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Abstract: Soils are a hotspot for the emergence and spread of antibiotic resistance. The effects
of agrochemical treatments on the bacterial community of agricultural soils and the content of
antibiotic-resistance genes (ARGs) were studied. Treatments included the following: control, mineral
fertilizers (NPKs), pesticides, and the combined treatment of soils under soya (Glycine max), sunflower
(Helianthus annuus L.), and wheat (Triticum aestivum). Bacterial community taxonomic composition
was studied using 16S rRNA gene sequencing. The content of 10 ARGs and 3 integron genes (intI1,
intI2, intI3) was determined using quantitative real-time PCR. The results showed that the treatments
had little effect on the taxonomic composition and diversity of the soil bacterial community. The
most significant factors determining differences in the microbial community were sampling time and
soil physico-chemical parameters. A significant role of the bacterial community in ARG distribution
in soils was demonstrated. Representatives of the Pseudomonas, Bacillus, Sphingomonas, Arthrobacter
genera, and the Nocardioidaceae and Micrococcaceae families were likely ARG hosts. The presence of
integron genes of all three classes was detected, the most numerous being intI3. This work provides
important information on the role of agricultural soils in ARG transfer, and the findings may be
useful for sustainable and safe agricultural development.

Keywords: agricultural soils; mineral fertilizers; pesticides; bacterial community; antibiotic-resistance
genes

1. Introduction

Agricultural soils play an essential role in food production. Unfortunately, intensive
exploitation of such soils implies the widespread use of various chemical plant protection
products (insecticides, herbicides, fungicides) and mineral fertilizers, which contribute to
pollution and a decrease in soil quality. In addition to the traditionally considered soil
pollutants (pesticides, heavy metals, PAHs), in recent years, more and more attention has
been drawn to the study of the content of antibiotic-resistance genes (ARGs) which, in 2006,
were recognized as a new class of pollutants [1]. Microbial resistance to antibiotics remains
an unresolved problem, despite the efforts of the international community. It is gradually
becoming clear that the emergence and spread of antibiotic resistance is a much more
profound and complex phenomenon than just a consequence of uncontrolled antibiotic use,
and natural ecosystems play a significant role here.

Soil serves as a habitat for a huge variety of bacteria, including antibiotic-resistant
bacteria (ARB), and is a natural reservoir for many ARGs. Antibiotics serve as a tool
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for communication and antagonism in bacteria, so the existence of antibiotic-resistance
determinants in soil is quite logical. Different soil types have different microbial com-
positions. For agricultural soils, the predominance of the Actinobacteria, Proteobacteria,
Acidobacteria, Verrucomicrobia, Bacteroidetes, and Firmicutes phyla has been shown [2].
Actinobacteria are widely known as producers of antibiotic compounds; it is reported that
64% of all antibiotics produced naturally come from actinomycete species [3]. The most
common species of soil actinomycetes, Streptomyces, is the producer of 55% of antibiotics
discovered between 1945 and 1978 [4]. Stress factors can affect the microbial community of
soils, including producers of antibiotic substances and ARBs [5]. This can lead to ARGs
from soil entering environmental strains through horizontal gene transfer, leading to the
emergence of resistant clinical strains.

The issue of antibiotic resistance in agricultural soils has been studied quite well, but
soil fertilization with manure or irrigation with wastewater is usually considered the main
source of ARG contamination [6–11]. This is due to both the direct application of ARB
and ARGs contained in manure and wastewater, and the proliferation of existing resistant
bacteria due to the introduction of large amounts of organic matter to the soil.

However, much less attention has been paid to the influence of mineral fertilizers
and pesticides widely used in traditional agriculture on the emergence and spread of
antibiotic resistance. Insecticides (pyrethrins), fungicides (copper ammonium acetate),
and herbicides (atrazine) have been shown to influence antibiotic resistance in E. coli [12].
The relative abundance of intI1 and some ARB types in the wheat rhizosphere increased
when chlorpyrifos was added to the soil [13]. Residues of the carbendazim, azoxystrobin,
and chlorothalonil fungicides increased ARG content in greenhouse soils, especially sul2,
sul1, aadA, tet(L), tetA(G), and tetX2 [14]. Bacteria strains from contaminated agricultural
soil that can degrade the monochrotophos insecticide (Bacillus sps, Bacillus cereus, Bacillus
firmus, Bacillus thuringiensis) were found to be resistant to chloramphenyl, monochrotophos,
ampicillin, cefotaxime, streptomycin, and tetracycline antibiotics [15].

Resistance to pesticides and antibiotics may be due to general strategies for protecting
a microbial cell, for example, the formation of biofilms, increased expression of efflux
pumps, and decreased synthesis of outer membrane porins [16]. Sublethal concentrations
of pesticides can provoke oxidative stress and enhance mutagenesis in bacteria [17], which
cause changes in antibacterial defense enzymes, among others [18]. Pesticides can also
affect the soil bacterial community, reducing diversity and shaping a specific community of
bacteria [19], including promoting ARG hosts. In this work, we tried to answer the question
of whether mineral fertilizers and pesticide application affect the content of 10 clinically
significant ARGs and genes of three classes of integrons in agricultural soils.

2. Materials and Methods
2.1. Study Area and Experimental Design

The field experiment was carried out in 2022–2023 in the Rassvet village of the Rostov
region, Russia (47◦21′40′′ N, 39◦52′50′′ E). The region has a temperate continental climate
with an average annual rainfall of 530–550 mm, an average monthly temperature of from
–5 ◦C to –9 ◦C in winter and from 22 ◦C to 24 ◦C in summer.

The soils are Calcic Chernozems (Loamic). Soy (Glycine max) and sunflower (Helianthus
annuus L.) were grown in the experimental plots in 2022, and then, in 2023, wheat (Triticum
aestivum) was grown after these predecessor plants.

Each plant was grown with four treatments—control (C), inorganic nitrogen–
phosphorus–potassium fertilizer treatment (F), pesticide treatment (P), and combined
fertilizer and pesticide treatment (FP). Detailed information on the introduced compounds
is provided in Table A1 (Appendix A).

Each treatment was carried out in triplicate, the area of each plot was 20 × 12 m.
Soil sampling was carried out twice—during the growing season before the application
of pesticides and after their application at the end of the growing season at the time of
harvest. Soil samples were taken from a depth of 0–20 cm by the envelope method [20,21],
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and samples from three replicates were mixed into one composite sample. Soil samples
were thoroughly mixed, placed into Falcon plastic tubes (50 mL), and stored at −20 ◦C. A
list of soil samples is presented in Table A2 (Appendix A).

2.2. Analysis of Soil Physicochemical Properties

Exchangeable ammonium was determined by extraction with potassium chloride and
photoelectric colorimetry [22]. Nitrates were measured by the ionometric method [23].
Mobile compounds of phosphorus and potassium were extracted by ammonium carbon-
ate solution and analyzed using a photoelectric colorimeter according to the Machigin
method in modification [24]. The soil organic matter (SOM) in the soils was determined
by the dichromate oxidation method using a photoelectric colorimeter [25]. The soil pH
was measured in a 1:5 soil–water suspension using a pH meter, and the solid residue of
the water extract was measured using a conductometer according to state instructional
guidelines [26].

2.3. Total DNA Isolation and Metagenomic Analysis of 16S rRNA Genes

The 16S rRNA sequencing method was used to study soil microorganisms. Total DNA
was isolated from soil samples using the innuSPEED Soil DNA Kit (Analytik Jena, Jena,
Germany) according to the manufacturer’s instructions. A number of 16S rRNA sequencing
libraries were constructed according to the 16S metagenomic sequencing library preparation
protocol (16S metagenomic sequencing library preparation).

Amplification of the V3–V4 region of 16S rRNA was performed using prokary-
otic primers: direct -TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGG-
NGGCWGCAG; reverse -GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGAC-
TACHVGGGTATCTAATCC, followed by amplicon indexing. The sequences were an-
alyzed by next-generation sequencing using the MiSeq system (Illumina, San Diego, CA,
USA) in the 2 × 300 bp mode. The readings were processed and analyzed using the QI-
IME software version 1.9.1 (http://qiime.org/ (accessed on 10 October 2023)) [27]. After
qualitative filtering, chimera removal, and sparsing steps, the sequences were grouped into
operational taxonomic units (OTUs) with a sequence similarity threshold of 97%. The latest
version of the GreenGenes 13.8 database was used [28].

2.4. Quantitative Measurement of Antibiotic Resistance Genes in the Studied Soils

Isolation of total DNA from soils of plots with different treatments was carried out
using the FastDNA Spin Kit for Soil (MP Biomedicals, Santa Ana, CA, USA) according to the
manufacturer’s instructions. The content of genes of resistance to carbapenems (blaVIM-1),
cephalosporins (blaCTX-M and mecA), glycopeptides (vanA and vanB), tetracyclines (tetO),
macrolides (ermB and mphA), sulfonamides (sul2), aminoglycosides (aadA2), was measured,
as well as the content of integron genes—intI1, intI2, intI3.

Quantitative PCR was carried out in a volume of 25 µL containing 1× reaction mix-
ture with EVA Green dye (Synthol, Moscow, Russia), 0.2 µM of each primer, and 20 ng
of template DNA. The primer sets and PCR conditions used in this study are shown in
Table A3 (Appendix A). The specificity of the product was checked using melting curves,
activity, r2 values, and gel electrophoresis. Calibration curves for the quantification of
target ARGs were plotted using tenfold dilutions of the plasmid containing the target genes
(102–108 copies). Plasmid DNA standards were constructed by cloning based on the com-
mercial vector pAL2-TA (Evrogen, Moscow, Russia) in accordance with the manufacturer’s
instructions. The concentration of plasmid DNA was determined using a Qubit 3.0 fluo-
rimeter (Thermo Fisher Scientific, Waltham, MA, USA). The R2 values of standard curves
for 16S rRNA and ARGs were greater than 0.99, and amplification efficiencies ranged from
90% to 110%. To minimize the differences arising from analytical efficiency, differential
extraction, and variations in background local amounts of bacterial genes, in this work,
ARG abundance was expressed as a ratio of ARG abundance to 16S rRNA gene content.

http://qiime.org/
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2.5. Statistical Analysis

The Shannon index and Chao 1 index were calculated to estimate microbial community
alpha diversity. One-way ANOVA and Tukey’s HSD (Honestly Significant Difference) test
were used to analyze the differences among samples. R (V 4.1.0) performing biomarker
features using LEfSe [29], principal component analysis (PCA), and principal coordinate
analysis (PCoA) were conducted to reveal the relationship between biomarker taxa and
soil properties. The Spearman correlation matrix was selected to determine the correlation
between ARGs and intI1, intI2, and intI3, between ARGs and soil properties, as well as the
correlation between microbial taxa and intI1, intI2, and intI3. Statistical significance between
the tested groups was assessed using the Kruskal–Wallis test. Beta diversity was assessed
using the Bray–Curtis dissimilarity index, weighted-UniFrac, and unweighted-UniFrac
metrics, and tested for statistical significance using the PERMANOVA test. The kruskal.test
function from the stats R package was used to test for significant differences in transformed
genera abundances between different plants and treatments. p values were corrected for
multiple testing using the Benjamini–Hochberg (BH) FDR method implemented in the
p.adjust function from the stats package. Figures were visualized using R (V 4.1.0).

3. Results
3.1. Soil Physicochemical Properties

The basic physicochemical properties of soils under different treatment conditions are
shown in Table A4 (Appendix A).

3.2. Taxonomic Composition and Diversity of the Agricultural Soils Microbiome

High-throughput sequencing was used to determine the diversity and composition of
the microbial community in soils with soya, sunflower, and wheat crops. After selection
and filtration, an average of 4446 OTU was obtained per sample. At the phylum level, the
soil bacterial community structure was similar in all studied samples (Figure 1). The domi-
nant phyla were Actinobacteria (36.2–38.4%), Proteobacteria (18.3–23.3%), Planctomycetes
(5.4–15.8%), Bacteroidetes (3.5–4.8%), Chloroflexi (5.4–6.5%), Acidobacteria (5.7–8.8%), Ver-
rucomicrobia (2.7–4.4%), and Gemmatimonadetes (2.2–5.5%). In the soil containing soya,
Cyanobacteria (2%) were also among the predominant phyla, the abundance of which in
other soils was insignificant.

Common families for all studied soils were the following: actinobacteria Gaiellaceae
(5.7–6.6%), Geodermatophilaceae 2.4–4.2%, Micrococcaceae 1.3–1.9%; Micromonosporaceae
1.4–1.6%, Nocardioidaceae 2.0–2.3%, Rubrobacteriaceae 1.6–3.7%, Solirubrobacteraceae 1.2–2.0%,
Chitinophagaceae (Bacteroides) (1.6–2.8%), Pirellulaceae (Planctomycetes) (0.6–2.9%), pro-
teobacteria Bradyrhizobiaceae (2.0–2.2%), Hyphomicrobiaceae (1.4–1.7%), Rhodospirillaceae
(1.2–1.5%), Sphingomonadaceae (2.3–2.9%), and Chthoniobacteraceae (Verrucomicrobia)
(1.1–2.0%) (Figure 2).

At the genus level, Rubrobacter (1.4–3.3%), Bacillus (0.6–1%), Rhodoplanes (1–1.2%),
Kaistobacter (1.0–1.4%) predominated in the soil under all plants. Under soya and sunflower,
the representation of the Gemmata genera (1.1–1.2%) was higher than under wheat (0.2–0.3%)
(Figure 3).

In general, agrochemical treatments had little effect on changes in the abundance of
individual bacterial taxa. Usage of mineral fertilizers for certain soils (p < 0.05) led to a
decrease in the number of bacteria of the Firmicutes, OD1 phyla, the actinobacteria families
Gaiellaceae, Intrasporangiaceae, and Propionibacteriaceae, and to an abundant increase in the
Sporichthyaceae family. Pesticide application credibly (p < 0.05) reduced the abundance of
the BRC1, Chlorobi, and Firmicutes phyla, and the Gaiellaceae family, and increased the
abundance of the Sphingomonadales order, Gemmataceae, and Burkholderiaceae families. The
combined treatment significantly (p < 0.05) influenced only some taxa at the genus level: a
decrease in the abundance of the genera Geodermatophilus, Nocardioides, and Nitrospira, and
an increase in the abundance of the Solirubrobacter and Myxococcus genera were observed
(Figure 3).
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Agricultural treatments had little effect on the α-biodiversity of the microbial com-
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wheat crops were, on average, higher than those under soya and sunflower crops (Table A5,
Appendix A).

Agronomy 2024, 14, 1021 7 of 28 
 

 

 
Figure 4. α-biodiversity of bacterial communities in soils. (A) Shannon index of soil bacterial com-
munities; (B) Chao1 index of soil bacterial communities; (C) Simpson index of soil bacterial commu-
nities. No significant differences were observed for the group comparisons based on the Mann–
Whitney U Test and Kruskal–Wallis ANOVA. 

 

Figure 4. α-biodiversity of bacterial communities in soils. (A) Shannon index of soil bacterial
communities; (B) Chao1 index of soil bacterial communities; (C) Simpson index of soil bacterial
communities. No significant differences were observed for the group comparisons based on the
Mann–Whitney U Test and Kruskal–Wallis ANOVA.



Agronomy 2024, 14, 1021 7 of 27

Sampling time was a significant factor influencing the taxonomic composition of
agricultural soils, as confirmed by principal coordinate analysis (PCoA) (Figure 5). The
samples are clearly grouped into three clusters, the first of which includes soils under soya
and sunflower, and the second, soils under wheat. Interestingly, there is a third cluster that
unites soils selected under wheat crops before the start of agrochemical treatments, after
both predecessor plants (including control treatments). This indicates the influence of the
previously cultivated crop as well.
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Figure 5. Principal coordinates analysis of the soil bacterial community based on Bray–Curtis
dissimilarity (soil under soya crops (Soya), sunflower (Sun), wheat grown after soya (C(soya)), wheat
grown after sunflower C(sun). C—control; f—fertilizers; p—pesticides, pf—pesticides + fertilizers.
A—sampling before pesticide application, B—sampling after pesticide application).

The bacterial taxa making the greatest contribution to the differences between samples
are presented in Figure 6. These include representatives of the phyla Planctomycetes,
Acidobacteria, Proteobacteria, Gemmatimonadetes, and Actinobacteria. Grouping by the
year of sampling is also visible here, which indicates a significant influence of climatic
factors on the taxonomic composition of soils.
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Figure 6. Bacterial taxa contributing the most to differences between soil samples, identified by the
linear discriminant analysis effect size (LDA) (LEfSe) method. The figure shows only the taxa, the
abundance of which differs statistically significantly (p < 0.05) between treatments.

The principal component method (PCA) revealed the interconnection between soil
conditions and the structure of microbial communities (Figure 7). Two principal compo-
nents (PCs) which describe 67.8% of the original data were identified. PC1 is the most
significant as it accounts for 56.9% of the total variance. On PC1, Verrucomicrobia, Plancto-
mycetes, Rubrobacteriaceae, Pirellulaceae, Planctomycetia, Gemmatales, and Phycisphaerae have
strong positive loads; Gemmataceae, Geodermatophilaceae, Acidobacteria, Solirubrobacteriales,
Rubrobacteriales, and Gemmatimonadetes have negative loads.
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Figure 7. Factor loading plots of the abundance of bacterial phyla and the soil physicochemical
properties of the main principal components. The length of the arrows approximates the variance of
the variables, whereas the angles among them estimate their correlations.

Basic physicochemical soil properties were used as additional variables. Nitrates
have a high positive correlation with PC1 (and with Verrucomicrobia, Rubrobacteriaceae,
Pirellulaceae, Planctomycetia, Gemmatales, Planctomycetes, Phycisphaerae). Ammonium and
pH have a negative relationship with PC1 and with Gemmataceae, Geodermatophilaceae,
Acidobacteria, Solirubrobacteriales, Rubrobacteriales, and Gemmatimonadetes.

3.3. Content of ARGs and Integrons in Agricultural Soils

Genes such as blaVIM, vanB, tetO, ermB, sul2, aadA2, and vanA were found in varying
quantities in 100% of the studied soil samples, including control plots. Macrolide resistance
genes ermB were found in the highest concentration under wheat crops, where their average
amount was three orders of magnitude higher than under soya or sunflower (Figure 8).
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At the same time, another macrolide resistance gene, mphA, was found only in 31% of
samples, mainly in soils under soya and sunflower crops, where its average concentration
was also quite high (1.51 × 10−2–8.01 × 10−3 copies/copies 16S rRNA). The mecA gene in
soya and sunflower was detected only in the samples taken after pesticide application (at
the end of the plant growing season). With further cultivation of wheat, the mecA gene was
found in every soil sample, at a concentration of 1–2 orders of magnitude higher.

All three classes of integrons were found in all soil samples under wheat in average
concentrations of 2.24 × 10−4–2.41×10−4 for intI1, 2.68 × 10−6–2.88 × 10−6 for intI2, and
1.02 × 10−4–1.64 × 10−4 for intI3. The intI1 genes were least often found in soils under soya
and sunflower, but their maximum concentration was found in the soil under sunflower
crops after combined treatment (5.85 × 10−3). The intI2 was detected more often but in low
concentrations. The most common integron class in agricultural soils was intI3, occurring
in 81% of samples. There was no statistically significant effect of agrochemical treatments
on changes in the relative amount of ARGs in the soil (t-test).

Only the content of the tetracycline resistance gene, tetO, was significantly affected
by the application of mineral fertilizers to agricultural crops (p < 0.05). There was no
statistically significant effect of agrochemical treatments on changes in the relative amount
of ARGs in the soil (t-criterion).
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3.4. Correlation Analysis of ARGs Content and Taxonomic Composition

To identify microorganisms that are potential hosts of ARGs in the soil, Spearman
correlations were analyzed between the relative abundance of dominant taxa and the
amount of ARGs and integrons in the soil under soya, sunflower, and wheat crops.

In the soil under soya, the most significant role as a host and carrier of ARGs was
played by gamma-proteobacteria of the Pseudomonas genus (Figure A1 (Appendix A)). A
close positive correlation (r ≥ 0.7) was found between the abundance of the Pseudomonas
genus and the content of 6 resistance genes out of 10 studied (vanA, vanB, tetO, ermB, sul2,
aadA2), as well as integrons intI1 and intI2. A moderately strong relationship is shown
between the abundance of this genus and the abundance of the genes blaVIM-1 (r = 0.69),
blaCTX-M (r = 0.68), and mphA (r = 0.57). Another important genus was Bacillus, the
abundance of which was closely (r ≥ 0.7) related to the abundance of vanA, vanB, and ermB,
and the intI1 and intI2 integrons; a relationship of medium strength is shown with the
amounts of blaVIM-1 (r = 0.61), tetO (r = 0.55), sul2 (r = 0.57), aadA2 (r = 0.62), and blaCTX-M
(r = 0.61).

A larger number of taxa, the abundance of which correlated with ARGs, were found
in the soil under sunflower (Figure A2 (Appendix A)). Sphingomonas alpha-proteobacteria
was a crucial genus, the abundance of which significantly correlated with all ARGs studied
in this work (except for integrons). Close correlation (r ≥ 0.7) is shown with the genes
blaVIM-1, vanB, ermB, sul2, aadA2, and blaCTX-M; moderate correlation with the genes mecA
(r = 0.62), tetO (r = 0.55), mphA (r = 0.67), and vanA (r = 0.64). The number of Arthrobacter
genus bacteria closely correlated with the content of integrons intI1 and intI2, vanB, tetO,
sul2, and aadA2; less closely with blaVIM-1 (r = 0.55), mecA (r = 0.68), ermB (r = 0.51),
and mphA (r = 0.56). Other probable hosts and carriers of ARGs were actinobacteria of
the Nocardioidaceae and Micrococcaceae families, the abundance of which was significantly
related to the abundance of all ARGs, including intI1 and intI2. Taxa, the abundance of
which closely correlated only with integrons intI1 and intI2, were found—the Flavisolibacter,
Pedobacter (Bacteroidetes), Bacillus (Firmicutes), Balneimonas, Kaistobacter (Proteobacteria)
genera, and the Bradyrhizobiaceae and Oxalobacteraceae (Proteobacteria) families.

In soil under wheat grown after soya, the abundance of actinobacteria of the Actino-
planes genus and planctomycetes of the Gemmata genus was associated with the genes vanB
and sul2, and all three integrons (Figure A3 (Appendix A)). In addition, the abundance
of proteobacteria of the Rhodoplanes genus closely correlated with the content of the ermB
gene (r = 0.75), and the abundance of actinobacteria Geodermatophilus with the content of
blaVIM-1 (r = 0.76).

In the soil under wheat grown after sunflower, a close relationship (r ≥ 0.7) was
shown between the content of the macrolide resistance gene ermB and a large number of
taxa, including the Balneimonas, Rhodoplanes, Skermanella, Kaistobacter, and Pseudomonas
proteobacteria genera, and the Micrococcaceae and Nocardioidaceae actinobacteria families
(Figure A4 (Appendix A)). The abundance of Acidimicrobiales acidobacteria closely corre-
lated with the intI1 integrons, the Chitinophagaceae and Flavobacteriaceae bacteroids with
the intI2 integrons, and Sphingomonadaceae and Oxalobacteraceae proteobacteria with intI3
integrons. In general, a larger number (compared to other plants) of taxa associated with
integron genes of classes 2 and 3 is shown.

3.5. Correlation between ARGs and Integrons in Agricultural Soils

To investigate the potential for horizontal transfer of ARGs in soils under the three
plants, Spearman correlations were calculated between the relative contents of intI1, intI2,
intI3, and ARGs.

In soil under soya, the relative content of all studied resistance genes (except mecA)
reliably correlated with the content of intI1, intI2, and intI3 (Figure A5 (Appendix A)). A
large number of close correlations between different ARGs were also found. Almost no
connection between ARGs and integrons was found in the soil under sunflower (Figure A6
(Appendix A)). Only for tetracycline resistance, a correlation with the intI1 (r = 0.62) and
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intI2 (r = 0.59) integron genes was shown. At the same time, all integrons, as well as various
antibiotic-resistance genes, correlated with each other significantly.

In soil under wheat grown after soya, integron genes significantly correlated with
each other. The content of ARGs, such as vanB, blaCTX-M, and vanA, correlated with the
relative content of integrons of all three classes; aadA2 also correlated with intI1 and intI2
(Figure A7 (Appendix A)).

In soil under wheat grown after sunflower, the content of the resistance genes mecA
(r = 0.73) and vanA (r = 0.76) correlated with intI1 integrons; vanA (r = 0.58) with integrons
intI2; blaVIM-1 (r = 0.95), vanB (r = 0.87), and aadA2 (r = 0.82) with intI3 integrons (Figure A8
(Appendix A)).

4. Discussion
4.1. Effect of Agrochemical Treatments on the Bacterial Community of Agricultural Soils and
Their Resistome

Our study showed that physicochemical soil properties, such as ammonium (NH4
+)

and nitrate (NO3
−) nitrogen amount, and pH, contribute to the formation of agricultural

soils’ taxonomic composition. Nitrate nitrogen and pH influence dominated all chemical
factors. The abundance of bacteria of the Rubrobacteraceae family, which are known to
inhabit arid soils [30], the Verrucomicrobia and Planctomycetes phyla, and planctomycetes
of the Pirellulales and Gemmatales orders, was associated with the content of nitrate nitro-
gen. Planctomycetes are well known for their ability to perform anaerobic ammonium
oxidation (the so-called anammox process, at which ammonium is oxidized and nitrite
is consumed) [31], and are important participants in the soil nitrogen cycle. Soil proper-
ties influence both taxonomic composition and the content and behavior of ARGs. The
soils studied in this work belong to chernozems, rich in organic matter and clay particles,
with a generally neutral pH value. Actinobacteria from the Gaiellaceae family and alpha-
proteobacteria from the Sphingomonadaceae family (in particular, the Kaistobacter genus)
predominant in the studied soils are characteristic inhabitants of chernozem soils [32].

It has been noted that clay minerals and soil organic matter can provide an increase in
specific surface area, as well as essential nutrients for bacteria, which can further lead to
the increased horizontal transfer of ARGs [33]. Lu et al. found that ARG content in three
soil types increased in response to the same agronomical practices in the following order:
clay > loam > sandy [34]. In this study, the taxonomic composition of soils under different
plants significantly differed between the two sampling years. Seasonal and interannual
variations in temperature, humidity, and other parameters can significantly influence
microbial community composition and antibiotic-resistance profiles [35].

In general, we did not find a direct effect of agrochemical treatments on changes in
the taxonomic composition of soil bacteriocenosis. However, individual taxa were found,
the amounts of which significantly changed when agrochemicals were added. Thus, the
abundance of bacteria of the Sphingomonadales order and the Gemmataceae and Burkholderi-
aceae families increased with pesticide application. A number of studies have shown that
Xanthomonadales, Sphingomonadales, and Pseudomonadales act as destructors of chlorinated
pesticides [36], and bacteria of the Burkholderiales, Rhizobiales, and Acidobacteriales orders are
abundant in agricultural soils contaminated with chlorpyrifos [37]. In previous work [38],
the relative abundance of sphingomonads increased following the combined application
of fertilizers and pesticides (by 152% in peas and by 139% in chickpeas), but decreased
following the separate application of inorganic fertilizers. A low content of bacterial taxa
containing plant pathogens was noted. The main bacteria affecting soybean, sunflower, and
wheat are Pseudomonas syringae, Ps. solanacearum, Xanthomonas campestris, and Erwinia caro-
tovora [39,40]. In the studied soils, the content of the Xanthomonadaceae family was close
to 1% in soils under wheat, and under soybean and sunflower bacteria of this family were
practically absent; their numbers did not change significantly in response to the treatments.
The content of Pseudomonadaceae was also low (0.11% in the soil under soybean, 0.02% in
the soil under sunflower, 0.3% under wheat after soybean, and 0.06% under wheat after
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sunflower); other pathogenic microorganisms (Erwinia, Ralstonia, etc.) were not detected.
In general, bacterial diseases were not typical for plants in the study areas, in contrast to
damage from fungal pathogens, insects, and weeds, which led to the use of fungicides,
insecticides, and herbicides, but not bactericides.

The present study showed that the application of mineral fertilizers by itself did not
affect the change in the relative amount of ARGs in agricultural soils. This is confirmed in
the works of other researchers. For example, the application of mineral fertilizers (NPKs)
in the paddy–upland crop rotation system had little or no effect on soil ARG content
compared to the no-fertilizer control [41]. Han et al. [42] found that there was no significant
enrichment of ARGs in rice soil both after 8 years of chemical fertilizer application and after
short-term application. A 15-year field trial found that chemical fertilizers only affected
ARG diversity moderately and did not have a significant effect on soil ARG levels [43]. Xie
et al. found that NPK treatment reduced soil pH and caused significant changes in bacterial
communities but had only a moderate effect on ARG diversity and abundance [44].

Additionally, our work did not show a direct effect of pesticides on changes in the
amount of ARGs, although other studies show an increase in the content of some ARGs in
response to the application of pesticides [45]. Nevertheless, the indirect effect of pesticides
can be seen in the example of an increase in the abundance of the Sphingomonadales taxon,
which is also the bacterial host of a number of ARGs. A total of 7 out of the 10 ARGs
studied in this work were present in 100% of soil samples (including control ones) in
varying quantities, forming a constant soil resistome that does not directly depend on
agrochemical influences. The presence of permanent resistomes has been described for
many habitats, including those not subject to anthropogenic impact. Thus, in intact forest
soils, Willms et al. [46] found three sulfonamide resistance genes differing in taxonomic
origin. Agricultural soils, tea plantations, and forest lands contained 68.2% of the total
ARG subtypes, with forest soils showing a high abundance and quantity of ARGs [47].
Song et al. [48] discovered 30 ARGs causing resistance to modern antibiotics in virgin forest
soils in China, and from 70 to 97 common ARGs were found between farmland and forest
soils [49].

4.2. Relationship between Soil Bacterial Community and ARGs

In this study, it was found that the main supposed bacterial hosts of ARGs were the
proteobacteria genera Pseudomonas, Sphingomonas, and Rhodoplanes, and the actinobacte-
ria Arthrobacter, Nocardioidaceae, Micrococcaceae, and Actinoplanes, the abundance of which
correlated significantly with the content of several ARGs. Actinobacteria are well known
as a group of bacteria that produce antibiotics or their derivatives [50]; accordingly, they
also possess determinants of resistance to many antibiotics. Proteobacteria and Actinobac-
teria are among the most commonly predicted hosts of multidrug-resistant ARGs in soil
metagenomic studies [51]. A strong correlation between bacterial taxa and ARG abundance
during the anaerobic digestion of dairy manure was mentioned by Sun et al. [52], where
the bacterial phyla Proteobacteria, Actinobacteria, and Bacteroides were the most widely
known bacterial hosts that had a strong correlation with ARGs. Additionally, Proteobac-
teria, Actinobacteria, and Bacteroidetes have been found to increase their abundance in
inorganically fertilized soils [53], and Proteobacteria carry broad host range plasmids that
promote HGT in agricultural fields [54]. The role of actinobacteria in the spread of ARGs
was also confirmed in the experiment of Lin et al. [55]. When treating soils fertilized with
pig manure with fermentation broth, they observed a decrease in the number of ARGs due
to actinobacteria inhibition (in particular Nocardioides). At the same time, Zhang et al. [14]
showed that Actinobacteria were the main hosts of ARGs in mountain soils, while, in
greenhouse soils, Enterobacteriaceae played the main role in the transfer of ARGs.

Many studies indicate that microbial phylogenetic and taxonomic structure is an
important determinant of ARG composition [56,57]. Hu et al. [58] showed that ARG com-
position is closely correlated with the taxonomic structure of bacteria and herbs. Analyses
of ARG distribution in the soil, rhizosphere, roots, leaves, and legumes of crops (tomato,



Agronomy 2024, 14, 1021 14 of 27

lettuce, beans) showed that microbiome composition and crop type were the main factors
determining ARG distribution [59]. However, using the example of arable soils in China,
Du et al. [60] noted a minor role of microbial phylogeny in soil resistome formation; the
ratio of crop area, total crop yield, plastic film consumption, and pesticide usage had a
greater influence.

In our work, we did not find a direct effect of agrochemical treatments on changes
in the bacterial community taxonomic composition of soils under different plants; the
sampling time and the physicochemical properties of soil made a greater contribution
to diversity. At the same time, a large number of bacterial taxa were discovered, the
abundance of which was associated with various ARGs, which indicates a significant role
of soil bacteriocenosis taxonomic structure in the formation of soil resistome composition.

4.3. The Importance of Horizontal Gene Transfer (HGT) in Formation of Agricultural
Soil Resistomes

Horizontal gene transfer is an important mechanism for the spread of ARGs in the
environment using mobile genetic elements (integrons, plasmids). In this study, intI1 class
1 integron genes were detected less frequently compared to class 2 and 3 integron genes.
Interestingly, when growing soya and sunflower, intI1 genes were detected rarely and
unsystematically, but, with further cultivation of wheat on these soils, they were present
in all treatments, including the control ones. Usually, intI1 integrons are considered an
indicator of anthropogenic pollution, because they are associated with genes providing
resistance to antibiotics, disinfectants, and heavy metals, and are found in a wide range of
pathogenic and non-pathogenic bacteria [61]. The number of studies of class 3 integrons is
still limited compared to intI1 and intI2, but it is known, for example, that their number
decreases when manure is added to soil (and intI1 and intI2 increased) [62]. A significant
role of intI2 in ARG transport and distribution has been shown in soils contaminated with
Zn and OTC drugs [63].

In soil under soya, the content of almost all ARGs was associated with integrons of all
three classes, which indicates a significant role of HGT in the resistome formation of these
soils. It is interesting that in soil under sunflower, there was a large number of bacterial
taxa, the abundance of which correlated with ARGs (and separately with integrons), but
there was practically no connection between ARGs and integrons, that is, the role of HGT
in ARGs distribution was minimal in these soils.

Significant participation of integrons (especially class 3 intI3) in ARG distribution
under wheat crops was shown, where their content was associated with the content of
several ARGs at once. Increased HGT was also described for the chlorpyrifos-contaminated
wheat rhizosphere, where the relative abundance of intI1 and several types of ARG-bearing
bacteria (Bacillus and Pseudomonas) increased [55]. It should be noted that Triticum aes-
tivum L. wheat can enrich more ARGs than other common crops during the early growth
stage [64]. Thus, this study demonstrated that HGT is involved in soil resistome formation
in agricultural soils (especially under soya and wheat crops).

5. Conclusions

This study found that agrochemical treatments, such as mineral fertilizers and pesti-
cides, did not have a significant direct effect on the taxonomic composition and diversity
of the bacterial community of agricultural soils under soya, sunflower, and wheat crops.
The abundance of certain taxa (Sphingomonadales, Gemmataceae, Burkholderiaceae) was signif-
icantly increased in soils treated with pesticides. The main factors shaping the bacterial
community structure were the physicochemical properties of soils and environmental
factors.

Agrochemicals application did not affect the soil resistome directly. ARG spread in
agricultural soils occurred due to both vertical inheritance (bacterial proliferation) and
HGT involving three classes of integrons.
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The main suggested bacterial hosts of ARGs were representatives of the Pseudomonas,
Bacillus, Sphingomonas, Arthrobacter genera, Nocardioidaceae, and Micrococcaceae families.
Determinants of resistance to carbapenems (blaVIM-1), glycopeptides (vanA and vanB),
tetracyclines (tetO), macrolides (ermB), sulfonamides (sul2), and aminoglycosides (aadA2)
were consistently present in agricultural soils.

The results of this study contribute to understanding the impact of agronomic man-
agement on agricultural soils in regard to ARG spread.
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Appendix A

Table A1. Chemical plant protection products used in this study.

Plant-
Protecting

Agent

Trade
Name Composition Application Dose

(L ha−1) Treatment Method Crop

Herbicides

Gardo Gold
312.5 g L−1 c-metolachlor
187.5 g L−1 terbutylazine SE

4.0 application to the soil
before sowing

soya

3.0 sunflower

Benito 300 g L−1 bentazone CC 2.0 spray to plant during
vegetation soya

Reglon
Super 150 g L−1 diquat WS 2.0 spray to plant before

harvesting (desiccant) sunflower

Fungicides

Maxim 25 g L−1 fludioxonil SC 5.0 pre-sowing seed
treatment (protectant) sunflower

Optimo 200 g L−1 pyraclostrobin EC 1.0 spray to plant during
growing season sunflower

Ceriax Plus
66.6 g L−1 pyraclostrobin +
41.6 g L−1 fluxapyroxad +
41.6 g L−1 epoxiconazole

EC 0.4 spray to plant during
growing season

winter
wheat

Insecticides

Cruiser 350 g L−1 thiamethoxam SC 0.5
pre-sowing seed

treatment
(seed dresser)

sunflower

Ampligo 50 g L−1 lambda-cyhalothrin;
100 g L−1 chlorantraniliprole

MS 0.2 spray to plant during
growing season sunflower

Fascord 100 g L−1

alpha-cypermethrin
EC 0.15 spray to plant during

growing season
winter
wheat

Notes: SE are suspension emulsions, CC are colloidal concentrates, WS are water solutions, SC are suspension
concentrates, EC are emulsion concentrates, and MS are microencapsulated suspensions.

https://rscf.ru/en/project/21-76-10048/
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Table A2. Soil samples collected during a field experiment.

№ Designation Crop Agrochemical Treatment Sampling Time Forecrop

Sampling before pesticide application

1 Gc soya control 14.06.2022 –
2 Gf soya fertilizers 14.06.2022 –
3 Gp soya pesticides 14.06.2022 –
4 Gf + p soya fertilizers + pesticides 14.06.2022 –
5 Hc sunflower control 14.06.2022 –
6 Hf sunflower fertilizers 14.06.2022 –
7 Hp sunflower pesticides 14.06.2022 –
8 Hf + p sunflower fertilizers + pesticides 14.06.2022 –
9 T(g)c winter wheat control 15.05.2023 soya

10 T(g)f winter wheat fertilizers 15.05.2023 soya
11 T(g)p winter wheat pesticides 15.05.2023 soya
12 T(g)f + p winter wheat fertilizers + pesticides 15.05.2023 soya
13 T(h)c winter wheat control 15.05.2023 sunflower
14 T(h)f winter wheat fertilizers 15.05.2023 sunflower
15 T(h)p winter wheat pesticides 15.05.2023 sunflower
16 T(h)f + p winter wheat fertilizers + pesticides 15.05.2023 sunflower

Sampling after pesticide application

17 Gc soya control 07.07.2022 –
18 Gf soya fertilizers 07.07.2022 –
19 Gp soya pesticides 07.07.2022 –
20 Gf + p soya fertilizers + pesticides 07.07.2022 –
21 Hc sunflower control 22.09.2022 –
22 Hf sunflower fertilizers 22.09.2022 –
23 Hp sunflower pesticides 22.09.2022 –
24 Hf + p sunflower fertilizers + pesticides 22.09.2022 –
25 T(g)c winter wheat control 04.07.2023 soya
26 T(g)f winter wheat fertilizers 04.07.2023 soya
27 T(g)p winter wheat pesticides 04.07.2023 soya
28 T(g)f + p winter wheat fertilizers + pesticides 04.07.2023 soya
29 T(h)c winter wheat control 04.07.2023 sunflower
30 T(h)f winter wheat fertilizers 04.07.2023 sunflower
31 T(h)p winter wheat pesticides 04.07.2023 sunflower
32 T(h)f + p winter wheat fertilizers + pesticides 04.07.2023 sunflower

Table A3. Primers sets used in this study.

Primer
Name Sequence, 5′-3′ Amplicon

Size, bp PCR Conditions Reference

16S f: GTGSTGCAYGGYTGTCGTCA
r: ACGTCRTCCMCACCTTCCTC 146

95 ◦C—3 min
95 ◦C—15 s
60 ◦C—60 s
72 ◦C—30 s

35 cycles

[65]

intI1 f: GCCTTGATGTTACCCGAGAG
r: GATCGGTCGAATGCGTGT 196

[66]intII2 f: TGCTTTTCCCACCCTTACC
r: GACGGCTACCCTCTGTTATCTC 195

intI3 f: GCCACCACTTGTTTGAGGA
r: GGATGTCTGTGCCTGCTTG 138

blaVIM-1 f: ACTGTCGGATACTCACCACTC
r: GTTATGGAGCAGCAACGATGT 189

95 ◦C—3 min
95 ◦C—10 s
57 ◦C—35 s
72 ◦C—30 s

40 cycles

[67]
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Table A3. Cont.

Primer
Name Sequence, 5′-3′ Amplicon

Size, bp PCR Conditions Reference

blaCTX-M f: ACCAACGATATCGCGGTGAT
r: ACATCGCGACGGCTTTCT 101 95 ◦C—3 min

95 ◦C—15 s
58 ◦C—30 s
72 ◦C—30 s

40 cycles

[68]

mecA f: GTGAAGATATACCAAGTGATT
r: ATGCGCTATAGATTGAAAGGAT 147 [69]

vanA f: CATGGCAAGTCAGGTGAAGA
r: CCACCGGCCTATCATCTTT 187 [70]

vanB f: AGACATTCCGGTCGAGGAAC
r: GCTGTCAATTAGTGCGGGAA 220

95 ◦C—3 min
95 ◦C—40 s

56,5 ◦C—40 s
72 ◦C—40 s

35 cycles

[71]

tetO f: ATGGCATACAGGCACAGACC
r: GGATGCTGCCCAACCTTTTG 178 95 ◦C—3 min

95 ◦C—30 s
58 ◦C—40 s
72 ◦C—30 s

35 cycles

[72]

sul2 f: TCCGGTGGAGGCCGGTATCTGG
r: CGGGAATGCCATCTGCCTTGAG 191 [73]

ermB f: GCATTTAACGACGAAACTGGCT
r: TGGTGAATTAAAGTGACACGAATGT 123

95 ◦C—3 min
95 ◦C—10 s
59 ◦C—30 s
72 ◦C—45 s

40 cycles

[72]

mphA f: AGTTCGTGGTGAACGACAAG
r: AGTCGATCATCCCGCTGAC 153

95 ◦C—3 min
95 ◦C—60 s
58 ◦C—60 s
72 ◦C—45 s

35 cycles

[74]

aadA2 f: TAAGACGGGCTGATACTGG
r: CATAGCGTTGCCTTGGTAG 251

95 ◦C—3 min
95 ◦C—10 s
53 ◦C—30 s
72 ◦C—30 s

40 cycles

[75]

Table A4. The physicochemical characteristics of soil.

Crop Sampling
Time Treatment

Solid
Residue
(% w/w)

NH4
+–N

(mg kg−1)
NO3−–N
(mg kg−1)

P2O5
(mg kg−1)

K2O
(mg kg−1) pH SOM

(%)

Soya

before
applying
pesticides

control 0.065 12.54 13.2 17.6 449.3 6.63 4.04
fertilizers 0.072 9.58 11 33.1 430.2 7.25 4.16
pesticides 0.0595 6.72 9.1 20 420.7 7.37 4.22

combined treatment 0.0705 8.96 21.9 27.8 468.5 7.04 4.23

after
applying
pesticides

control 0.08 9.07 13.2 21.1 497.1 6.9 4.16
fertilizers 0.0768 9.58 10.5 22 411.1 6.74 4.02
pesticides 0.0735 8.34 6.3 14 344.2 7.26 4.06

combined treatment 0.1075 8.79 11.8 27.2 473.3 7.33 4.17

Sunflower

before
applying
pesticides

control 0.0603 6.53 5.9 17.5 411.1 6.87 4.08
fertilizers 0.065 7.62 7.6 23.1 430.2 6.66 4.1
pesticides 0.06 5.21 14.8 27.8 363.3 7.18 3.87

combined treatment 0.0793 5.04 19.5 46.7 272.8 7.17 3.91

after
applying
pesticides

control 0.0513 3.28 4.1 18.8 382.4 7.08 3.91
fertilizers 0.055 4.07 3.4 24.3 439.8 7.17 4.16
pesticides 0.057 2.53 9.6 24.3 401.5 6.9 3.88

combined treatment 0.065 3.39 14.8 35.1 420.7 6.9 3.99
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Table A4. Cont.

Crop Sampling
Time Treatment

Solid
Residue
(% w/w)

NH4
+–N

(mg kg−1)
NO3−–N
(mg kg−1)

P2O5
(mg kg−1)

K2O
(mg kg−1) pH SOM

(%)

Wheat
grown

after soya

before
applying
pesticides

control 0.069 12.62 3.5 22.4 392 7.06 4.21
fertilizers 0.065 16.78 7.1 35.7 401.5 7.47 3.92
pesticides 0.059 12.12 6.2 26.4 392 7.23 4.2

combined treatment 0.051 14.2 7.2 28.1 411.1 7.25 4.09

after
applying
pesticides

control 0.072 6.79 3.4 17.8 439.8 7.25 4.14
fertilizers 0.06 12.62 4.4 19.4 372.8 6.95 3.96
pesticides 0.0485 11.04 5.8 17.9 344.2 7.08 4.32

combined treatment 0.0465 10.29 5.9 17 420.7 7.81 3.98

Wheat
grown
after

sunflower

before
applying
pesticides

control 0.0433 9.12 2.7 15.4 363.3 7.37 4.27
fertilizers 0.06 17.42 3.8 21.6 449.3 7.3 4.1
pesticides 0.0623 14.95 2.8 18.6 392 7.54 4.15

combined treatment 0.0693 15.2 4.6 23.7 449.3 7.41 4.2

after
applying
pesticides

control 0.048 7.12 2.2 17.1 344.2 7.43 4.05
fertilizers 0.0593 12.45 3.1 16.5 382.4 8.02 3.93
pesticides 0.0628 12.37 1.4 14.8 369.8 7.31 4.06

combined treatment 0.0608 13.12 1.9 23.3 401.5 8.06 4.17

Table A5. Indices of the α-diversity of bacterial communities.

Crop Sampling Time Treatment
α-Diversity Indices

Shannon Chao1 Simpson

Soya

before applying pesticides

control 8.75817 686 0.99666
fertilizers 9.50461 1336 0.99763
pesticides 9.33305 1172 0.99742

combined treatment 9.51581 1250 0.99769

after applying pesticides

control 9.23950 1138 0.99677
fertilizers 8.50721 698 0.99339
pesticides 9.39649 1234 0.99743

combined treatment 9.81576 1599 0.99757

Sunflower

before applying pesticides

control 8.74802 682 0.99656
fertilizers 8.60386 622 0.99615
pesticides 9.79218 1616 0.99791

combined treatment 9.59351 1413 0.99768

after applying pesticides

control 9.52641 1277 0.99767
fertilizers 9.46248 1196 0.99761
pesticides 8.27541 431 0.99573

combined treatment 9.07144 926 0.99682

Wheat grown
after soya

before applying pesticides

control 9.18216 851 0.99762
fertilizers 9.18137 838 0.99756
pesticides 8.55761 576 0.99643

combined treatment 8.56796 615 0.99627

after applying pesticides

control 8.77782 696 0.99684
fertilizers 9.26384 979 0.99767
pesticides 8.62682 635 0.99646

combined treatment 8.74083 667 0.99676

Wheat grown
after sunflower

before applying pesticides

control 9.24749 900 0.99774
fertilizers 8.70664 660 0.99678
pesticides 8.71410 660 0.99670

combined treatment 9.69050 1310 0.99808

after applying pesticides

control 8.83486 710 0.99701
fertilizers 8.93322 782 0.99719
pesticides 8.69292 632 0.99672

combined treatment 8.98178 819 0.99718
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