
Citation: Hutarew, G.;

Alinger-Scharinger, B.; Sotlar, K.;

Kraus, T.F.J. Genome-Wide

Methylation Analysis in Two

Wild-Type Non-Small Cell Lung

Cancer Subgroups with Negative and

High PD-L1 Expression. Cancers 2024,

16, 1841. https://doi.org/10.3390/

cancers16101841

Academic Editors: Mario Roselli,

Patrizia Ferroni and Fiorella Guadagni

Received: 27 March 2024

Revised: 25 April 2024

Accepted: 9 May 2024

Published: 11 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Article

Genome-Wide Methylation Analysis in Two Wild-Type
Non-Small Cell Lung Cancer Subgroups with Negative and High
PD-L1 Expression
Georg Hutarew *, Beate Alinger-Scharinger, Karl Sotlar and Theo F. J. Kraus

Institute of Pathology, University Hospital Salzburg, Paracelsus Medical University, Müllner Hauptstr. 48,
A-5020 Salzburg, Austria; b.alinger@salk.at (B.A.-S.); k.sotlar@salk.at (K.S.); t.kraus@salk.at (T.F.J.K.)
* Correspondence: hutarew@gmail.com; Tel.: +43-664-6305499

Simple Summary: PD-L1 is a marker that helps determine a tumor’s immune status and is used
to select patients for immune therapy. Methylation modifies gene expression by adding a methyl
group to DNA without affecting its sequence. In our study, we assessed and correlated PD-L1 and
methylation status in pulmonary adenocarcinomas with high and negative PD-L1 expression. We
investigated the pathobiological functions of the highest-ranking genes and promoters in both groups
by searching genomic databases for their role in carcinomas. We observed distinct methylation
patterns between PD-L1 high- and low-expressing tumors, indicating differences in their biological
characteristics and tumor development.

Abstract: We conducted a pilot study to analyze the differential methylation status of 20 primary
acinar adenocarcinomas of the lungs. These adenocarcinomas had to be wild type in mutation
analysis and had either high (TPS > 50%; n = 10) or negative (TPS < 1%; n = 10) PD-L1 status
to be integrated into our study. To examine the methylation of 866,895 specific sites, we utilized
the Illumina Infinium EPIC bead chip array. Both hypermethylation and hypomethylation play
significant roles in tumor development, progression, and metastasis. They also impact the formation
of the tumor microenvironment, which plays a decisive role in tumor differentiation, epigenetics,
dissemination, and immune evasion. The gained methylation patterns were correlated with PD-L1
expression. Our analysis has identified distinct methylation patterns in lung adenocarcinomas with
high and negative PD-L1 expression. After analyzing the correlation between the methylation results
of genes and promoters with their pathobiology, we found that tumors with high expression of PD-L1
tend to exhibit oncogenic effects through hypermethylation. On the other hand, tumors with negative
PD-L1 expression show loss of their suppressor functions through hypomethylation. The suppressor
functions of hypermethylated genes and promoters are ineffective compared to simultaneously
activated dominant oncogenic mechanisms. The tumor microenvironment supports tumor growth in
both groups.

Keywords: lung cancer; epigenetic profiling; methylome; methylation analysis; programmed cell
death ligand 1; precision medicine

1. Introduction

Lung cancer is a widespread form of cancer. The chances of surviving NSCLC vary
from 19 to 63% depending on the stage and available treatment options [1,2]. Modern
oncology offers many drugs designed to treat specific targets; therefore, a molecular panel
that includes immunohistochemistry and next-generation sequencing (NGS) with RNA
and DNA analyses is mandatory for each pulmonary carcinoma [3]. In routine lung cancer
diagnosis, we have to detect defined mutations in genes such as EGFR, BRAF, KRAS, ERBB2,
and STK11 and defined rearrangements like ALK, RET, ROS1, NTRK, and cMET [4]. In
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a study with real-world data analysis, the median overall survival was 351 days for all
patients and 571 days for those with targetable activating mutations and/or activating
translocations [5]. Many studies outline the advances and improved therapy outcomes of
target therapy in general or for specific targets and drugs, such as EGFR TKIs and ALK
inhibitors, in patients with pulmonary adenocarcinomas [6–11].

A significant advancement in oncology was the development of immunotherapy
with checkpoint inhibitors (ICIs). In lung cancer, PD-1 and PD-L1 inhibitors have shown
promising outcomes for selected patients based on their PD-L1 status, with partial or
even complete tumor regression in the case of pulmonary adenocarcinomas [12–14]. ICIs
like pembrolizumab, nivolumab, atezolizumab, and durvalumab were used initially in
second-line therapy and later in first-line therapy [15,16]. Meanwhile, they are available for
consolidation therapy following chemoradiation in unresectable locally advanced diseases
and also in neoadjuvant settings after surgical resection and chemotherapy [17–19]. Few
patients become long-term survivors with a chronification of lung cancer [20]. Patients
are selected for therapy with the expression of PD-L1 antibodies. Programmed death
ligand 1 (PD-L1) is a transmembrane protein expressed on the surface of T cells, NK
cells, tumor-associated macrophages (TAMs), myeloid dendritic cells, and epithelial cells.
Interaction between PD-L1 and its receptor PD-1 modifies the immune response in the
tumor microenvironment, particularly by decreasing the effectiveness of physiological
anti-tumor mechanisms [21] and by preventing the activation of cytotoxic T-cells [22,23].
Cancer cells upregulate PD-L1 on their surface to evade immune-regulated destruction by
cytotoxic T-cells [24]. Blocking the interaction of PD-L1 and PD-1 with checkpoint inhibitors
can enable cytotoxic T-cells to destroy tumor cells again.

PD-L1 expression and interactions play a crucial role in immune modulation, particu-
larly in cancer contexts. The same is true for DNA methylation, as well as for chemother-
apy and target therapy [25,26]. Changes in the immune status result in changes in the
methylation status in large tumor regions [27]. Methylation refers to the addition of a
methyl group to DNA without altering its sequence. It mainly influences gene expression
and is the reason for epigenetic regulation, especially in cancer, which also impacts the
tumor microenvironment.

We conducted a genome-wide comprehensive epigenomic methylation analysis to
identify methylation patterns in lung cancer with different PD-L1 statuses (i.e., PD-L1
high, TPS > 50%, and PD-L1 negative, TPS < 1%). To avoid the influence of aberrant DNA
methylation from mutations and rearrangements [28] in our cohort of lung cancer patients,
we only included cases that were analyzed with next-generation sequencing as wild type
and without rearrangements.

We aimed to find the pathobiological mechanisms and functions in PD-L1 high- and
negative-expressing pulmonary adenocarcinomas based on genes and promoters with
significantly different levels of methylation in both groups. We chose specific cutoffs and
selected the genes and promoters with the highest and lowest rankings from both groups.
We consulted multiple databases, including GeneCards, the National Institutes of Health
(NIH), the Alliance of Genome Resources, and The Cancer Genome Atlas (TCGA) to gather
data on their pathobiological functions.

The retrieved pathobiological data and functions enabled us to develop a hypothesis
on how methylation may affect the pathobiological mechanisms of pulmonary adenocarci-
nomas with negative and high PD-L1 expression.

2. Materials and Methods
2.1. Tissue Collection and Immunohistochemical Analysis

Our study used formalin-fixed and paraffin-embedded (FFPE) archived samples from
the University Institute of Pathology, University Hospital Salzburg, and Paracelsus Medical
University, Salzburg, Austria. Cases were randomly selected from our routine material, but
they had to meet specific criteria. Each tumor was required to be a primary pulmonary
adenocarcinoma, exhibiting either high PD-L1 expression (TPS > 50%) or negative PD-L1
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expression (TPS < 1%), with no mutations or rearrangements in the target genes or gene
regions according to our next-generation sequencing data (please see below for details).
Figure 1 illustrates the distribution of the PD-L1 values.
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Figure 1. Shows the TPS values of all probes.

The level of PD-L1 expression in lung cancer is determined by calculating the tumor
proportion score (TPS) based on guidelines set by the US Food and Drug Administration
(FDA) and the National Comprehensive Cancer Network (NCCN) [29,30]. This score is used
as a biomarker to predict the probability of a positive response to immune therapy in lung
cancer patients [30,31]. TPS is the percentage of stained viable tumor cells with complete or
partial membranous staining at any intensity falling into three groups: negative TPS < 1%,
low TPS 1–49%, and high TPS ≥ 50%. The higher the TPS, the better the individual’s
response to checkpoint inhibitor therapy is assumed [32]. In recent years, pathologists have
encountered a number of inconsistencies in testing PD-L1, which has led to its reputation
as a fragile biomarker [33]. Tumors exhibit a heterogeneous staining pattern, with varying
levels of PD-L1 expression across different regions, making it challenging to assess the
overall PD-L1 status. The quality of results can vary significantly due to differences in
the PD-L1 antibodies used, staining protocols and systems, and inter- and intraobserver
variability. This variation can significantly affect the scoring and treatment decisions
of non-small cell lung cancers (NSCLCs). However, it can be minimized by relying on
expertise, routine testing, and using a validated PD-L1 antibody. To determine the PD-L1
status of NSCLCs, we used the DAKO 22C3pharm DX kit from Agilent, USA, which is
a companion diagnostic tool. The immunostainings were performed on a DAKO-Omnis
System (Agilent, Santa Clara, CA, USA). Finally, we selected 10 cases with high PD-L1
expression (TPS > 50%, mean 82%; n = 10) and 10 patients with negative PD-L1 expression
(TPS < 1%, mean 0.5%; n = 10). Figure 2A,B and Figure 3A,B show HE stains and PD-L1
stains of a negative- and high-expressing adenocarcinoma, respectively.



Cancers 2024, 16, 1841 4 of 16Cancers 2024, 16, x FOR PEER REVIEW 4 of 16 
 

 

  
(A) (B) 

Figure 2. Cellblock of a pleural effusion with a pulmonary adenocarcinoma. (A): HE 200×. (B): PD-

L1 (22C3) positive, TPS = 100% (Sample 19 in Figure 1) 200×. 

  
(A) (B) 

Figure 3. Lung biopsy fragments of a pulmonary adenocarcinoma. (A): HE 100×. (B): PD-L1 (22C3) 

negative, TPS = 0% (Sample 6 in Figure 1) 100×. 

2.2. Molecular and Genetic Analysis 

The methods used in this study for DNA and RNA extraction and analysis are based 

on our routine specimen workup, from which our probes are derived. To ensure accurate 

mutation analysis, tumor specimens with a minimum of 60% tumor content were used. In 

some cases, we had to increase the amount of tumor tissue for analysis by microdissecting 

the specific area of interest on the tissue slides using a simple and effective method. We 

marked the areas with a higher concentration of tumor cells on the HE slide. Then, we 

scratched off the corresponding material from the following native cutting planes to use 

in the subsequent analysis. DNA was extracted from FFPE tissue samples using the Max-

well RSC (Promega, Fitchburg, WI, USA) automated purification system, which includes 

an overnight Proteinase K Digestion step prior to DNA purification. The DNA concentra-

tion was measured with a Quantus™ Fluorometer that allows an automatic concentration 

calculation. It is particularly effective for analyzing formalin-fixed paraffin-embedded 

(FFPE) tissue samples with low levels of nucleic acid. RNA was extracted from FFPE sam-

ples using the RNeasy FFPE Kit from Qiagen® (Hilden, Germany). This kit is specifically 

designed to extract RNA molecules longer than 70 nucleotides and provides usable RNA 

fragments for various downstream applications. The kit uses special lysis and incubation 

conditions to reverse the formaldehyde modification of RNA. The lysis buffer efficiently 

releases RNA from FFPE tissue sections, minimizing further RNA degradation. The RNA 

concentration was measured with a Quantus™ Fluorometer. We used the Illumina 

Figure 2. Cellblock of a pleural effusion with a pulmonary adenocarcinoma. (A): HE 200×. (B): PD-L1
(22C3) positive, TPS = 100% (Sample 19 in Figure 1) 200×.

Cancers 2024, 16, x FOR PEER REVIEW 4 of 16 
 

 

  
(A) (B) 

Figure 2. Cellblock of a pleural effusion with a pulmonary adenocarcinoma. (A): HE 200×. (B): PD-

L1 (22C3) positive, TPS = 100% (Sample 19 in Figure 1) 200×. 

  
(A) (B) 

Figure 3. Lung biopsy fragments of a pulmonary adenocarcinoma. (A): HE 100×. (B): PD-L1 (22C3) 

negative, TPS = 0% (Sample 6 in Figure 1) 100×. 

2.2. Molecular and Genetic Analysis 

The methods used in this study for DNA and RNA extraction and analysis are based 

on our routine specimen workup, from which our probes are derived. To ensure accurate 

mutation analysis, tumor specimens with a minimum of 60% tumor content were used. In 

some cases, we had to increase the amount of tumor tissue for analysis by microdissecting 

the specific area of interest on the tissue slides using a simple and effective method. We 

marked the areas with a higher concentration of tumor cells on the HE slide. Then, we 

scratched off the corresponding material from the following native cutting planes to use 

in the subsequent analysis. DNA was extracted from FFPE tissue samples using the Max-

well RSC (Promega, Fitchburg, WI, USA) automated purification system, which includes 

an overnight Proteinase K Digestion step prior to DNA purification. The DNA concentra-

tion was measured with a Quantus™ Fluorometer that allows an automatic concentration 

calculation. It is particularly effective for analyzing formalin-fixed paraffin-embedded 

(FFPE) tissue samples with low levels of nucleic acid. RNA was extracted from FFPE sam-

ples using the RNeasy FFPE Kit from Qiagen® (Hilden, Germany). This kit is specifically 

designed to extract RNA molecules longer than 70 nucleotides and provides usable RNA 

fragments for various downstream applications. The kit uses special lysis and incubation 

conditions to reverse the formaldehyde modification of RNA. The lysis buffer efficiently 

releases RNA from FFPE tissue sections, minimizing further RNA degradation. The RNA 

concentration was measured with a Quantus™ Fluorometer. We used the Illumina 

Figure 3. Lung biopsy fragments of a pulmonary adenocarcinoma. (A): HE 100×. (B): PD-L1 (22C3)
negative, TPS = 0% (Sample 6 in Figure 1) 100×.

2.2. Molecular and Genetic Analysis

The methods used in this study for DNA and RNA extraction and analysis are based
on our routine specimen workup, from which our probes are derived. To ensure accurate
mutation analysis, tumor specimens with a minimum of 60% tumor content were used. In
some cases, we had to increase the amount of tumor tissue for analysis by microdissecting
the specific area of interest on the tissue slides using a simple and effective method. We
marked the areas with a higher concentration of tumor cells on the HE slide. Then, we
scratched off the corresponding material from the following native cutting planes to use in
the subsequent analysis. DNA was extracted from FFPE tissue samples using the Maxwell
RSC (Promega, Fitchburg, WI, USA) automated purification system, which includes an
overnight Proteinase K Digestion step prior to DNA purification. The DNA concentration
was measured with a Quantus™ Fluorometer that allows an automatic concentration calcu-
lation. It is particularly effective for analyzing formalin-fixed paraffin-embedded (FFPE)
tissue samples with low levels of nucleic acid. RNA was extracted from FFPE samples using
the RNeasy FFPE Kit from Qiagen® (Hilden, Germany). This kit is specifically designed to
extract RNA molecules longer than 70 nucleotides and provides usable RNA fragments for
various downstream applications. The kit uses special lysis and incubation conditions to
reverse the formaldehyde modification of RNA. The lysis buffer efficiently releases RNA
from FFPE tissue sections, minimizing further RNA degradation. The RNA concentration
was measured with a Quantus™ Fluorometer. We used the Illumina AmpliSeq cDNA



Cancers 2024, 16, 1841 5 of 16

Synthesis Kit to convert RNA into cDNA. This kit is specifically designed for use with
library preparation kits and panels for targeted sequencing.

For mutation analysis of lung adenocarcinomas, we used either the AmpliSeq for
Illumina Cancer Hotspot Panel v2 or the AmpliSeq for Illumina Focus Panel (Illumina, San
Diego, CA, USA).

The AmpliSeq for Illumina Cancer Hotspot Panel v2 is a targeted resequencing assay
specially designed to investigate somatic mutations, such as single-nucleotide polymor-
phisms (SNPs), somatic variants, and insertions–deletions (indels), across the hotspot
regions of 50 genes that are known to be associated with cancer, particularly in solid tu-
mors. The AmpliSeq for Illumina Focus Panel is a targeted resequencing assay designed
for biomarker analysis of 52 genes. It can analyze both DNA and RNA simultaneously
and can detect copy number variants (CNVs), gene fusions, insertions–deletions (indels),
single-nucleotide polymorphisms (SNPs), and somatic variants. For both assays, the input
recommendation for DNA or RNA is 1–100 ng (10 ng per pool). The workflow starts with
a polymerase chain reaction (PCR)-based library preparation in which DNA or cDNA
fragments are amplified, primer sequences are removed, and the fragments are ligated to
adapters. After PCR amplification with sequence primers, the fragments can be sequenced
by synthesis (SBS) next-generation sequencing (NGS) technology and data analysis with
the onboard software tool. Next-generation sequencing was performed on an Illumina
MiniSeq device following the manufacturer’s protocol.

To analyze aberrant DNA methylation patterns (hyper- and hypomethylation) in PD-
L1 high- and negative-expressing pulmonary adenocarcinomas, we employed the Infinium
Methylation EPIC Bead Chip with Infinium chemistry and the Illumina protocol. The
kit detects cytosine methylation at CpG islands, providing broad coverage of genes and
enhancers for epigenome-wide association studies (EWAS) [34]. It enables precise and
accurate measurement of methylation at single-nucleotide resolution for CpGs. Infinium
chemistry detects cytosine methylation through highly multiplexed genotyping of bisulfite-
converted genomic DNA. Bisulfite conversion is essential for studying DNA methylation
patterns where unmethylated cytosines are converted to uracils while methylated cytosines
are preserved.

Illumina Genome Studio Methylation Module Software (Version 2011.1, Illumina,
San Diego, CA, USA) has integrated controls that assess data quality based on Infinium
workflow steps. These include sample-specific controls, such as the efficiency of bisulfite
conversion, and negative controls, which we used for primary controls. All other statistical
and quality controls are integrated into the RnBeads package (please see below).

2.3. Computational Data Analysis

There were various reasons why we utilized RnBeads (Package 2.18.0) on R statistical
software (Version 4.3.0, R Foundation for Statistical Computing, Vienna, Austria) [35] to
analyze our methylation data. RnBeads offers a more comprehensive analysis workflow
than other existing tools. It also provides state-of-the-art normalization techniques that
enable robust sample comparisons. Additionally, experimental quality control is integrated
into the package and can be conducted to identify sample outliers and mix-ups. RnBeads
is designed to characterize differential methylation between groups of samples. In our
study, we compared PD-L1 high-expressing samples to negative-expressing samples. It
analyzes individual CpGs and allows sample filtering on predefined or custom genomic
regions. The generated methylation data reports include method descriptions, plots, and
data tables.

Our mapping was based on the human genome reference builds (GRCh38.p14 patch
release of the hg38 assembly). DNA methylation beta values were used, indicating the ratio
of the intensity of the methylated bead type in variables between 0 and 1, depending on the
combined locus intensity (ranging from 0% to 100% methylation). To improve the reliability
of our results, we removed probes enriched with single-nucleotide polymorphisms (SNPs)
and used Greedycut filtering to remove measurements with the highest impurity. During
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an iterative algorithm, unreliable measurements with p > 0.05 were eliminated based on de-
tection p-values. A β value is considered unreliable if its corresponding p-value is not below
0.05. We also removed context-specific probes and those on sex chromosomes. We utilized
the Dasen Method to remove technical artifacts such as background fluorescence, dye bias,
probe design bias, and batch effects from our DNA methylation data. This normalization
technique adjusts raw intensities to enhance the comparability of DNA methylation data
between different samples [36]. Figure 4A shows the graphical distribution of removed
and retained methylation β values. Figure 4B demonstrates Dasen normalization’s effect
on CpG methylation values. Probes were marked with four genomic areas, including
tiling regions (which were 5000 nucleotides long), genes (version Ensemble genes 75),
promoters (version Ensemble genes 75), and CpG islands (CpG island track of the UCSC
Genome Browser) [37]. We used a hierarchical linear model (Limma package) to analyze
gene expression data and assess differential expression with associated p-values and false
discovery rates with an empirical Bayes approach, which is a procedure for statistical
inference in which the prior probability distribution is estimated from the data [38]. To
identify sites exhibiting differential variability between two sample groups, we used the
diffVar method integrated into the missMethyl package and nominal p-values (nominal
significances) as performed in other epigenome-wide association studies (EWAS) [39,40].
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Figure 4. (A) Compares the methylation β values that were removed with those that were retained.
(B) Demonstrates the effect of Dasen normalization on CpG methylation values, which reduces
technical biases and enhances the reliability of DNA methylation data. The X-axis represents beta
values (methylation level), while the Y-axis shows density (methyl group concentration) in specific
genomic regions.

In summary, RnBeads is a package that adheres to the three customary procedures
for computational analysis of DNA methylation data, which include (I) data processing
and quality control, (II) data visualization and statistical analysis, and (III) validation and
interpretation. The study setup involves conducting differential methylation analysis using
a strict protocol, followed by researching the pathobiological functions of the highest-
and lowest-ranking results within predefined cutoffs. This process, therefore, should be
easily reproducible.

3. Results

In the Section 3, we present the technical data from our methylation analysis study,
whereas the pathobiological correlation and functions were integrated into the Section 4 as
we hope for better understanding. Our analysis focused on identifying the methylation sta-
tus between PD-L1 high adenocarcinomas (TPS > 50%) and PD-L1 negative cases (TPS < 1%)
without any known relevant gene mutation or rearrangement. We analyzed 20 samples
with 866,895 methylation sites and performed statistical analyses using RnBeads, as detailed
in Section 2.3 “Computational Analysis”. We had to exclude 17,371 sites due to overlap-
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ping with SNPs and 7532 sites after applying the Greedycut algorithm. Additionally, we
removed 18,597 probes located on sex chromosomes and 2915 context-specific probes. We
kept all samples but, in the end, removed 46,415 probes, thus retaining 820,480 probes for
final analyses, as depicted in Figure 4A. Our analysis identified 252,729 annotations in the
tiling regions (length 5000), 34,988 annotations in genes, 44,852 annotations in promoters,
and 26,540 annotations in CpG islands.

Based on the average methylation levels, we divided the results for genes and promoters
into two categories: highest average (mean.mean.high) and lowest average (mean.mean.low).
Additionally, we identified the highest differential methylation (mean.mean.diff) for genes
and promoters between the two groups with p-values less than 0.05 (p < 0.05). Figure 5A,B
illustrate the graphical distribution of the results. The scatterplot shows the mean methy-
lation difference between the PD-L1 high and low groups, and the volcano plot compares
methylation between PD-L1 high and negative groups using pairwise comparisons. To choose
genes and promoters from these categories, we used a normal (Gaussian) distribution.
We selected those with values more than two standard deviations above (corresponding
to >95%) or below (corresponding to <5%) the mean value at 50% [41]. We conducted
literature research on the selected genes and promoters using databases like GeneCards
(https://www.genecards.org/, accessed on 1 March 2024), the National Institutes of Health
(NIH) (https://www.nih.gov/, accessed on 1 March 2024), the Alliance of Genome Re-
sources (https://www.alliancegenome.org/, accessed on 1 March 2024), and The Cancer
Genome Atlas (TCGA) (https://www.cancer.gov/ccg/research/genome-sequencing/tcga,
accessed on 1 March 2024). Our aim was to identify the ones that are associated with
lung cancer pathobiology within this group. Table 1 provides the detailed outcomes
of the results.
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Figure 5. (A): The scatterplot shows the mean methylation difference between the PD-L1 high and low
group in blue, with a combined rank among the top 1000 sites in red. The proportion of methylation
(mean.beta.low and mean.beta.high) is used as a variable on the Y- and X-axes. (B): Volcano plots
compare methylation between PD-L1 high and low groups using pairwise comparisons, with colors
based on combined p-values to assess the overall significance. The X-axis shows the difference in
average methylation (mean.diff), while the Y-axis shows the identification of differentially methylated
CpG sites (−log10 (p-value)), (diff.meth).

https://www.genecards.org/
https://www.nih.gov/
https://www.alliancegenome.org/
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
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Table 1. Methylation results.

PD-L1 Expression Methylation Status Gene Methylation p Value Chr

PD-L1 high Highest methylation in
gene

SNORD114-14 (C/D Box 114-14). Small
Nucleolar RNAs (SnoRNAs) 0.9 0.04 14

Highest methylation in
promoter

DCAF4L2 (DDB1 Associated Factor 4
Like 2) 0.82 0.02 8

CELF2-AS1 (CELF2 Antisense RNA 1) 0.8 0.02 10

LINCMD1 (Long Intergenic Non-Protein
Coding RNA, Muscle Differentiation1,
MIR133BHG)

0.8 0.01 6

Lowest methylation in
gene GLIPR1L2 (GLIPR1 Like 2) 0.21 0.007 12

Lowest methylation in
promoter CAPS2 (Calcyphosine 2). 0.14 0.005 12

GLIPR1L2 (GLI Pathogenesis Related 1
Like 2) 0.19 0.008 12

IFITM3 (Interferon Induced
Transmembrane Protein 3) 0.21 0.03 11

PD-L1 negative Highest methylation in
gene

SNORD114-14, (C/D Box 114-14)
Small Nucleolar RNAs (SnoRNAs) 0.75 0.04 14

LINC00528 (Long Intergenic Non-Protein
Coding RNA 528) 0.73 0.001 224

Lowest methylation in
gene MIR124-3 (MicroRNA124-3) 0.21 0.01 20

Lowest methylation in
promoter

TRIM71 (Tripartite Motif Containing 71,
LIN41) 0.15 0.02 3

CAPS2 (Calcyphosine 2). 0.26 0.005 12

UBE2QL1 (Ubiquitin Conjugating
Enzyme E2 Q Family Like 1) 0.3 0.007 5

GLIPR1L2 (GLIPR1 Like 2) 0.3 0.008 12

PDL1
high/negative

Difference * in gene
methylation

S100A7L2 gene, also known as S100
Calcium Binding Protein A7 Like 2

0.74/0.57
Delta 17% 0.002 1

Difference * in promoter
methylation

SOD1P3 (Superoxide Dismutase 1
Pseudogene 3),

0.68/0.54
Delta 14% 0.02 3

PDL1
negative/high

Difference * in gene
methylation

LINC00528 (Long Intergenic Non-Protein
Coding RNA 528)

0.73/0.54
Delta 19% 0.001 22

Difference * in promoter
methylation

NUMB gene, (NUMB Endocytic
Adaptor Protein)

0.51/0.31
Delta 20% 0.0005 14

PD-L1 Expression Methylation status Gene Methylation p value Chr

* Delta beta values (mean.mean.diff).

We have organized the highest-ranking results into four different groups:
Section 3.1 (Hypermethylated genes and promoters in PD-L1 high-expressing cases);
Section 3.2 (Hypomethylated genes and promoters in PD-L1 high-expressing cases);
Section 3.3 (Hypermethylated genes and promoters in PD-L1 low-expressing cases);
Section 3.4 (Hypomethylated genes and promoters in PD-L1 low-expressing cases).

3.1. Hypermethylated Genes and Promoters in PD-L1 High-Expressing Cases

Average hypermethylation in this group ranged from 80% to 90%, with p-values from
0.01 to 0.04 in the following locations:
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SNORD114-14 (C/D Box 114-14, Small Nucleolar RNAs, snoRNAs), DCAF4L2 (DDB1
Associated Factor 4 Like 2), CELF2-AS1 (CELF2 Antisense RNA 1), LINCMD1 (Long
Intergenic Non-Protein Coding RNA, Muscle Differentiation, MIR133BHG).

The most significant differences in methylation (delta value) between PD-L1 high- and
low-expression groups were found in the following:

S100A7L2 (S100 Calcium Binding Protein A7 Like 2) and SOD1P3 (Superoxide Dismu-
tase 1 Pseudogene 3).

3.2. Hypomethylated Genes and Promoters in PD-L1 High-Expressing Cases

Average hypomethylation was found at rates ranging from 14% to 21%, with p-values
between 0.007 and 0.03 in the following locations:

CAPS2 (Cyclase-Associated Protein 2, Calcyphosine 2), GLIPR1L2 (GLI Pathogenesis
Related 1 Like 2), and IFITM3 (Interferon Induced Transmembrane Protein 3).

3.3. Hypermethylated Genes and Promoters in PD-L1 Negative-Expressing Cases

Average hypermethylation ranged from 73% to 90%, with p-values between 0.001 to
0.04 in the following locations:

SNORD114-14 (C/D Box 114-14, Small Nucleolar RNAs, snoRNAs) and LINC00528
(Long Intergenic Non-Protein Coding RNA528).

3.4. Hypomethylated Genes and Promoters in PD-L1 Negative-Expressing Cases

Average methylation in PD-L1 negative-expressing cases between 21% to 30% and
with p-values between 0.005 to 0.02 was found in the following:

MIR124-3 (MicroRNA124-3), TRIM71 (Tripartite Motif Containing 71, LIN41), CAPS2
(Calcyphosine 2), UBE2QL1 (Ubiquitin Conjugating Enzyme E2 Q Family Like 1), and
GLIPR1L2 (GLIPR1 Like 2).

The highest methylation delta values between PD-L1 low/high were found in the
following:

NUMB gene (NUMB Endocytic Adaptor Protein) and LINC00528 (Long Intergenic
Non-Protein Coding RNA 528).

Additionally, we found a group with the simultaneous methylation status of genes and
promoters in PD-L1 high- and negative-expressing carcinomas, suggesting independence
from the PD-L1 status. SNORD114-14 showed the highest levels of methylation in both PD-
L1 high- and PD-L1 negative-expressing lung cancers, with a methylation of 75% and 90%,
respectively, and p-values of 0.04. Moreover, CAPS2 and GLIPR1L2 were hypomethylated
in both PD-L1 high and negative expression groups with a methylation of 14%, 17% (genes),
and 26% (promoter) and p-values of 0.005 for CAPS2 and 19% and 30% and p-values of
0.008 for GLIPR1L2.

4. Discussion

The expression of genes can differ due to various epigenetic mechanisms cells use
to regulate DNA functions. One of these mechanisms is DNA methylation, which alters
gene expression without changing its sequence. This modification can affect gene expres-
sion during cell differentiation. Methylation of a promoter region can regulate nearby
gene expression, and excessive methylation can cause the silencing mainly of DNA repair
genes [42]. This is believed to be an early step toward cancer progression, as hyperme-
thylation of DNA upstream blocks access to transcription factors and enzymes, ultimately
inhibiting downstream gene activity [43]. Conversely, many tumors exhibit hypomethy-
lated carcinogenic genes when compared to normal tissue [44,45]. Activating typically
silenced genes can contribute to developing malignant neoplasias as individuals age. Both
hypermethylation and hypomethylation are leading causes of oncogenesis, the former
being more frequent and occurring at the CpG islands in the promoter region of the genes.
In contrast, the latter occurs globally in various genomic sequences [46].
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Several genes exhibit significant methylation status, directly influencing angiogenesis,
active oxygen, calcium, and vessels closely related to the tumor microenvironment [47].
Additionally, the methylation status of several genes and promoters is associated with mod-
ifying the status of immune cells such as macrophages, lymphocytes, and neutrophils [48].
These genes and promoters help to create an optimized microenvironment for tumor
growth and development [42,49].

Some studies have examined the impact of PD-L1 methylation on PD-L1/PD-1 interac-
tions, as PD-L1 expression is known to influence the immune status. Epigenetic regulations,
such as methylation and histone acetylation, determine the expression levels of PD-L1. In
the case of pancreatic carcinoma, these regulations cause an increase in PD-L1 expression,
while in hepatocellular carcinoma, head and neck squamous cell carcinomas, and other
types of cancer, the expression of PD-L1 is decreased [22]. PD-L1 DNA methylation has
a functional relationship with mRNA expression in NSCLC. However, the correlation
between methylation and PD-L1 expression in tumor biopsies was inconclusive [50].

PD-L1 K162 methylation inhibits PD-L1/PD-1 binding, preventing tumor immune
escape even with high PD-L1 expression. PD-L1 hypermethylation was shown to be a key
mechanism for anti-PD-L1 therapy resistance [51]. In our study, the methylation status of
PD-L1, PD-L1 K162, and PD-1 did not show significance. Although these questions are
intriguing, they were not included in this study’s scope.

Our research focused on characterizing the pathobiological functions of PD-L1 high-
and negative-expressing pulmonary adenocarcinomas based on the results of our methyla-
tion analysis.

4.1. Pathobiological Mechanisms of Hypermethylated Genes and Promoters in the PD-L1
High-Expressing Tumors

SNORD114-14 (C/D Box 114-14, Small Nucleolar RNAs, snoRNAs) (average methy-
lation 90%, p = 0.04) and other small nucleolar RNAs (snoRNAs) are crucial in devel-
oping and spreading lung cancer. They control the balance between cell growth and
death and promote the adaptability of cancer cells. SnoRNAs display both oncogenic
and tumor-suppressive activities that are vital in the formation and progression of lung
cancer. Dysregulation of snoRNAs is a contributing factor to lung cancer tumorigenesis
and progression [52].

DCAF4L2 (DDB1 Associated Factor 4 Like 2) (average methylation 82%, p = 0.02) is
a protein-coding gene. Studies have revealed that the levels of DCAF4L2 are higher in
patients with lung cancer and colorectal cancer, which can lead to more advanced stages of
the disease and the spread of cancer cells to other parts of the body [53].

CELF2-AS1 (CELF2 Antisense RNA 1) (average methylation 80%, p = 0.02) suppresses
non-small cell lung carcinoma growth by inhibiting the PREX2-PTEN interaction, which
regulates cell proliferation. Additionally, CELF2 protein expression is downregulated in
tumor tissues as lung cancer and is associated with poor prognosis [54].

LINCMD1 (Long Intergenic Non-Protein Coding RNA, Muscle Differentiation,
MIR133BHG) (average methylation 80%, p = 0.01) inhibits cell proliferation, migration, and
the invasion of lung adenocarcinoma [55,56].

Despite being classified as a pseudogene, S100A7L2 (S100 Calcium Binding Protein A7
Like 2) (average methylation 74%, delta17%, p = 0.002) has been found to play a significant
role in inducing transdifferentiation from lung adenocarcinoma to squamous carcinoma.
Moreover, it has been observed that the expression of this gene is regulated differently by
the Hippo-YAP pathway in lung cancer cells, which contributes to tumor cell growth [57].
S100A7L2 is also involved in cell migration and invasion, creating a proinflammatory and
proangiogenic environment that promotes tumor progression and metastasis [58].

The gene SOD1P3 (Superoxide Dismutase 1 Pseudogene 3) (average methylation 68%,
delta 14%, p = 0.02) substantially influences cancer development. SOD3 and SOD1P3
regulate active oxygen in the microenvironment and are downregulated in lung cancer [59].
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Furthermore, SOD1P3 regulates the processes of angiogenesis, metastasis, and invasion in
lung cancer by controlling the levels of Interleukin6 and VEGF [60].

The summarized results show that methylation-driven genes and promoters in PD-L1
high-expressing tumors have strong oncogenic effects (SNORD114-14, DCAF4L2, S100A7L2,
and SOD1P3). Additionally, hypermethylation in PD-L1 high-expressing tumors pro-
motes the creation of a proinflammatory and proangiogenic milieu in the tumor microen-
vironment, associated with an increased number of immune cells such as neutrophils,
macrophages, and lymphocytes, and regulates active oxygen and calcium [61]. On the
other hand, hypermethylated genes and promoters in the PD-L1 high-expression group
have suppressor effects (CELF2-AS1, LINCMD1, and MIR133BHG), which appear ineffec-
tive in reducing tumor progression compared to this group’s simultaneously activated
dominant oncogenic mechanisms.

4.2. Pathobiological Mechanisms of Hypomethylated Genes and Promoters in the PD-L1
High-Expression Group

CAPS2 (Calcyphosine 2) (average methylation 14%, p = 0.005) is overexpressed in
lung cancer, where it promotes cell proliferation, migration, invasion, and metastasis by
activating the ERK/MAPK and AKT signaling pathways [62]. The expression of CAPS2 is
higher in lung cancer tissues when compared to normal lung tissues, and it is linked to the
stage of the tumor, lymph node metastasis, and poor survival. As such, CAPS2 can be used
as a biomarker to monitor lung cancer progression following therapy [63].

GLIPR1L2 (average methylation 19%, p = 0.008) plays a significant role in cancer and
immune defense. GLI pathogenesis-related 1 functions as a tumor suppressor in lung
cancer, and during lung tumorigenesis, the expression of GLIPR1L2 is downregulated [64].

IFITM3 (Interferon-Induced Transmembrane Protein 3) (average methylation 21%,
p = 0.03) regulates the growth and invasion of human lung adenocarcinoma and is believed
to be a crucial factor in promoting carcinogenesis. According to recent research, IFITM3
expression levels are directly associated with tumor differentiation, lymph node, distant
metastasis, and tumor node metastasis stages. Knockdown of IFITM3 is effective in sup-
pressing lung cancer cell proliferation, invasion, and migration while inducing cell cycle
arrest and apoptosis [65].

The results indicate that both these genes and promoters can exhibit oncogenic and
tumor-suppressive effects. However, both functions seem to be reduced by hypomethyla-
tion, ultimately supporting the development of lung cancer.

4.3. Pathobiological Mechanisms of Hypermethylated Genes and Promoters in PD-L1
Negative-Expressing Cases

SNORD114-14 (average methylation 90%, p = 0.04), its pathobiological mechanisms
are already listed above.

LINC00528 (Long Intergenic Non-Protein Coding RNA 528) (average methylation 73%,
p = 0.001) was identified as a long non-coding RNA found in computational analyses to
be associated with neutrophils, lymphocytes, and macrophages involved in the immune
reaction of the tumor microenvironment and strongly correlated with immunotherapy
prognosis in lung cancer. The exact mechanism of how LINC00528 affects the immune
system is not fully understood, but it is believed to regulate genes involved in the immune
response [66,67].

4.4. Pathobiological Mechanisms of Hypomethylated Genes and Promoters in the PD-L1
Negative-Expressing Group

MIR124-3 (MicroRNA124-3) (average methylation 21%, p = 0.01) is a microRNA that
affects mRNA stability and translation. It plays a role in both breast and lung cancer [68]
and was shown to suppress lung cancer metastasis [69].

TRIM71 (Tripartite Motif Containing 71, LIN41) (average methylation 15%, p = 0.02) is
a gene that encodes an E3 ubiquitin-protein ligase, which plays a role in the G1-S phase
transition of the cell cycle. TRIM7 negatively regulates the NF-kappa B signaling pathway
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in lung cancer by degrading p65 [70,71]. The expression of TRIM7 is diminished in tumor
tissues compared to adjacent normal tissues, and its level is negatively correlated with
the clinical stage of lung cancer. In vitro, TRIM7 substantially inhibits the proliferation
and migration of tumor cells and promotes cell apoptosis, but its effects are less effective
in vivo [72].

CAPS2 (Calcyphosine 2) (average methylation 26%, p = 0.005) and GLIPR1L2 (GLI
pathogenesis-related 1) (average methylation 30%, p = 0.008), both were previously dis-
cussed in the group due to hypomethylation in PD-L1 high-expressing carcinomas.

The UBE2QL1 gene (Ubiquitin Conjugating Enzyme E2 Q Family Like 1) (average
methylation 30%, p = 0.007) encodes a ubiquitin-conjugating enzyme in lung cancer cells. It
plays a crucial role in regulating the integrity of lysosomes and controlling the selective
macroautophagy or autophagy of the entire organelle, also known as lysophagy [73].
Lysosomal membrane permeabilization or complete rupture of lysosomes can lead to stress
conditions relevant to degenerative diseases, infections, and cancer [74].

Based on several studies, the NUMB gene (NUMB Endocytic Adaptor Protein) (average
methylation 51%, delta 20%, p = 0.005) acts as a tumor suppressor in lung carcinoma [75].
In lung adenocarcinoma, high levels of NUMB can inhibit tumor growth, invasion, the
Notch pathway, and the epithelial-mesenchymal transition. However, in lung squamous
cell carcinoma, NUMB may promote cell proliferation. The loss or mutation of NUMB is
associated with poor prognosis, tumor progression, and resistance to chemotherapy in
NSCLC patients [76].

We concluded that in this group, the process of hypomethylation leads to tumor devel-
opment by reducing the effectiveness of the mechanisms that suppress tumor growth [77].
This suggests that tumors with high levels of PD-L1 expression in the lungs and other
primary tumor sites increase oncogenic mechanisms, making them more aggressive than
tumors with negative PD-L1 expression, which lose tumor-suppressing mechanisms [61].

It is important to note that our study was carried out on a limited sample size of
only 20 cases, and we see it as a pilot study. The specimens were processed using robust
and reproducible methods, including standardized PD-L1 immunostaining, methylation
analysis from Illumina, and statistical evaluation with RnBeads. The applied cutoffs of 5%
and 95% were chosen to reduce the number of evaluated genes and promoters. However,
altering these cutoffs would increase the number of results and might influence the resulting
pathobiology. Therefore, results should be interpreted with caution, and further research
with a larger sample size should be performed to confirm our findings.

More research is necessary to explore the impact of methylation in upcoming stud-
ies on lung cancer. Methylation alterations have significant effects on tumor biology.
Dynamic changes in methylation occurring during lung cancer progression and tissue-
specific methylation patterns can serve as biomarkers for diagnosis or prediction. Besides
chemotherapy, targeted therapy and immunotherapy, either alone or in combination, can
lead to changes in genome-wide methylation patterns for monitoring disease progression
or therapeutic outcomes.

5. Conclusions

PD-L1 high-expressing tumors show hypermethylated genes and promoters with
strong oncogenic effects (SNORD114-14, DCAF4L2, S100A7L2, and SOD1P3) and hyperme-
thylated genes and promoters with tumor suppressor effects (CELF2-AS1 and LINCMD1).
Hypomethylated genes and promoters in this group seem to lose their tumor-suppressing
effects (IFITM3 and GLIPR1L2) and perhaps show a reduction in oncogene activity (CAPS2).

PD-L1 negative-expressing tumors show a potent hypermethylated oncogene
(SNORD114-4) and hypomethylated genes and promoters, which seem to lose their sup-
pressor function (MIR124-3, TRIM71, GLIPR1L2, and NUMB) and additionally reduce the
functionality of CAPS2, an oncogene. Moreover, UBE2QL1 and LINC0528 form a tumor
microenvironment that supports cancer development, growth, and progression.
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Lung carcinomas exhibiting high and negative PD-L1 expression demonstrate distinct
methylation patterns, and their pathobiology indicates different paths through various
mechanisms by which PD-L1 high-expressing and PD-L1 negative-expressing lung cancers
develop. It appears that tumors with a high expression of PD-L1 are primarily driven
by the development of oncogenic effects, and carcinomas with a negative expression of
PD-L1 tend to develop tumors mainly by reducing suppressor mechanisms. If genes and
promoters are hypermethylated, leading to the simultaneous upregulation of suppressor
and oncogenic effects, suppressors seem less effective than dominant oncogenic mecha-
nisms. We concluded that the activation of oncogenes correlates with more aggressive
tumor behavior, as seen in the PD-L1 high group.
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