtered curves firstly, then the parameters of
each individual Gaussian function were obtained, and at the end, the parameters were
automatically adjusted when fitting via the MG model, which helped to fit the TA profile
more accurately.

The extreme points identified in Figures 6 and 7, which represent the centres of fluctu-
ations at different depths in the TA profile, reflect the vertical variations in temperature
anomalies caused by the mesoscale eddies. However, it can also be observed that not
all fluctuations are significant. For example, the extreme point in Figure 6d is deeper
than the other two extreme points. The Gaussian function fitted from this point has a
smaller amplitude and the fluctuations are more muted. Consequently, this point does not
contribute significantly to the overall profile. A similar situation is observed in Figure 7d,
where the identified extreme point does not represent the main components of the TA
profile and only contributes to improving the fitting accuracy. Then how to judge the
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primary fluctuation of eddy temperature anomalies? The fluctuation with the maximum
extreme temperature anomaly does not necessarily indicate the primary components of
the profiles. As shown in Figure 6, the first Gaussian function with an extreme point of
−4.39 ◦C (maximum temperature anomaly) is located at a depth of 30 m; however, it does
not have the largest contribution. Instead, the second Gaussian function with an extreme of
−4.21 ◦C has the largest R2 value with 0.96, indicating the primary fluctuation curve. The
same phenomenon occurs in Figure 7. The second Gaussian function with the extreme
of 5.07 ◦C is the primary component instead of the first one with the largest anomaly of
−5.25 ◦C. The maximum extreme values may be caused by drastic changes in the seasonal
characteristics of the sea water near the surface. In addition, the burr phenomenon may
cause single or multiple anomalies, which can be affected by the external environment
during buoy measurements.

(a) (b)

(c) (d)

(e)

Figure 6. MG model-fitting procedure for a CE TA profile (the Argo profile is dated 15 July 2007, with
a surface location of 17.947◦N, 162.264◦E). (a) is observed TA values with top 3 extreme points and
low-pass filtered profile. (b–d) are single Gaussian function components centred with each ui and
(e) is the MG model-fitting results.

Based on the MG model proposed in this study, it is easy to calculate the R2 for each
Gaussian function separately, and determine the primary Gaussian bell-shaped curve of
the TA profile by searching for the maximum value of R2, that is the single Gaussian curve
that can best fit the TA profile curve is considered to be the primary Gaussian function
of it. Then, based on this, the corresponding parameters including a (the extreme value),
u (the depth at which the extreme value is located), and σ (the width of this fluctuation)
are obtained, which is the basis for accurate analysis of the physical properties of the
vertical structure. The identification of primary fluctuations for further analysis based on
the MG model allows for the exclusion of interfering data and a clear analysis of spatial
distribution patterns. Based on the MG fitting results, it is shown that approximately 42% of
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CE TA profiles have a primary function different from the one determined by the maximum
extreme value. For AE, this ratio is about 40%. Thus, analysing the features solely based on
the TA profile maximum extremes may have implications. This situation will be further
explored and compared in Section 4.1.

(a) (b)

(c) (d)

(e)

Figure 7. MG model-fitting procedure for an AE TA profile (the Argo profile is dated 26 September
2005, with a surface location of 39.57◦N, 149.79◦E). (a) is observed TA values with top 3 extreme
points and low-pass filtered profile. (b–d) are single Gaussian function components centred with
each ui and (e) is the MG model fitting results.

Table 2 shows the results of all eddy TA profiles fitted using the MG model, following
the procedure described in previous subsection. The results indicate that the MG model
fit better with three Gaussian functions for 90.0% of the eddy TA profiles, compared to
the double-Gaussian or single-Gaussian models. The program is designed to compare the
effects of model fitting downwards, replacing solutions with a lesser number of Gaussian
functions if they fit better. Only a few (about 0.2%) TA profiles were better modelled
with a single-Gaussian function, whereas about 9.7% profiles were better modelled with
double-Gaussian.

Table 2. Number results of the profiles fitted by MG model.

TA Profiles Total Number Triple Gaussian Fitted Double Gaussian Fitted Single Gaussian Fitted

CE 40,659 37,008 (91.0%) 3567 (8.8%) 84 (0.2%)
AE 44,370 39,571 (89.2%) 4677 (10.5%) 122 (0.3%)

Average 90.0% 9.7% 0.2%
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3.2. Model Parameter Setting

How to determine the parameter M? To further assess the possible impact of function
model setting, the following sensitivity experiment is carried out. Combinations of two
Gaussian functions and four Gaussian functions are applied to the same eddy TA pro-
files, respectively. That is, a double-Gaussian model and quadruple-Gaussian model are
designed for comparison.

The fitting method employed in the procedure is based on non-linear least squares
to identify the optimal parameters. However, during the comparison process, it was ob-
served that a significant number of TA profiles were unable to identify the optimal fitting
parameters after an upper limit on the number of iterations. This resulted in the fitting
failing when it was attempted with quadratic Gaussian functions. This may be attributed
to the fact that the quadratic Gaussian function necessitates the estimation of more un-
certain parameters, which in turn requires more observed data points. As a result, only
35,849 (88.2%) CE TA profiles were successfully fitted with quadruple-Gaussian functions,
while the number for AE was 37,920 (85.5%).

The TA profiles that can be fitted by quadruple-Gaussian functions, are then fitted
using both the triple-Gaussian model and the double-Gaussian model. Two measurements
of R2 and the root mean square error (RMSE) are calculated for each profile, and Table 3
displays the average of the two indicators. R2 has been illustrated in the previous subsec-
tion, and RMSE, which indicates the magnitude of the error produced by the model in the
fit or prediction, is shown in (4).

RMSE =

√
1
n

n

∑
i=1

(
T̂′

i − T′
i
)2 (4)

where T̂′
i is the model-fitted temperature anomaly value at the ith depth level of a profile,

T′
i is the observed value or the interpolated one based on observation for the corresponding

depth level, and n is the total number of depth levels.

Table 3. Indicator results for different numbers of Gaussian function.

Double-Gaussian Triple-Gaussian Quadruple-Gaussian

Average R2 CE 0.72 0.81 0.86

AE −21.82 0.83 0.87

Average RMSE (◦C) CE 0.26 0.21 0.18

AE 1.11 0.22 0.18

The results indicate that the double-Gaussian model is not appropriate for fitting
all eddy TA profiles with the average R2 less than 0.8 for CEs, and less effective fit-
ting results for AEs. The R2 of most AE TA profiles is less than zero, which may be
due to the fact that the automatic curve extreme value extraction procedure fails to cap-
ture the primary fluctuation extremes of the curve. Instead, it may have replaced them
with other jitter points that had larger anomaly amplitudes but were not the primary
fluctuation components.

The triple- and quadruple-Gaussian models had better fits with R2 values greater than
0.80 and RMSE values less than or equal to 0.22 ◦C, respectively. The quadruple-Gaussian
model provides a better fit than the triple model, which is easy to understand, as the
combination of more Gaussian functions results in a more accurate fit. It shows an average
increase in R2 of 0.05/0.04 (CE/AE) and a corresponding decrease in RMSE of 0.03/0.04 ◦C.
However, this improvement is limited.

Considering that the computational complexity increases with the number of functions,
and the previously mentioned problem that four functions would lead to convergence
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failures for a large number of TA profiles, a maximum of three functions was chosen for
this study. The aim of the study is to identify major fluctuations in the TA profiles rather
than to capture all anomalies in detail. Therefore, the parameter M = 3 was chosen for
the MG model based on the study objectives, the number of model parameters and the
computational complexity.

3.3. Model Validation

A series of validations of the MG are carried out. The RMSE and R2, calculated
between the observed curve and the model-fitting curve are obtained to quantify the fit
and the accuracy of the model. The RMSE, which is the root mean square error between
the fitted value and the observed value, is widely used to assess the accuracy of the
fitting model.

As shown in Table 3, where the indicators are calculated based on 35,849 (88.2%)
TA profiles for CEs and 37,920 (85.5%) profiles for AEs, the average R2 is high enough
with 0.81/0.83 respectively. Also, the average RMSE is lower or equal to 0.22 ◦C, and the
automatic fitting model is accurate enough to stand for the TA profiles.

In this study, R2 and RMSE are measured based on the comparison of each vertical
profile rather than the lateral comparison of depth layers. According to the calculation
based on the observed profiles and the fitted profile results, the distribution is obtained
and showed in Figure 8 for CEs and Figure 9 for AEs.

(a) (b)

Figure 8. The distribution of MG model-fitting indicators for CEs. (a) displays the distribution of R2

for TA profiles from January 2002–December 2021, while (b) shows the RMSE. The shaded area in
light green covers 90% of the profiles.

Figure 8 shows the distribution of the two indicators for the fitting results, covering
all CE TA profiles from January 2002–December 2021. As presented in figure, the portion
with the light green background shows that 90% of the R2 is greater than 0.60, indicating
that the vertical profile curves fitted by the MG model are in good agreement with the
original observed ones. Furthermore, approximately 66% of the profiles have the metrics of
R2 greater than 0.8. The distribution of the RMSE also reflects the good fit of the model,
with 57% of the profiles having an RMSE below 0.22 ◦C and only 10% having an RMSE
above 0.342 ◦C.

Figure 9 illustrates the situation for AEs. About 70% of the profiles exhibit R2 metrics
greater than 0.8, with 90% of these having metrics greater than 0.62. Additionally, 52% of
the profiles have an RMSE lower than 0.2 ◦C, while only 10% have an RMSE higher than
0.35 ◦C.
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(a) (b)

Figure 9. The distribution of MG model-fitting indicators for AEs. (a) displays the distribution of R2

for TA profiles from January 2002–December 2021, while (b) shows the RMSE. The shaded area in
light green covers 90% of the profiles.

The aim of the MG model proposed in this paper is to automatically extract extreme
values and fit parameter results. However, it is important to note that in some cases,
the extracted extreme values may not be the most appropriate results due to factors in
the buoy observation process that can result in jittery and anomalous values. The MG
model proposed in this study accurately fits around 90% of the profiles and meets the
requirements of scientific research. Parameters are automatically extracted, eliminating the
need for manual intervention when dealing with large amounts of profile data. This saves
time and effort in subsequent analysis. The model employed in this study is significant
as it can serve as a methodological reference for downscaling vertical profiles to lower
dimensions. Furthermore, it is able to extract parameters from the profiles themselves that
correspond to key physical meanings. This enables a more reasonable determination of
the primary fluctuation in the vertical profiles, leading to more accurate scientific research
and discoveries.

4. Results
4.1. Spatial Distribution of Eddies

The study and analysis of spatial distribution represents a pivotal aspect of mesoscale
eddy-related research. Chen and Han [1] analysed the geographic distribution of short-
lived and long-lived mesoscale eddies and found that they reside in largely separate
geographic zones under different mechanisms. Dong et al. [20] present a detailed spatial
distribution of salt and heat transports by eddy movements in the NWPO, which may be
useful for the generation mechanism of specific mesoscale eddies. This study presents
a novel analysis of the spatial distribution patterns based on the characteristics of TA
profiles. A total of 40,659 MG model items for cyclonic eddy TA profiles and 44,370 items
for anticyclonic eddy TA profiles from a period of 20 years (January 2002–December 2021)
were used to analyse the spatial distribution pattern of eddies. Since the characteristics
of eddies with dual/multiple extremes or TA extremes of different polarities are not the
focus of this study, parameters in a single-Gaussian function with the largest contribution
to the profile curve are chosen as the main physical characteristics, which helps to exclude
the interferences and can obviously extract the regular characteristics of the same type of
profiles. According to the distribution of depth levels of primary Gaussian fluctuation,
we select the relatively densely distributed depth layers for analysis, including the depths
of 60–80 m, 100–150 m, 300–400 m, and 500–600 m. And in order to better analyse the
spatial evolution characteristics, we also add a depth range of 200–300 m in this study.
The distribution of the depth of the extreme point with maximum contribution to the
Gaussian fluctuation of TAs for AE/CEs is shown in Figure 10, and areas in light green
indicate denser depth level ranges of distribution at local scale. The depth distribution
map of temperature anomalies indicates that the mesoscale eddies in the NWPO exhibit a
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high density of temperature anomalies distributed in the subsurface layer, with a depth of
shallower than 200 m.

(a) (b)

Figure 10. Distribution of extreme point depth with maximum contribution to TA profiles for AEs
(a) and CEs (b). The shaded areas in light green indicate the depth ranges of 60–80 m, 100–150 m,
300–400 m, and 500–600 m respectively.

With sufficient data, the data can be further screened based on the MG model to
analyse the geographic distribution pattern more accurately and clearly. First, the depth
where the extreme point is located is selected from the Gaussian function model with
the largest contribution to the profile curve, and at the same time, the primary Gaussian
model is required to have a large enough contribution to the entire vertical TA profile
(R2 > 0.5 is required in this article). Thresholds were also defined for the other 2 parameters:
|am| ≥ 0.5◦C, σm ≥ 50 m, which were used to further filter the profiles with the procedure
illustrated in Figure 11.

It is worth noting that, in addition to the widely known CEs with cold centres and
AEs with warm centres, ‘abnormal’ eddies include CWEs and ACEs have been found
in recent studies [26,33,34]. The abnormal eddies are defined according to the surface
temperature, including the temperature difference between the eddy interior and the
surrounding background, and the temperature anomaly ratio within the eddy. For instance,
Sun et al. [26] analysed a case of CWE in Kuroshio–Oyashio Extension (KOE) region,
showing positive TA values with a maximum of 1.09 ◦C at 73.2 m. Meanwhile, ACEs
induce a negative temperature anomaly at the ocean’s upper 250 m. In this article, we try
to find the ‘abnormal’ eddies according to the TA profile, i.e., the profiles with a primary
fluctuation curve defined by the abnormal temperature extreme (the positive extreme for
CE TA profiles or the negative extreme for AE TA profiles). Stricter screening rules were
applied to filter the CWEs and ACEs: R2 > 0.65 with σm ≥ 50 m, am ≥ 1.5 ◦C for CWEs
and am ≤ −1.5 ◦C for ACEs.

Figure 11. Process of analysing the spatial distribution of TA profiles based on parameters from the
MG model.

Then, the surface location where the Argo profile is located is drawn based, on the
region of the depth of the extreme point. Finally, the evolution of the geographical distribu-
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tion of the different eddy types and the distribution of the ‘abnormal’ eddy type are clearly
illustrated by plotting the sea surface position of Argo in each 0.5◦ by 0.5◦ grid (CEs, CWEs
in Figure 12 and AEs, ACEs in Figure 13).

(a) (b) (c)

(d) (e) (f)

Figure 12. Geographical distribution of CE TA profiles from January 2002 to December 2021, with ex-
treme points at different depth levels based on the MG model-fitting results in 0.5◦ × 0.5◦. (a–e) shows
the TA profiles with u at depth levels of 60–80 m, 100–150 m, 200–300 m, 300–400 m, and 500–600 m,
respectively, while (f) shows the spatial distribution of CWEs.

(a) (b) (c)

(d) (e) (f)

Figure 13. Geographical distribution of AE TA profiles with extreme points at different depth levels,
based on the MG model-fitting results in 0.5◦ × 0.5◦. (a–e) shows the TA profiles with u at depth
levels of 60–80 m, 100–150 m, 200–300 m, 300–400 m, and 500–600 m, respectively, while (f) shows the
spatial distribution of ACEs.

Qiu. et al. [35] have analysed the enhanced mesoscale eddy variability concentrated in
two well-defined bands: one along the Kuroshio and its extension paths east and southeast
of Japan, along ∼35◦N, and the other centred on ∼22◦N east of Taiwan, associated with the
Subtropical Countercurrent (STCC). As can be seen in the figure, the spatial distribution
at different depths of the extreme of the primary Gaussian function eddies also shows a
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regular variation and pattern.The eddies are relatively sparse, with shallow extreme points
in TA profiles (in the depth range of 60–80 m). They have not yet formed concentrated belts,
where the northern band is mainly located in the Subarctic Current (SAC) and north of the
KE, including the mixed water region, while the southern band is located in the STCC and
its southern coast.

It is interesting to note that the distribution of eddies with temperature anomaly
extremes in the 100–150 m range shows three bands, with an additional band along the
North Equatorial Current (NEC) compared to eddies with depths in the 60–80 m range.
With increasing depth, the eddy distribution returns to a two-band structure with increasing
concentration, and the southern band moves southwards into the region between the STCC
and the NEC. As the depth increases to 300–400 m, the northern distribution shifts to
between the area of the Kuroshio Current (KC) part, north of 30◦N, and the KE part, south
of ∼35◦N. It is noteworthy that the eddies with temperature anomaly extremes located
between 500–600 m are clearly distributed in the region along the flow axis of the KE.

The distribution of AEs is similar to that of CEs, but when the extreme depth of the
maximum contribution function of CEs located at 200–300 m and 300–400 m, their northern
zone position is more northward than that of CEs at the same depth. In other words, in
range of 200–300 m, their distribution moves northward of the KC and KE, located between
35–40◦N, while moving along ∼35◦N for CEs. At 300–400 m, their main distribution has
reached along the KE, while it is south of the KE for CEs. This is consistent with the pattern
of distribution of large amplitude signals detected with altimeters by Itoh and Yasuda [24].
That is, the zones of highest amplitudes are located north and south of the axis of the KE
for AEs and CEs, which represent warm-core and cold-core rings, respectively.

ACEs (Figure 13f) are located near the western boundary of the Bering Sea, along
the Kamchatka Peninsula and the Japan Trench, which is consistent with the distribution
analysis results of Sun et al. [26]. Some are also scattered along the KE and northern part,
including mixed waters, and it is noteworthy that a significant number of ACEs are also
found along the NEC. The distribution of CWEs (Figure 12f) is similar to that of ACEs,
except that it is more concentrated along the KE, and there are also scattered distributions
in the South China Sea.

The occurrence and behavior of mesoscale eddies are known to be related to both
bottom topography and current variability, including meandering of the KE, southward
intrusions and eastward extension of the Oyashio [24]. The interactions and principles
between ocean currents and mesoscale eddies have been studied from several perspec-
tives. Both satellite observations and numerical simulation have suggested that short-term
Kuroshio meander formation is triggered by anticyclonic eddies that originate in the
KE [36]. Qiu and Chen [35] have revealed that baroclinic instability of the vertically sheared
STCC−NEC mean flow is the energy source for the regional enhanced eddy signals along
the STCC band. The geographical distribution of eddies based on the parameters from
the MG model in this study can clearly show the geographical locations and evolution of
different types of eddies, which provides supporting material and ideas for the research of
the interaction between eddies and ocean currents.

5. Discussion

Using the MG model proposed in this article to fit the TA profiles allows for precise
extraction of their main features, such as extreme depth and amplitude. By setting thresh-
olds on the model parameters, the profiles can be classified and filtered for clearer analysis
of spatial patterns. Section 3.1 has already concluded that relying solely on the maximum
values of the TA profiles is not entirely accurate. Around more than 40% of the profiles
exhibit significant fluctuation curves that are not introduced by the maximum extreme
point. For comparison, we identified the depths of the extreme points with the highest
amplitude and illustrated the distribution in Figures 12 and 13. Both CEs and AEs were
analysed for two typical ranges: 60–80 m and 300–400 m. The spatial distribution of the
profiles with maximum extreme points at different depth levels is shown in Figure 14.
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(a) (b)

(c) (d)

Figure 14. Geographical distribution of TA profiles from 2002.1 to 2021.12 with maximum extreme
points at different depth levels in 0.5◦ × 0.5◦. (a,c) show the TA profiles with maximum extremes
at depth levels of 60–80 m for CEs and AEs, respectively, while (b,d) show the TA profiles with
maximum extremes at depth levels of 300–400 m for CEs and AEs, respectively.

Compared to the pattern shown in Figures 12a and 13a, Figure 14a,c illustrate that
the spatial distribution of the profiles, with the maximum extreme point in the 60–80 m
range, is relatively dispersed, with no sign or pattern of banding distribution. Similarly, the
distribution of profiles between 200–300 m is not concentrated. In comparison to the results
of the MG model analysis in Figures 12d and 13d, which show two clearly separated bands,
Figure 14b,d show that there are a considerable number of points distributed between the
two bands. In particular, Figure 14b does not exhibit a distinct southern band zone as seen
in Figure 12d, and Figure 14d does not demonstrate a clear northern band zone as seen in
Figure 13d. Comparing patterns of change at different depths would be challenging.

Ocean dynamics distribute heat in space vertically and horizontally. TA profiles reveal
the physical distribution of heat along the vertical axis. Therefore, the analysis of the
spatial distribution patterns of the TA profiles would support the scientific analysis of heat
transport, the oceanic temperature structure, the dynamics of specific oceanic mesoscale
eddies, and climate projections related to vertical heat changes.

6. Conclusions

This study proposes a new fitting model for the vertical temperature anomaly of the
ocean eddies using Gaussian functions. The temperature anomalies of mesoscale eddies
are extracted by matching satellite remote-sensing altimeter data, Argo profile data, and
climatological state temperature profiles. After fitting with the MG model, the vertical
characteristics of mesoscale eddies including spatial distribution patterns can be further
analysed conveniently and accurately using a large amount of long-term data. Compared
with most of the previous studies, which used the features of the sea surface data to analyse
the eddies, the internal features of the eddies can be more accurately reflected by using the
TA profiles [37].
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Based on the MG model and the analysis of the spatial distribution of eddies at
different depths of extreme temperature anomalies, it is clear that the eddies are spatially
aggregated, geographically separated and related to ocean currents. The eddies at lower
depths (60–80 m) of extreme temperature anomalies are mainly distributed along the SAC
and the STCC. At depths of 100–150 m, the distribution of eddies increases by a band along
the NEC. With increasing depth, the distribution of eddies shows a concentration of two
bands, one between the STCC and the NEC, the other along the north/south side of the KE,
and at depths of 500–600 m, the eddies are distributed along the KE.

Abnormal eddies, including ACEs and CWEs, can be easily obtained through the MG
model parameter screening. They are typically located near the western boundary of the
Bering Sea, along the Kamchatka Peninsula and the Japan Trench, with some scattered
along the KE and northern region. It is noteworthy that a significant number of ACEs are
also found along the NEC, and CWEs are more concentrated in the KE region.

Finally, these results provide some possible applications for the analysis of TA profiles
of mesoscale eddies, and the application can be extended to other oceanic regions, including
the global ocean beyond the Northwest Pacific.

1. The proposed model fits the Argo TA profile well with fewer parameters, reflecting
the physical properties of the profile. The method can be used as a reference for downscaling
vertical profiles to lower dimensions, making it suitable for processing large amounts of
oceanic data and conducting problem analysis and research.

2. The results may also be useful for classifying or clustering eddies in ocean regions,
including the NWPO, according to their vertical temperature structure.

3. Furthermore, the model could be employed to analyse the long-term variations in
the eddy TA profiles in a specific area. The presence of various types of profiles within a
region may affect the results of the averaging/composite analysis, using the MG model.
However, the MG model could be used to select a certain type of profile, which would help
to obtain precise temporal patterns.

However, it needs to be noted that the MG model focuses only on the fluctuating
features of the TA profile, while a more accurate model may need refinement for the
subsurface layer, which has more complex variations, with further reference to sea surface
temperature information.
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