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Abstract: This research was to examine the impacts of long-term integrated rice–crayfish farming
on soil nutrients, carbon pools, and rice yields in paddy fields. The aim was to establish a scientific
basis for the sustainable development of RS in the northern region of Zhejiang. The results showed
that the change from rice monoculture (CK) to rice–crayfish coculture systems (RS) led to a 24.99%
increase in the 5-year average of soil ammonium nitrogen (AN), while the soil nitrate nitrogen (NN),
available potassium (AK), and available phosphorus content (AP) decreased by 28.02%, 16.05%, and
28.76%, respectively. Moreover, the total organic carbon (TOC), easily oxidizable organic carbon
(EOC), dissolved organic carbon (DOC), and microbial biomass carbon (MBC) exhibited a reduction
of 2.45%, 8.82%, 35.31%, and 65.84%, respectively. Correlation analysis revealed a significant positive
correlation between NN, EOC, and MBC in the RS mode. In terms of rice yield, the 5-year average of
rice yield in RS decreased by 8.40% compared to CK. The mean yield of early-maturing rice varieties
was reduced by 13.16%, while that of late-maturing rice varieties was reduced by 6.00%. These results
shed light on the annual variation in soil nutrients, carbon pools, and rice yield in the RS mode,
providing insights for the sustainable development of RS in northern Zhejiang.

Keywords: red-claw crayfish; nutrients; carbon pool; yield; prolonged flooding

1. Introduction

Rice, as a primary crop in China, accounts for approximately 30% of the nation’s
total grain cultivation area [1]. The rice cultivation area in China reached 29.45 million
hectares in 2022 [2], playing a crucial role in ensuring national food security. In recent
years, the economic benefits of the rice monoculture model have decreased due to various
factors such as labor, land, and the increasing costs of agricultural materials [3]. At present,
there is an increasing trend in utilizing the rice planting environment (temperature, light,
water, air, and heat) for paddy field compound aquaculture [4]. According to statistics, the
area of rice–shrimp cultivation reached 156.67 million hectares in 2022 [5], representing
54.71% of the integrated rice field–aquaculture area in China [6]. Rice–crayfish cultivation
represents a type of rice–shrimp model that has become a prominent mode of integrated
rice field–aquaculture in the middle and lower regions of the Yangtze River [7,8].

Land-use type transformation is the main driver of changes in soil nutrient and
carbon fractions [9,10]. Similarly, land use shifts from rice monoculture to alternating
rice–crayfish cultivation also face this situation. Previous studies indicated that long-
term rice–crayfish cultivation had significantly higher soil C, N, and P concentrations
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than rice monoculture systems [11], and the soil total nitrogen and phosphorus increased
due to the excessive use of nitrogen and phosphorus nutrients [12]. In terms of soil
carbon fractions, integrated rice–crayfish farming was found to significantly increase total
organic carbon (TOC), dissolved organic carbon (DOC) content in all layers, and microbial
biomass carbon (MBC) in the 20–40 cm layer compared to paddy farming [13]. In addition,
the organic matter content in each component of the soil aggregates increased under
the integrated rice–crayfish farming system compared to traditional paddy farming [14].
However, unreasonable fertilizer and feed inputs [15,16], in addition to the flooding of the
soil for extended periods [17], are significant variables that influence the soil characteristics
of the rice–crayfish farming system. In recent years, an increasing number of studies
indicate that the long-term use of the rice–crayfish farming model has also caused a series of
soil problems, such as soil fertility decline, soil acidification, and soil microbial community
disruption [18–20]. Therefore, the impact of this aquaculture method on soil nutrients and
carbon fractions needs to be further investigated for a more comprehensive view.

The red-claw crayfish (Cherax quadricarinatus), a native of Australia, is one of the most
valuable and economic freshwater shrimps in the world. The red-claw crayfish exhibits a
number of advantageous traits, including a large size, a rapid growth rate, a high degree
of adaptability, and an abundant nutrition source [21], which are highly beneficial in the
context of rice field–aquaculture. A substantial body of literature exists on the subject
of rice–shrimp coculture [22–24]. However, the majority of the literature is focused on
the rice–crayfish coculture model [25–27], with comparatively few reports on rice–red-
claw crayfish coculture. The co-cultivation system of rice and red-claw crayfish involves
the cultivation of both species for an extended period. In order to facilitate the healthy
development of red-claw crayfish, it is essential that the water level in the aquaculture
system be maintained at a high level and that the rice remain submerged for an extended
period until the time of harvest. Recent research indicates that rice–red-claw crayfish
coculture can significantly increase the secretion of organic acids and amino acids in the rice
root system, accelerate nutrient release, and promote rice yield [28]. He et al. (2019) [29]
showed that the nitrogen, phosphorus, organic matter content, and plankton density in
rice–red-claw crayfish coculture water were higher than those in traditional aquaculture
ponds. However, many studies have shown that the prolonged flooding of rice paddies
can negatively affect the soil environment [30,31] and even crop yields [32,33].

North Zhejiang Province is the largest area to promote the rice–crayfish aquaculture
model in Zhejiang Province, and is also an important food production area in Zhejiang
Province. The impact of rice and crayfish cultivation on food security and farmland quality
has always been a concern for local governments. Therefore, the aim of this study was
to clarify the effects of the rice–crayfish coculture model on soil quality and rice yield
in northern Zhejiang. A comprehensive analysis of soil nutrients, carbon fractions, and
rice yield in two systems (rice monoculture and rice–crayfish coculture) was conducted
from 2018 to 2022. The hypotheses were as follows: (1) the input of fertilizers and feed in
rice–crayfish fields results in a significant accumulation of ammonium nitrogen due to the
prolonged flooding conditions; (2) due to long-term flooding, soil microbial biomass carbon
would decrease in long-term rice–crayfish coculture systems; and (3) rice yield would
decrease in long-term rice–crayfish coculture systems. The results showed that long-term
rice–crayfish cultivation in paddy fields not only reduces soil nutrients (with the exception
of ammonium nitrogen) and carbon fractions, but also reduces rice yield in comparison to
conventional rice monoculture. In conclusion, it can be stated that improving water and
nutrient management and cultivating late-maturing rice varieties are crucial strategies for
the sustainable development of rice–crayfish coculture in northern Zhejiang.

2. Materials and Methods
2.1. Experimental Site and Treatments

The field experiment was conducted in 2018–2022 at the Gutang Experimental Station
of the Jiaxing Academy of Agricultural Science (JXAAS), Jiaxing, China (30◦51′49.9′′ N,
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120◦42′14.5′′ E). The experimental site is located in the Hangjiahu Plain in the Yangtze River
Delta, at an altitude of 10–15 m. The city has an East Asian monsoon climate [32], which
is characterized by a comfortable average annual temperature of 17.3 ◦C and abundant
rainfall, with an annual average of about 1193 mm from 2018 to 2022. The annual average
total sunshine and frost-free days are 1920 h and 243 d, respectively.

The following trial rice varieties were adopted between 2018 and 2022: ‘Jiahe 218’
(early-maturing), ‘Zhehexiang No.2’, ‘Zhehexiang No.2’, ‘Xiushui 6545’ (early-maturing),
and ‘Jiahexiang No.1’. Rice transplanting was carried out in the middle and end of June
each year. The rice planting density was 25 × 16 cm, with two plants per hole. The crayfish
species cultivated is the red-claw crayfish (Cherax quadricarinatus). Before the start of the
experiment, the basic physicochemical properties (0–20 cm depth) of soil were as follows:
soil organic carbon 15.65 g·kg−1, total nitrogen 1.63 g·kg−1, total phosphorus 0.50 g·kg−1,
available phosphorus 7.63 mg·kg−1, available potassium 130.45 mg·kg−1, hydrolysable
nitrogen 121.65 mg·kg−1, and pHH2O 6.45.

The experiment included two treatments: a rice monoculture (CK) and a rice–crayfish
coculture system (RS), with each treatment covering an area of 0.2 ha. The RS mode is
derived from transformed conventional rice fields, which are excavated to create a circular
ditch with a diameter of 2 m and a depth of 1.5 m around the rice field (with a circular
ditch area accounting for about 10% of the total area of the paddy field). The red-claw
crayfish were cultured within the circular ditch. For RS, the researchers began to prepare
the soil in the middle of May each year, followed by the release of red-claw crayfish flies
(about 1 cm in body length) within the circular ditch. The density of crayfish placed in the
ditch was 2500 tails per hectare in the RS mode. In the initial stage of releasing crayfish
seedlings, the quantity of food provided per 10,000 crayfish seedlings should be controlled
at approximately 1000 g. In the subsequent stage, the quantity of food provided should be
gradually increased in accordance with the actual circumstances.

The management of fertilization and water irrigation in the CK or RS mode was largely
consistent throughout the period from 2018 to 2022. During the whole growth period, CK
was fertilized at sowing with 84 kg N·ha−1, 45 kg P2O5 ha−1, and 135 kg K2O ha−1. The
rice was fertilized at the tillering stage and panicle initiation stage with 63 kg N·ha−1. The
RS was only fertilized at the tillering stage and panicle initiation stage with 43 kg N·ha−1.
In accordance with the prevailing local planting and cultivation practices, phosphorus
fertilizer and potash were not applied every year.

In terms of water management, CK was managed in accordance with the local rice
irrigation practice of early stage irrigation, mid-stage sunshine, and late-stage alternating
wet and dry conditions. In order to guarantee the optimal functioning of the RS mode, it
is of the utmost importance to consider the depth of the water and the requirements for
both crayfish aquaculture in the ring ditch and rice cultivation. The paddy water depth
should be kept at about 10 cm for transplanting. In July, the depth of water in the paddy
should be approximately 20 cm, with the paddy surface consistently flooded. From August
to September, the paddy water depth should be about 40–45 cm, with the paddy flooded
and irrigated. In early October, crayfish are caught using a cage, and by mid- to early
November, the field is drained and the catch is complete. The operational processes of the
CK and RS modes are depicted in Table 1.

Table 1. The time of operation in different rice cultivation modes.

Mode Crayfish Fly Release Date Rice Planting Date Crayfish Catch Start Date Crayfish Catch Finish Date Rice Harvest Date

CK

- 19 June 2018 - - 15 November 2018
- 18 June 2019 - - 26 November 2019
- 24 June 2020 - - 30 November 2020
- 27 June 2021 - - 20 November 2021
- 22 June 2022 - - 24 November 2022
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Table 1. Cont.

Mode Crayfish Fly Release Date Rice Planting Date Crayfish Catch Start Date Crayfish Catch Finish Date Rice Harvest Date

RS

29 May 2018 19 June 2018 9 October 2018 5 November 2018 15 November 2018
28 May 2019 18 June 2019 6 October 2019 16 November 2019 26 November 2019
18 May 2020 24 June 2020 1 October 2020 20 November 2020 30 November 2020
23 May 2021 27 June 2021 5 October 2021 10 November 2021 20 November 2021
20 May 2022 22 June 2022 3 October 2022 14 November 2022 24 November 2022

(Note: CK, rice monoculture; RS, rice–crayfish coculture system).

2.2. Soil and Plant Measurements

The surface layer (0–20 cm) was sampled using a S-shaped sampling strategy in
two distinct stages: prior to the release of crayfish flies (early May) and subsequent to the
harvesting of rice (late November) in each year. Fresh soil samples were sieved (2 mm)
and stored in the refrigerator at 4 ◦C for determining dissolved organic carbon (DOC)
and microbial biomass carbon (MBC). The remaining samples were air dried, ground,
and finally passed through 0.25 mm sieves for determining soil ammonium nitrogen
(AN), soil nitrate nitrogen (NN), available phosphorus (AP), available potassium (AK),
easily oxidizable organic carbon (EOC), and total organic carbon (TOC). NA, NN, AP,
AK, and TOC were determined using the methods of Lu (2000) [34]. DOC was mea-
sured using the method of Jiang et al. (2006) [35]. EOC was measured using the KMnO4
oxidation procedure with 333 mmol/L [36]. MBC was determined using the chloroform
fumigation–extraction method [37].

When the rice was ripe, it was harvested with a Kubota 688 and the moisture content
of the paddy was determined and weighed on the spot. Actual rice yield was calculated
using the Chinese national standard for safe storage moisture content for rice of 14.5%.

2.3. Methods of Statistical Analysis of Data

Two-way analysis of variance (ANOVA) was performed using SPSS 25.0 software to
examine the interactive effects of different years (2018, 2019, 2020, 2021, and 2022) and
rice cultivation mode (RS and CK) on soil available nutrients (AN, NN, AP, and AK) and
carbon pools (TOC, EOC, DOC, and MBC). Duncan’s multiple comparisons was used to
test the significance of differences between treatment means. Specifically, soil data were
collected on a biannual basis, in early May (before crayfish fly release) and late November
(after rice harvest) in each year. Subsequently, the data were employed to compare the
differences between the RS and CK modes on soil nutrients and carbon pools in each year.
Furthermore, the soil data obtained twice a year for different time periods of RC or CK
are used to analyze the differences in annual soil nutrients and carbon pools. Pearson
correlation analysis was performed on the annual soil nutrient, carbon pool, and yield data
of the different treatments. The data were processed and tabulated with WPS 2010 software
and plotted with Origin 2021 software.

3. Results
3.1. Effect of Rice–Crayfish Coculture System on Soil Nutrients

The content of AN in the RS mode was higher than CK from 2020 to 2022 with the
extension of the years of experimental conduct, in which the RS soil AN significantly
increased by 105.42% (p ≤ 0.05) in 2020 (Figure 1). However, the content of AK in RS
was significantly decreased by 12.29%, 10.96%, 19.94%, 19.68%, and 17.46% (p ≤ 0.05),
respectively, from 2018 to 2022 compared with CK. The content of NN in RS in 2018, 2019,
and 2022 was significantly lower (p ≤ 0.05) than that of the CK treatment. Compared with
CK, the 5-year average content of soil AN in RS increased by 24.99%, and the content of
soil NN, AK, and AP decreased by 28.02%, 16.05%, and 28.76%, respectively.
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3.2. Effects of Rice–Crayfish Coculture System on Soil Carbon Pools

The content of DOC and MBC in the RS mode exhibited a decline from 2018 to
2022, compared with the CK mode (Figure 2). The content of DOC in the RS mode was
significantly decreased by 40.00%, 38.46%, and 40.00% in 2019–2021, respectively (p ≤ 0.05),
in comparison to the CK mode. And the content of MBC in the RS mode was significantly
decreased by 66.76%, 69.01%, 55.56%, and 71.75% in 2018, 2019, 2021, and 2022, respectively
(p ≤ 0.05), compared with the CK mode. The 5-year average contents of TOC, EOC, DOC,
and MBC in the RS mode were decreased by 2.45%, 8.82%, 35.31%, and 65.84%, respectively,
compared with the CK mode.
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3.3. Effect of Rice–Crayfish Coculture System on Rice Yield

The rice yield of the RS treatment was found to be lower than that of the CK treatment
in the same year (Figure 3). From 2018 to 2022, the rice yield of the RS treatment was found
to decrease by 6.37%, 7.62%, 4.80%, 17.96%, and 3.22% in comparison with the CK mode,
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respectively. Furthermore, the five-year average yield of the RS mode was found to be 8.40%
lower than that of the CK mode, although this difference was not statistically significant.
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3.4. Correlation Analysis

There was a significant positive correlation (p ≤ 0.05) between soil NN, EOC, and
MBC in the RS mode. NN and MBC were significantly positively correlated (p ≤ 0.05) in
the CK mode (Figure 4).
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4. Discussion
4.1. Rice–Crayfish Coculture System Altered Soil Nutrient Status

In this study, the 5-year average content of AN has to be improved for the RS mode
compared to the CK systems (Figure 1). It was also observed that soil NN was reduced in
the RS system. These results are in line with our first hypothesis, emphasizing that the soil
AN content was accumulated in the RS mode due to the application of N fertilizer [38],
artificial feed [39], and floodwater [40]. Moreover, the decomposition of dead crayfish
may also incorporate nitrogen nutrients into the paddy field [16]. This is supported by a
higher level of AN in RS (Figure 1). A lower level of NN could be explained by the fact
that the anoxic situation of prolonged anaerobic flooding in RS systems might weaken
soil nitrification function, resulting in lower soil NN in RS than in CK systems, which is
consistent with those of previous research [41].

Phosphorus (P) comes from the deposition of crayfish, feed debris, and fertilizer in
RS systems [42]. Previous studies of the RS mode have shown that the increased soil pH
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under flooding resulted in the significant increase in Fe2+ and Mn2+ content, which could
adsorb and fix soil P, thus promoting soil P accumulation [11]. Moreover, our data showed
that there is no significant difference in AP between the RS and CK systems, but the 5-year
average content of AP in the RS mode is lower than in the CK mode (Figure 1). This might
be explained by the non-application of phosphate fertilizer in the RS mode from 2018 to
2022, although the addition of organic matter (such as feed debris, rice straw, and organic
fertilizer) could increase the proportion of stable phosphorus fractions in RS systems [22].
However, these forms are not readily available to rice, leading to a decrease in AP. Moreover,
prolonged soil flooding can accelerate soil potential phosphorus losses [43]. Similar to soil
AP, the non-application of potash fertilizer in RS systems resulted in significantly lower
soil readily AK content in the RS mode than in the CK mode in different years [44].

4.2. Rice–Crayfish Coculture System Weakened Soil Carbon Pools

Soil carbon pools are an important part of the global carbon cycle. Among them, soil
labile organic carbon (such as MBC, DOC, and EOC) is a sensitive indicator reflecting
the dynamic changes in soil carbon pools, which can reflect the small changes in soil
organic carbon caused by farmland management measures such as fertilizer application
and irrigation [45,46]. Previous studies have indicated that flooding in rice–crayfish systems
increases soil TOC in a short period of time by reducing microbial activity and oxygen
supply from plant roots [47,48]. Contrary to these findings, this study observed a decrease
in the 5-year average TOC content in the RS mode compared to the CK mode. This may
be attributable to the following reasons. First, the flooding period in our rice–red-claw
crayfish systems is about 120 days longer than in other rice–crayfish systems [14,39], and
persistently high soil moisture promotes the reductive dissolution of soil iron oxides, which
promotes microbial exposure to previously protected iron oxides. It also promotes microbial
access to previously protected unstable carbon, thereby increasing carbon loss from the
soil [49]. Second, labile C inputs (such as feed debris) could activate microorganisms,
further stimulating soil organic matter decomposition [50,51]. Third, DOC is a potential
source of total soil organic carbon, and prolonged soil flooding can accelerate soil water-
soluble organic carbon leaching [43]. Before harvesting rice, it is necessary to drain the rice
fields that have been flooded for a long time, which leads to a significant loss of carbon
from the soil [52]. The 5-year average contents of EOC and DOC were decreased in the RS
mode, which was also supported by carbon loss from prolonged inundation (Figure 2).

Numerous studies have indicated that integrated rice–aquaculture farming could
change the MBC because of its rapid response to field management practices [53,54]. In
this study, the 5-year average contents of MBC was decreased in the RS mode, compared
with the CK mode (Figure 2). The input of excessive carbon sources in the RS mode
might enhance the soil C/N ratio, result in soil loss, restrict the development of soil
microorganisms, and reduce MBC content [55,56]. Moreover, flooding was the dominant
driver of microbial C limitations [57]. Long-term integrated rice–crayfish coculture was
significantly reduced microbial richness and diversity [17]. Some invertebrates, protists,
and bacteria were reduced in the integrated rice–crayfish farming systems [58]. These
findings support our second hypothesis and emphasize the important driver of flooding in
the RS mode for soil MBC.

4.3. Rice–Crayfish Coculture System Reduced the Rice Yield

In previous studies, there was no unified conclusion on rice yield in rice–crayfish
coculture systems. Chen et al. (2024) [59] showed that rice–crayfish coculture promoted
economic benefits but threatened grain production. However, Liu et al. (2022) [60] showed
that rice–crayfish coculture increased rice nitrogen uptake and yield relative to rice mono-
culture. According to our results, the 5-year average yield of the RS mode was 8.4% lower
than that of the CK mode. Among these, the yield of early-maturing varieties was reduced
by 13.16%, and the yield of late-maturing varieties was reduced by 6.00% in RS systems
(Figure 3), supporting our third hypothesis. Fertilization [61], flood control [62], and rice
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variety selection [63] are important reasons for differing yields in rice–crayfish coculture
systems. Favorable nutrient conditions would create good microbial and physicochemical
environments for rice growth in rice–crayfish coculture systems [16]. Inadequate fertiliza-
tion and prolonged flooding deplete soil nutrients (Figure 1), resulting in reduced yields
in our RS mode. In addition, the high intensity of waterlogging in RS systems leads to a
high accumulation of ammonium nitrogen in the soil, which inhibits primary root growth
and yield [40]. Combined with the technical indicators and requirements of the Chinese
Aquaculture Industry Standard “Technical Specifications for Integrated Rice-Fishery Farm-
ing Part 1: General Rules” (the proportion of ditch pits should not be more than 10% of
the total area under cultivation, and the rice yield in the plain area should not be less than
7.50 Mg·ha−1), the average yield of conventional late-maturing varieties in RS systems is
7.95 Mg·ha−1, which can achieve the target of a steady yield of 7.50 Mg·ha−1 of rice in the
northern part of Zhejiang Province.

4.4. Relationships between Soil Nutrient Status and Carbon Pools

Taylor et al. (2010) [64] showed that soil NN was non-linearly and significantly nega-
tively correlated with DOC. The present study showed a linear negative correlation between
NN and DOC under different rice cropping patterns. In addition, soil NN, DOC, and MBC
were positively correlated (p ≤ 0.05) in the RS mode (Figure 4). These results are in accor-
dance with previous observations, emphasizing the effects of long-term flooding on soil
nutrients and carbon pools in rice–crayfish coculture fields. This is due to the fact that the
RS mode inhibits soil nitrification and reduces soil NN [65], and also decreases MBC due
to poor soil aeration and weakened aerobic microbial activity under long-term flooding
anaerobic conditions [66]. Furthermore, prolonged and persistent flooding results in the
reductive dissolution of iron oxides in the soil, which in turn promotes microbial exposure
to previously protected unstable carbon. This results in a reduction in the concentration of
EOC in the soil [49], which provides an additional rationale for the observation that the
5-year average content of soil TOC in the RS mode is lower than that in CK.

5. Conclusions

The long-term rice–crayfish coculture system (RS) was found to increase the available
nitrogen (AN) content in paddy soil, while the content of nitrate nitrogen (NN), available
phosphorus (AP), soil organic carbon pools (including total organic carbon (TOC), easily
oxidizable organic carbon (EOC), dissolved organic carbon (DOC), and microbial biomass
carbon (MBC)), and rice yield decreased compared to rice monoculture. On the one hand,
the long-term flooding and anaerobic conditions under the RS mode stimulate the dissolu-
tion of available nutrients and carbon fractions, which results in the loss of nutrients and
carbon fractions by excessive drainage before the harvest of the rice crop. Furthermore,
long-term anaerobic conditions in flooded soil under RS mode suppress nitrification and
respiration, resulting in the accumulation of AN and a reduction in the content of NN and
MBC. On the other hand, the introduction of crayfish feed could facilitate the decomposition
of TOC. The absence of phosphorus and potassium fertilizers could result in a reduction
in the content of soil AP and AK in the RS mode. Consequently, the unique long-term
anaerobic conditions and the input of production materials (such as fertilizers and cray-
fish feeds) under RS mode alter the soil nutrient status and carbon pools, which collectively
contribute to a reduction in rice yield. In the future, it is essential to implement strategies
to enhance water and fertilizer management and cultivate late-maturing rice varieties in
order to achieve the sustainable development of the RS mode in northern Zhejiang.
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