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S1. Multiple resonance peak characterization algorithms 

 
Figure S1. The algorithms for determining LSPR resonance peak wavelength. (A) Centroid algorithm with a fixed 

baseline. (B) Polynomial fit algorithm. (C) Quadruple central moments algorithm. (D) Dynamic baseline algorithm. (E) 

Constant reflectance algorithm. (F) Multi-scale continuous wavelet transform algorithm. 

Fig. S1 (A) represents the centroid algorithm with a fixed baseline [1]. This equation defines the algorithm 

known as the first-order moment or center of gravity: This equation applies only to wavelength �  where the 

difference between the LSPR curve � and the fixed baseline �� is positive. 
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The fixed baseline �� remains constant for all wavelengths. The formula gives a minimum value of � to which 

the resonance point (non-integer) does not normally correspond; the formula indicates that the light intensity 

fluctuation will affect the value of the calculated resonance point because the baseline remains the same while the 

scale �/� pressed due to the fluctuation. In addition, the choice of a fixed baseline affects the value of �� and �� in 

the formula and could significantly change the value of the resonance point, even for small fluctuations in light 

intensity, which could be avoided by using a dynamic baseline algorithm due to the asymmetrical inclination in the 

LSPR curve. The outstanding advantage of this method is that it is simple and fast. The disadvantage of this 

method is sensitive to fluctuations in light intensity. 

Fig. S1 (B) represents the polynomial fitting algorithm [2]. The polynomial fitting algorithm is executed at the 

position where the LSPR curve is minimum. The fourth-order polynomial equation was used to fit the asymmetric 

LSPR spectral curve to find its minimum value. The fourth-order polynomial equation is fitted to 10 points on 

either side of the minimum wavelength in the LSPR spectrum. The resonance point is determined by locating the 

minimum value of the fitted polynomial. This method is not affected by fluctuations in light intensity, as �/� 

scaling the LSPR spectral distribution does not change the position of its minimum.  

Fig. S1 (C) represents the quadruple central moments algorithm [3]. The statistical analysis of LSPR spectra 

with normalized spectral distributions was performed to compare different sensing platforms in this method, to 

compute the four statistical central moments of the spectral distributions, we employ a normalization process on 

both the wavelength and amplitude, resulting in the derivation of the distribution function P(λ). Subsequently, the 

central moments of P(λ) are determined: the first moment (M1, the expectation value), the second moment (M2, the 

variance), and the third moment (M3, skewness), and the fourth moment (M4, kurtosis). 
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Where, �  is normalized wavelength; ��  is the wavelength of original spectra; ����  is the minimum of the 

wavelength range of the original spectra. 
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Where �� is the peak area integration between wavelengths �� and ��; �(�) is the amplitude of the spectrum at 

wavelength �. 
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Where �(�) is the normalized �(�); �� is the first moment (Expectation value); �� is the second moment (the 

variance); �� is the third moment (skewness) and �� is the fourth moment (kurtosis). 

Fig. S1 (D) represents the dynamic baseline algorithm [4]. Because the baseline �� is defined dynamically, the 

ratio of the area above and below the baseline is constant even after the introduction of light intensity fluctuations. 

The region �� above the baseline is acquired between the lower limit of the wavelength defined by the constant 

shift Δ� of the wavelength that is minimal relative to the LSPR spectrum, and the wavelength at which the baseline 

intersects with the LSPR spectral profile. �� locates between the first wavelength and the second wavelength where 

the baseline intersects the LSPR spectrum, the area of these two regions is calculated using the trapezoidal method. 

To maintain the same area ratio of the newly measured LSPR spectrum as the newly measured LSPR spectrum, the 

baseline needs to be redefined. Once a new baseline has been determined, the resonant point wavelength is 

calculated using the centroid algorithm, which reduces the effect of light intensity fluctuations.  

Fig. S1 (E) represents the constant reflectance algorithm [5]. This simple method lies in finding the 

wavelength that corresponds to the preselected values �� . On the right side of the LSPR spectrum, select the 

constant 0.8�� value. The quadratic polynomial is fitted to 10 points on either side of a wavelength of about 0.8�� 

in the LSPR spectrum to determine the wavelength at resonance. As with the centroid algorithm, the algorithm is 

susceptible to fluctuations in light intensity when introduced, as the LSPR spectral distribution scales as �/� 

according to the fluctuations.  

Fig. S1 (F) represents the multi-scale continuous wavelet transform algorithm [6], which is mainly divided 

into six steps, which are data interpolation, wavelet transform, ridge acquisition, ridge correction, ridge screening, 

and peak position correction. After the spectral data is interpolated, the continuous wavelet transform is performed 

on the spectral data, the wavelet coefficients at different scales are calculated, the ridges are obtained from the 

wavelet coefficient matrix, each ridge is corrected, the offset degree of the ridge is corrected, each ridge is screened 

by using the ridge length, approximate peak width and signal-to-noise ratio, and the peak position obtained by each 

ridge is merged and corrected by using the sliding window. 

The continuous wavelet transform is used to achieve pattern matching. This algorithm adds the calculation of 

the continuous spectrum and uses the time characteristics of the spectrum to eliminate random noise. In addition, 

due to the limitation of the parent small crest type, the spectral peaks of special peak types may not be identified, 

and the characteristic peaks of this type could be identified through continuous spectrum calculation, which could 

improve the accuracy of peak finding. 

The pseudocode is shown in Table S1. Each step in the process is described in it.  

 

Table S1. The workflow of multiscale wavelet-continuous peak detection. 

Algorithm 2 multiscale wavelet-continuous peak detection 
Input: � = {(��, ��), (��, ��), I. (��, ��)}, scale, wavelet 



Output: Peaks results P 
1. Calculate interpolation Gap ∆�; 
2. � = �������������(�, ∆�); 
3. Calculate cwt coefficient matrix �(�, �����, �������); 
4. for � = ����(�, 2): 1 
5.     Get maxima array �� 
6.     if � == ����(�, 2): Initialize �����ℎ����(��); Set ���(��); 
7. for �� in �����ℎ���� 
8.     if ���(��)>threshold: Remove �����ℎ����(��) 
9. Get ridge matrix R; 
10. for �� in �: Correct ridge ��; 
11. for �� in R 
12.     Get parameters ����, ��� , ��� ; 
13.     Filter by ����, ���, ���; 
14.     Update ridge matrix �; 
15. Get peaks array �; 
16. for �� in � 
17.     Get current scale a; 
18.     Set window size ws = a; 
19.     while ws <4*a: 
20.         if  �� is real peak: continue; 
21.         ws =2*ws; 
22.     delete  �� 
23. Return � 

 

 Procedure for the multiscale wavelet-continuous peak detection: 

 
1. The spectral data is interpolated so that the wavelength is normalized. Considering that the interpolation 

result will affect the operation efficiency of the algorithm, the interpolation interval is set to half of the 

minimum wavelength interval for simple spectra and the minimum wavelength interval for complex 

spectra. 

2. The continuous wavelet transform was performed on the spectral data to obtain the wavelet coefficients � =

{��, ��, … … , ��} at different scales. 

3. To get the ridges from the wavelet coefficient matrix C. (a) set � = �, get the maximum array of the wavelet 

coefficient array ��, use the maximum array to initialize the search list �����ℎ����, and set the interval value 

��� = 0 for each ridge. (b) Set � = � − 1 , get the maximum array of wavelet coefficients ��. For each ridge 

in �����ℎ����, identify the closest peak and link them together, and set the interval ��� = 0. If it is not 

found, set the interval ��� = ��� + 1 for the ridge.  (c) For maximums that are not connected, add them to 

the maximum points of the �����ℎ���� and set the interval ��� = 0. (d) Each ridge in the �����ℎ���� is 

judged, and if its interval ��� is greater than the threshold value, it is removed from �����ℎ���� and saved to 

the result list. (e) Repeat steps (b), (c), and (d) until the wavelet coefficient matrix is traversed. 

4. This process corrects the degree of offset in each ridge. For each ridge line, starting from the largest 

scale � = ����, in order from large to small, according to Equation 3, the point is eliminated if the 

condition is satisfied, and if it is not satisfied, the ridge correction is completed. 

5. Ridge lines are filtered. Using the three indicators of ridge length, approximate peak width, and signal-to-

noise ratio. (a) calculate the signal-to-noise ratio for each ridge in the ridge array ������, as shown in the 

following formula: 
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Where ���� is the maximum wavelet coefficient on the ridge and �� is the wavelet coefficient at the scale 

� = ��, and the signal-to-noise ratio array is obtained. For the SNR array calculated by the above formula, the 

Generalized Extreme Studentized Deviate (GESD) algorithm is used to obtain the outliers and remove the 

outliers. This method is a statistical-based outlier detection method, and its evaluation index is extreme student 

residuals ��. The following describes how to calculate the set {x1, ..., xn} of length n. 
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�
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Where s is the standard deviation, �̅ is the mean value of the data. According to the above formula, the outliers 

are judged by comparing �� with the critical value, �� in each calculation. 
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Where ������,� is the value when the probability of the right tail of the t-distribution with degrees of freedom 

� − � − 1 is p. The p is calculated as follows: 

� =
�

2(� − � − 1)
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� is the probability of an error that is allowed. 

After that, the average signal-to-noise ratio ��������� is calculated for the remaining data of the array, and the 

threshold is set as 1.1��������� to filter the ridges to obtain the target ridge array ������. (b) The ridge length ��� is 

calculated for each ridge in the ridge array ������, which is defined as the number of points on the ridge line. 

Based on the length of the ridge, the array ������ is calculated by using the GESD algorithm to obtain an 

outlier array ������. (c) Calculate the approximate peak width ��� for each ridge in the ridge array ������ by 

the scale corresponding to the maximum amplitude on the ridge, i.e.����� = 2����. Based on the length of 

the ridge, the array ������ is calculated by using the GESD algorithm to obtain an outlier array ������. (d) 

Find the intersection ��  of array ������  and array ������ , the intersection ��  of array ������  and array 

������ and then find the union of array �� and array ��, which is the filtered ridge set.  

6. Using the sliding window to correct and merge the peaks � obtained for each ridge. (a) The initial window 

half-width is set to �� = ����, The window range is [�, −��, �����]. (b) Looking for the maximum point in 

the range within the window, if this maximum is an outlier found by the GESD method and is not the first or 

last peak in the window, then the position of this point is the corrected peak, otherwise, proceed to step (c). (c) 

Doubles the half-width of the window ��.If the �� > 4���� window, then delete the ridge, otherwise, go to 

Step (b). 

 

 

 

 

 

  



Table S2. Summary of the algorithm for determining LSPR resonance peak wavelength. 

Name Advantages Disadvantages 

Centroid algorithm with a fixed 
baseline 

Simple and quick. Sensitive to fluctuations in light intensity. 

Polynomial fitting algorithm Simple and flexible. 
Overfitting, sensitivity to outliers, extrapolation 
issues, and choice of degree. 

Dynamic baseline algorithm 
Adaptability, real-time adjustment, and 
improved accuracy. 

Complexity. 

Constant reflectance algorithm Simple and stable. 
Limited applicability and inaccuracy in varied 
conditions. 

Multi-scale continuous Wavelet 
transform algorithm 

Multiresolution analysis, flexibility in scale 
selection, and feature extraction. 

Computational complexity, selection of wavelet 
function, and boundary effects. 

Quadruple central moments 
algorithm 

The normalized spectral calculation central 
moments are suitable for comparison of 
various types of spectral data. 

The calculation steps are complex 

 
  



S2. Multiple characteristic quantities in observing the red shift of resonance peak 

 

Figure S2. LSPR sensing parameters. (A) Relevant sensing parameters used to observe the center position of the resonance peak. (2) 

Relevant sensing parameters used to observe changes in the central position of resonance peaks. 

The calculation formulas are expressed as follows: 

����� = ����� − ���� (1) 

����� = ����� − ���� (2) 
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Where �����; �����; ��
� and ��

�means the value after reaction; FWHM; FWQM; �� and �� means the value 

before reaction. 

Sensitivity in sensing refers to the ability of LSPR sensing chip to detect small changes or variations in the 

quantity when measuring. For LSPR biosensors, sensitivity indicates how effectively the sensor could respond to 

minute changes in the refractive index of the surrounding medium. 
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Where S denotes the sensitivity; n is the refractive index and ��  is the resonance peak wavelength. Larger 

nanoparticles typically demonstrate increased sensitivities, although their peaks may be broadened due to 

multipolar excitations and radiative damping. The figure of merit (FOM), extensively utilized to assess a 

nanoparticle's sensing capabilities, is calculated by dividing the sensitivity by the resonance line width. 
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Where S is the sensitivity; FWHM is the full width at half maximum. Measure the variation of the sensor peak at 

different refractive indexes, perform a linear fit for the displacement of the refractive index and the peak, calculate 

the standard deviation, Resolution (�) was then calculated by dividing this standard deviation (�) by the RI 

sensitivity (�) as [7] 
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Where R is the spectral resolution; Δ����  means the minimum value that could be measured by LSPR 

biosensors, which refers to the capability of a spectrometer to differentiate between different wavelengths during 

the measurement of a spectrum [8]. In optical sensing, higher spectral resolution allows for finer discrimination 

between wavelengths, providing more detailed information about the target or environment being measured. 

Improved spectral resolution is particularly valuable in applications where precise identification of spectral features 

is crucial.  

The limit of detection (LOD) is a critical parameter that defines the smallest amount or concentration of a 

substance that a sensor could reliably detect. It serves as a measure of the sensor capability to discern low levels of 

analytes in a sample. LOD is defined as follows [8]: 
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�
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Where R means the spectral resolution; S means the sensitivity. A lower limit of detection values indicates 

higher sensitivity and is essential for applications where trace amounts of substances need to be identified or 

monitored, such as in medical diagnostics and environmental sensing. The various LSPR sensing parameters 

integrated into the software system are summarized in Table S3. 

Table S3. Summary of the LSPR sensing parameters integrated on the visual software. 
Parameters Definition Signification 

����  Resonance peak wavelength 
Molecular binding events, analyte concentration, real-time 
monitoring 

����  Resonance peak intensity Quantitative analysis, Signal-to-Noise ratio 

�����������  Resonance peak area Quantitative analysis and qualitative analysis 

��  Resonance peak centroid 
Average resonance position, quantitative analysis, sensitivity 
enhancement, reducing noise effects 

����  
The width of a line shape at half of its 
maximum amplitude 

Sharpness of resonance peak, spectral resolution, discrimination of 
multiple peaks, reducing noise effects, quality of plasmon resonance 

����  
The width of a line shape at a quarter of its 
maximum amplitude 

Sharpness of resonance peak, spectral resolution, discrimination of 
multiple peaks, reducing noise effects, quality of plasmon resonance 

��  The center of the FWHM 
Average resonance position, quantitative analysis, sensitivity 
enhancement, reducing noise effects 

∆����  The shifting of resonance peak wavelength Monitoring molecular binding events 
∆����  The change of resonance peak amplitude Monitoring molecular binding events 
∆��  The shifting of resonance peak centroid Monitoring molecular binding events 

∆��  
The shifting of resonance peak center 
wavelength 

Monitoring molecular binding events 

∆����  The change of resonance peak FWHM Monitoring molecular binding events 

�  
The change in the wavelength of the 
resonance peak for each unit alteration in 
the sensed Refractive Index 

Higher sensitivity means that the sensor could detect smaller changes 
in the RI 

���  Figure of merit (based on wavelength) 
A higher figure of merit implies that the sensor could detect smaller 
changes in the refractive index with a narrower spectral peak, 
indicating better resolution and performance 

�  Spectral resolution 
The ability of the sensor to distinguish between different 
wavelengths or colors in the spectrum 

���  Limit of detection 
The smallest concentration or amount of analyte that the sensor could 
reliably detect and quantify 

 



 
Figure S3. SNR calculation. The SNR is defined as the average of the peak signal over time divided by the RMS noise of the peak signal over 

the same time. 

The SNR is defined as the average of the peak signal over time divided by the root mean squared (RMS) noise 

of the peak signal over the same time. In order to get an accurate result for the SNR it is generally required to 

measure over 25 – 50 time samples of the spectrum. 
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�����
������� means the average of the peak signal over time. ����,���� means the RMS noise of the peak signal over the 

same time. the RMS noise of the peak signal over the same time is calculated as: 
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Where the peak signal over time is measured over n time samples and �����
������� is the average peak intensity, �����,� is 

the peak intensity at time �. 

In the context of resonance peak wavelength monitoring, the significance of standard deviation is paramount. 

Standard deviation serves as a statistical measure quantifying the dispersion of data points around the mean within 

a dataset. In the realm of monitoring resonance peak wavelengths, the magnitude of the standard deviation is 

indicative of the stability and consistency of the measurement results. To calculate the standard deviation, use the 

following formula: 

� = �
1

�
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Where the one of resonance peak characteristic quantities (e.g. ����) is measured over n time samples and �̅ is the 

average value of the resonance peak characteristic quantity, �� is the peak intensity at time �. 

To calculate the variance, use the following formula: 
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Examining the reproducibility of spectral features in replicates or measurements is key to gauging the stability 

and consistency of signal processing methods. In our assessment of LSPR spectral signal processing robustness, 

reproducibility emerged as a pivotal metric, revealing high consistency and reliability across multiple experiments. 

The observed reproducibility underscores the stability of the employed signal processing methods, validating their 

reliability, and suggesting broad applicability across diverse experimental conditions. This consistency is promising 

for practical use, indicating that enhancements achieved through signal processing are consistently replicable, 

enhancing the credibility of our findings and reinforcing the reliability of LSPR spectral signal processing for 

analytical applications. The reproducibility of a spectrum could usually be expressed by a parameter called the CV 

[9]. In a single sample, with observations ��, ��, …, ��, CV is described as: 
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Where �̅ is the mean value of ��, ��, …, ��. 
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�̅ ≠ 0, 

and

� = �
�

�
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are the mean and the standard deviation of the observations, respectively. 

  



S3. LSPR biosensing signal processing strategies integrated on the visual software 

The preprocessing method, which includes interpolation and smoothing, enhances the accuracy of LSPR 

spectra data. Interpolation and smoothing are commonly used techniques in biosensor spectra data processing, and 

they are of great significance to improve the accuracy and precision of biosensors. Interpolation serves two 

purposes. (1) Filling in missing data. When the sensor collects data, there may be missing data or sparse data, and 

interpolation can make the data more complete by estimating the missing data and filling in the gaps. (2) 

Interpolation can improve spectral resolution. For discrete sensor data, interpolation can be used to generate 

continuous data, improving spectral resolution, and making the data more granular and closer to reality. Smoothing 

has three effects. (1) Noise removal. Sensor data is often subject to environmental disturbances and measurement 

errors. Smoothing can help remove these noises and improve the quality and accuracy of the data. (2) Reducing 

data fluctuations. Smoothing serves to reduce the pronounced fluctuations in data, enhancing the stability of spectra 

data and aiding in the accurate capture of trends and patterns in data changes. (3) Improving spectral signal shape. 

Smoothing can make the shape of the signal smoother and continuous, which helps to accurately identify the 

feature points and peaks of the spectral signal. Preprocessing methods integrated on visualization software systems 

are summarized as Table S4. 

Table S4. Summary of preprocessing methods integrated in the visual software. 

Categories Method Advantages Disadvantages 

Interpolation method 

Nearest Simplicity and low computational cost 
Lack of smoothness, inaccuracy for gradients, 
sensitivity to outliers, and limited applicability 
for continuous data 

Linear interpolation 
Simplicity, preservation of linearity 
applicability to continuous data 

Limited accuracy for nonlinear data, inability 
to capture curvature, lack of smoothness 

Lagrange Flexibility, Global Interpolation Runge's phenomenon, numerical instability 

Cubic Hermite 
Smoothness, Interpolation with 
derivative information, preservation of 
endpoint conditions 

Sensitivity to derivative estimates, difficulty in 
modifying interpolation, not suitable for all 
functions 

Spline Interpolation 
Smoothness, local control, and 
preservation of endpoint conditions 

Limited applicability for noisy data 

Smooth method 

Moving average Simple, and low latency Weak in preserving signal details 

Median filter 
Effective at removing isolated noise 
points, robust against extreme values 

Poor performance in smoothing the overall 
spectrum, not suitable for continuous 
fluctuations 

Savitzky-Golay filter 
Preserving main features, suitable for 
handling data with significant 
fluctuations 

May introduce excessive smoothing with 
higher-order polynomial fitting, requires 
careful parameter selection 

Wavelet transform 
Capable of smoothing data at different 
scales while preserving details 

Computational complexity is high, and the 
choice of wavelet function and scale 
parameters needs careful consideration 

The spectrometer's resolution is intricately tied to both the grating and the slit parameters. A greater grating 

line count and a narrower slit enhance resolution, though at the cost of diminished signal strength. Conversely, a 

broader slit yields a stronger signal but with lower resolution. To reconcile this trade-off between high resolution 

and signal strength, the interpolation method proves valuable. By employing this method, the spectral signal 

contour is kept relatively smooth, preserving the integrity of subsequent LSPR sensing performance 

characterization. 



The selection of appropriate interpolation algorithms plays a key role in accurately reducing, smoothing, and 

filling data discontinuities. Different interpolation algorithms show their own unique advantages and application 

scenarios. There are five types of interpolation methods integrated by the visual software. (A) Nearest. Chooses the 

� value corresponding to the � value that is nearest to the current �� value and sets the interpolated value to the 

nearest data point. (B) Linear interpolation sets the interpolated values to points along the line segments connecting 

the � and � data points.  

��(�) = �� +
���� − ��

���� − ��
(� − ��) (16) 

Where ��(�) is the line segments connecting the � and � data points; i is the index of data points. (C) Lagrange 

uses the barycentric Lagrange interpolation algorithm. (D) Cubic Hermite. guarantees that the first derivative of the 

cubic interpolating polynomials is continuous and sets the derivative at the endpoints to certain values to preserve 

the original shape and monotonicity of the Y data. (E) Spline interpolation calculate the third-order polynomial 

with two adjacent points. Polynomials meet the following conditions: The first and second derivatives at point �� 

are continuous; polynomials satisfy all data points; and the second derivative of the start and end points is 0. ��(�) 

is the third-order polynomial between adjacent points (��, ��) and (����, ����). 

 

Figure S4. Interpolation method integrated on the integrated visual software. (A) Nearest interpolation. (B) Linear interpolation. (C) 

Spline interpolation. 

When selecting the most suitable interpolation algorithm for LSPR biosensing spectra, spline interpolation is 

recommended considering that LSPR biosensing spectra are usually continuous and smooth. The reason includes 

the following four aspects. (1) Spectral continuity requirements. LSPR spectra typically appear as smooth curves, 

while spline interpolation is known for its smooth nature. Spline interpolation uses low-order polynomial fragments 

to approximate the curve, which is well adapted to continuity requirements. (2) Accuracy. The spline interpolation 

method could reproduce the curves in the spectrum more accurately by fitting a lower number of polynomials 

between adjacent data points. This is critical for the high accuracy required for LSPR spectroscopy. (3) Natural 

boundary conditions: Spline interpolation allows natural boundary conditions to be set during the interpolation 

process, ensuring that the interpolation curve behaves well at boundary points, avoiding oscillations or over-

approximation that could be introduced by other interpolation algorithms. (4) Smoothness. Spline interpolation 

produces interpolation curves that not only pass through known data points, but also maintain smooth connections 

across adjacent fragments, helping to better understand the overall trend of the LSPR spectrum.  



The enhancement of signal brightness and the suppression of background noise are the two main factors that 

determine accuracy and sensitivity. To deal with the noise in LSPR spectral data, the commonly used methods 

include a variety of spectral smoothing algorithms, which are divided into three categories based on noise 

frequency, noise statistical characteristics, and waveform patterns. According to different principles, these 

smoothing algorithms could be divided into three categories [10]: the first is based on noise frequency, such as 

Fourier transform and wavelet transform [11]; the second is based on noise statistical characteristics, including a 

variety of filters represented by moving polynomial smoothing filter [12]; and so on; the last category is based on 

waveform patterns, including mode filtering [13], noise peak discrimination [14], and morphological filtering [15].  

Among the many smoothing algorithms, including moving average, Savitzky-Golay smoothing, Loess 

smoothing, etc., in view of the continuity of the LSPR spectrum and the need to preserve the key features, we 

choose moving average and Savitzky-Golay smoothing as the preferred algorithm to smooth the LSPR spectral 

curve more carefully and effectively in subsequent data processing. 

 

Figure S5.  Smoothing algorithms integrated on the visual software. (1) Discrete wavelet transforms. (2) Moving average. (3) Savitzky-

Golay filter. 

The main reason for using moving averages when collecting spectral data in real time is to instantly reduce 

transient fluctuations caused by environmental noise or sensor instability, and to improve the stability and 

readability of real-time data. By calculating the average value within the data window, the moving average helps to 

smooth out high-frequency noise in the short term, making the spectral data collected in real time more stable. This 

pre-processing step makes it easier to identify and respond to potential spectral changes during real-time 

monitoring, increasing confidence in real-time data. 

Moving averages are a simple and intuitive smoothing method that smooths the spectrum by calculating the 

average of data points within a data window. It is suitable for stationary spectral data and has a good removal effect 

on high frequency noise but may not be able to retain the spike characteristics well. The boxcar width represents 

the sliding width of the moving polynomial smoothing filter, a moving average filter works by averaging multiple 

points in the input spectra signal amplitude to generate each point in the output spectra signal amplitude. Repeat 

this process so that the moving window of M points is used to calculate the average of the dataset.  
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∑ ����

���
���

�
, �� � > 0 ��� � < � − (� − 1)

0, ��ℎ������

(17) 



Where ���� is the input spectra signal amplitude at wavelength index i, ��  is the output spectra signal amplitude at 

wavelength index i, � is the average number of spectra data points, and � is the total number of spectra data 

points. 

The reason for the use of Savitzky-Golay smoothing in the spectral post-processing stage is to smooth the 

entire spectral curve in greater detail, retain the main features in the spectrum and remove high-frequency noise. 

Savitzky-Golay smoothing is a smoothing method based on polynomial fitting that smooths the spectral curve by 

performing polynomial fitting locally, helping to remove low-frequency noise over a long period of time and 

preserve the overall trend of the spectrum. This smoothing method is applied in the post-processing stage to further 

optimize the overall quality of the spectrum while maintaining important features in the spectrum, improving the 

interpretability and readability of the data.  

Savitzky-Golay filter [16] is one of the most widely used methods. This method is like the moving average 

method, which is based on window smoothing, but it uses the polynomial least square method to fit the data in the 

window. The calculation formula is as follows. 

�(�) = �� + ��� + ���� + ⋯ ���� = � ����

�

���

, |�| ≤ � (18) 

Where k represents polynomial order; ��  denotes the coefficients of polynomial; m is the half-width of the 

smoothing window b and b is equal to 2m+1. The least-squares criterion is applied to acquire the coefficients an  as 

follows: 

�

���
� � (�(�) − ��)�

�

����

� = 0 (19) 

Where �� is the input spectra signal amplitude at wavelength index i, result in k + 1 simultaneous equation for 

calculating the unknown coefficients an. If we calculate �(�) at i=0 and can only acquire a ��, in the same way, we 

can get a ��, �� …��, Thus, we deduce an expression as follows: 

�� = � ��
(�)

����

�

����

(20) 

Where  �� is the output of S–G filter at wavelength index i. 

The combination of moving average and Savitzky-Golay smoothing could not only stabilize the data to cope 

with noise in real-time acquisition, but also smooth the spectral curve in a finer way in post-processing, providing a 

more reliable basis for data analysis. Such a combined processing strategy helps to efficiently process spectral data 

in a dynamic environment, improving data quality and confidence in analysis. 

The method called scans to average is used to average multiple sets of spectral data before and after according 

to the spectral time series, to eliminate the light intensity fluctuation of the spectrum, and random noise, and help to 

improve the detection accuracy of ����. Continuous scanning of the average spectrum also offers the benefits of 

enhanced signal-to-noise ratio, improved precision, and smoother spectral curves. This approach involves multiple 

scans that are averaged, resulting in a more reliable measurement with higher quality data. It is particularly 



valuable for detecting weak signals, minimizing system drift, and ensuring greater stability in various applications 

requiring high-quality spectral information. 

In addition to various spectral smoothing algorithms that could be used for spectral noise reduction, baseline 

correction is also one of the commonly used methods. There are three types of commonly used baseline correction 

methods, one is based on polynomial fitting, which finds the boundary points by calculating the peak range, and 

then performs background fitting according to these data points, mainly including iterative polynomial [17] 

piecewise fitting algorithm [18], penalty least squares method [19]. The other type is based on frequency 

acquisition, which needs to set the filter cut-off frequency, mainly including Fourier transform[20] and wavelet 

transform [21]: morphological methods [22] could also be used, but because the selection of structural elements is 

more difficult, the scope of application is smaller than the first two cases.  

Zhang et al. [23] proposed a full-spectrum baseline correction method based on the generalized Whittaker 

smoother, which first used the wavelet transform to obtain the peak range, and then used the smoother to fit, and 

obtained good results. Based on Zhang's algorithm, a new baseline correction method is proposed by integrating 

wavelet transform and derivative method. This optimization addresses the overfitting issue present in the original 

algorithm and improves the accuracy of identifying the characteristic peak region. The algorithm is as follows. 

After dividing the spectrum into the characteristic peak region and other regions, different weights are set for 

the two regions, and the baseline data could be obtained by using the weights for calculation, and the pseudocode is 

shown in algorithm 1 of Table S5. 

Table S5. The workflow of baseline correction. 

Algorithm1 Baseline Correction 
Input: Spectrum � = {(��. ��), (��, ��), . . . , (��, ��)), �����, �������1, �������2 
Output: Background result � 
1. [�, �, �] = ����ℎ�ℎ����(�, �����, �������1, �������2); 
2. Get smooth spectrum � through Savitzky-Golay Filter; 
3. Initialize �; 
4. while exist (� < �) 
5.     �(� < �) = �; 
6.     Get baseline � through whittaker smoother; 
7. � = ����������(�, �); 
8. for �� in �: 
9.     if �� in �: 
10.         Calculate Overlapping Peaks; 
11.         Update ��; 
12.     Get baseline ��; 
13. Return �: 

 

 Procedure for the baseline correction: 

1. Calculations were performed using the range of characteristic peak. 

2. The data was smoothed and the Savitzky-Golay filter was used to remove the noise. 

3. Setting � = 1, using the generalized Whittaker smoother for the initial fitting to obtain the background. 

4. The part of the background that is smaller than the original spectrum is covered with the original 

spectrum, and the background is obtained by refitting. 

5. For background refinement. The spectrum is divided into multiple regions according to the range of characteristic 



peaks, and the calculation is performed for each region: (a) if the current region is a characteristic peak region, 

according to the range data of the characteristic peaks �, determine whether the current peak �� is part of the 

overlapping peak, if so, find all the peaks contained in the overlapping peaks, combine the data, and update the 

information of the current characteristic peaks �� and the characteristic peak dataset �; (b) use the generalized 

Whittaker smoother to calculate the baseline and connect it with the calculated baseline. 
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