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Abstract: With the development of rice varieties and mechanized planting technology, reliable and
efficient nitrogen and planting density status diagnosis and recommendation methods have become
critical to the success of precise nitrogen and planting density management in crops. In this study, we
combined population structure, plant shape characteristics, environmental weather conditions, and
management information data using a machine learning model to simulate the responses of the yield
and nitrogen nutrition index and developed an ensemble learning model-based nitrogen and planting
density recommendation strategy for different varieties of rice types. In the third stage, the NNI
and yield prediction effect of the ensemble learning model was more significantly improved than
that of the other two stages. The scenario analysis results show that the optimal yields and nitrogen
nutrition indices were obtained with a density and nitrogen amount of 100.1 × 104 plant/ha and
161.05 kg·ha−1 for the large-spike type variety of rice, 75.08 × 104 plant/ha and 159.52 kg·ha−1 for the
intermediate type variety of rice, and 75.08 × 104 plant/ha and 133.47 kg·ha−1 for the panicle number
type variety of rice, respectively. These results provide a scientific basis for the nitrogen application
and planting density for a high yield and nitrogen nutrition index of rice in northeast China.

Keywords: nitrogen and density management; ensemble learning model; nitrogen nutrition index

1. Introduction

One of the biggest challenges facing global agriculture is feeding the growing popula-
tion, as the world population will require an approximately 70% increase in food production
by 2050 [1]. Rice (Oryza sativa L.), a staple food for more than half of the world’s population,
is vital to ensuring China’s food security [2,3]. Global rice demand for food security is
forecasted to reach 116 million tons by 2035 [4]. However, with the continuous expansion
of urbanization and industrialization in the 21st century, the area of arable land has been
declining year-by-year [2]. Therefore, increasing rice yield per unit area has become a
reliable option to address the above challenges [5]. Hence, an increase in rice productivity
per unit area seems to be a viable option to meet the aforementioned challenges [6].

The nitrogen (N) application amount and transplanting density are important field
management factors that affect the rice yield, and the optimum N fertilizer rate and
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transplanting density are different for different varieties of rice [2,7]. As a decision support
tool for agricultural systems, precision agriculture can maximize crop yield and quality,
ensure a steady increase in resource utilization efficiency and agricultural production
efficiency, and maximize sustainable agricultural development [5,8]. At present, most
of the relevant research on precision agriculture models has focused on the effect of N
fertilizer application on crop yield [5,9]. Precision N management (PNM) can be used to
systematically monitor the relationship between the N supply and plant N demand in time
and space and improve N use efficiency (NUE) by formulating a reasonable amount of N
fertilizer [9]. However, there have been few studies related to precision agriculture models
on the effects of N application and density on rice yield, and these have mainly focused
on the analysis of data collected by remote sensing technology [10]. There has been no
systematic analysis of characteristic data, such as population structure characteristics and
plant type characteristics.

In China, most farmers choose to increase the amount of N fertilizer to achieve a high
crop yield [11]. In particular, excessive N fertilizer application not only reduces N recovery
efficiency, but also causes environmental pollution, such as runoff, denitrification, leaching,
and volatilization, which increase N loss [7]; it also causes plant lodging and yield loss.
Therefore, finding the appropriate N fertilizer dosage for different varieties is one of the
main ways to achieve a high yield and high efficiency of rice [12].

N accumulation-related diagnostic indexes [13] and N concentration-related indicators
are used to diagnose crop growth and the N status of crops [14,15]. The N nutrient index
(NNI) is defined as the ratio of the actual plant N concentration (Na) to the critical plant
N concentration (Nc). The NNI is a reliable indicator for diagnosing the N status of crops.
In recent years, some studies have established leaf area index (LAI)-based N diagnostic
models [16]. In addition, the efficient use of fertilizers in the field is closely related to the
fertilizer type and soil properties (e.g., soil temperature, soil moisture, soil pH, and soil
aeration) [10]. However, there is still a lack of relevant model research to comprehensively
predict the NNI and then diagnose yield based on factors such as the population structure,
crop variety, fertilizer dosage, planting density, field soil environment, field meteorological
resources, and environment.

Plant density directly affects the number of effective panicles by affecting the devel-
opment of tillers [17], and different types of rice varieties have different suitable planting
densities [18,19]. Moreover, because mechanical transplanting has gradually replaced
manual transplanting [20], technical measures for N reduction with high transplanting
density have become low-carbon and environmentally friendly rice cultivation technical
measures, which not only help to increase plant density and reduce N, but also help to save
on labor costs, thus producing considerable economic benefits [21]. Therefore, formulating
N fertilizers and planting densities suitable for different types of rice may be one of the key
ways to achieve high yields and high NUE in modern rice production systems.

Statistical methods were used to evaluate crop models so as to predict the yield
capacity of major crops based on meteorological data, yield statistics, and reproduce yield
variability, as well as to determine the agricultural processes that affect the yield of major
European crops [22]. It is not easy to predict yields at regional scales using crop models,
and the yields predicted by models are not more accurate than those predicted by simple
regression models [23,24].

Over the past decade, owing to their ability to extract information hidden in data,
machine learning (ML) methods have developed rapidly in the field of precision agriculture,
providing a wide range of effective solutions for crop and environmental state estimation
and decision support [5,10,25–29]. They can solve significant nonlinear problems using
datasets from multiple sources. Moreover, the combination of different ML methods and
signal processing technology can make great contribution for precision agriculture in
the future [30]. ML and deep learning methods were used to predict rice yields in large
areas using multi-source remote sensing data [31]. Random forest regression (RFR) and
a simple linear regression model of ML were used to predict corn yield and the NNI,
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combining soil, weather, and management information, and it was found that the RFR
model better predicted the corn NNI and grain yield (R2 = 0.86 and 0.79) [5]. The hybrid
method, combines ML regression with a physically based approach to evaluate the crop
N content. A Gaussian process-based sequential backward band removal algorithm was
used to analyze the information content of specific frequency bands in a leaf optical model
simulated spectrum to estimate the aboveground N, and the root mean square error (RMSE)
was 2.1 g/m2 [32]. While environmental, genetic, and management data were used together
with active canopy sensor data, support vector regression (R2 = 0.74–0.90 for prediction) or
the RFR model (R2 = 0.84–0.93 for prediction) could be used to predict N status indicators
of maize more reliably, compared with using the normalized difference vegetation index
(NDVI), or normalized difference red edge [29]. RFR models combining weather, soil, and
plant growth characteristics with spectral indices showed a highly improved predictive
reliability (R2 = 0.81) compared with models based on NDVI, and an N rate of 150 kg N
ha−1 was recommended for most canola production [28].

However, there have been few related studies on the prediction of a suitable planting
density and N fertilizer dosage for rice based on ensemble learning models [33]. Most
of the current models focus on the performance of the crop NNI and yield prediction
models and recommendation algorithms for N fertilizer, and these were reported to be
influenced by soil properties [34], environmental weather conditions [5], field management
techniques [35], and crop variety. Therefore, it is important to effectively combine the above
factors to improve the current crop NNI and yield prediction and N recommendations [36].
Most of the data used by ML models in the past were obtained by sensors [12,25,28], and
were not combined with characteristic value data such as the population structure, plant
type traits, field meteorological data, and N fertilizer and density for prediction of the yield
and NNI. Therefore, there is an urgent need to develop a PNM strategy combined with
plant population structure and plant shape characteristics for sustainable rice production
in northeast China. Currently, the regional optimum N management strategy promoted by
extension services recommends a total N content of about 180 kg N ha−1 for rice [37].

At present, most of the PNM model predictions about the NNI and yield level use
the RFR model [5,28,29,38]. The ensemble learning method of the RFR model has a strong
generalization performance and reduces overfitting when dealing with different data set
segmentations [27]. However, there have been few related studies on the prediction of the
yield and NNI using the Light Gradient Boosting Machine (LGBM) model focusing on the
ensemble learning method. As the LGBM model is an efficient gradient boosted decision
tree, it speeds up the training process and is sometimes more accurate [26]. To solve this
problem, we aim to use machine learning methods to find out the optimal transplanting
density and nitrogen fertilizer for different types of varieties of rice.

Therefore, our study employed two ensemble learning methods (RFR and LGBM)
to predict the yield and NNI. The objectives of this study were as follows: (1) improve
prediction of the NNI and yield by combining the population structure, plant shape char-
acteristics, environment, and nutrient information data using ensemble learning models
(RFR and LGBM) as compared with the ridge regression model (RR) using similar data;
(2) according to the results of the ensemble learning models, we analyzed the main con-
trolling factors affecting the yield and NNI, and the relationship between yield and NNI
and the main controlling factors among different types of varieties; (3) develop an N
fertilizer and density recommendation for different rice varieties based on the ensemble
learning models using the population structure, plant shape characteristics, environment,
and nutrient information data.

2. Materials and Methods
2.1. Plant Material and Growth Conditions

This study was conducted from the year 2014 to 2021 in XiangFang County (longitude:
126◦74′–126◦76′ E; latitude: 45◦71′–45◦73′ N), Acheng County (longitude: 126◦22′–126◦50′ E;
latitude: 45◦34′–45◦46′ N), and the Northeast Agriculture University (longitude: 126◦71′ E;
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latitude: 45◦7′ N) in the Heilongjiang Province in northeast China (Figure S1). Three study
sites were selected, and the soil properties are shown in Table 1. We collected 10–20 cm
of soil in the tillage layer for measurement before transplanting every year. Indicators
in Table 1 were determined using the soil base fertility methods [39]. Site 1, Site 2, and
Site 3 were black soil (loamy clay) equivalent to typic Haploboroll, according to the United
States Department of Agriculture (USDA) Soil Taxonomy. The design of the experiments
conducted at the three study sites are shown in Table 2.

Table 1. The soil properties at the three study sites during 2014–2021.

Site Soil Type Soil
Texture Year

Organic
Matter
(g/kg)

Total
Nitrogen

(g/kg)

Total
Phosphorus

(g/kg)

Slowly
Available
K (mg/kg)

Available
N

(mg/kg)

Available
P

(mg/kg)

Available
K

(mg/kg)

Value of
pH

Site
1 Black soil

Loamy
clay

2014 22.30 1.20 0.40 706.5 129.8 18.70 99.1 6.80
2015 22.21 1.24 0.41 706.2 128.9 18.52 99.3 6.70
2016 22.34 1.21 0.39 705.2 126.4 18.60 98.6 6.79

Site
2 Black soil

Loamy
clay

2017 22.13 1.12 0.38 704.2 126.4 25.31 97.9 6.42
2018 22.18 1.19 0.34 695.9 127.8 18.80 85.7 6.82
2019 22.05 1.18 0.44 704.2 125.4 17.97 92.4 6.62

Site
3 Black soil

Loamy
clay

2019 34.89 1.51 0.94 708.7 130.5 20.6 91.4 6.56
2020 32.16 1.62 0.86 706.2 128.6 19.8 90.4 6.23
2021 33.13 1.54 0.90 702.4 131.3 18.6 89.4 6.38

Table 2. The design of the experiments conducted at the three study sites.

Site Year Planting Density
(10,000 Plants/ha)

Nitrogen Fertilizer
Application (kg/ha) Variety

Site 1 2014, 2015, 2016
180.18, 150.15, 128.70, 120.12,

100.10, 90.09, 85.80, 75.08,
72.07, 64.35, 60.06, 51.48

0, 75, 150, 225 DN425, DN427,
DN426, NDJ30, SJ14

Site 2 2017, 2018, 2019 60.06, 75.08, 100.10 0, 75, 150, 225 DN426, MDJ30, SJ14
Site 3 2019, 2020, 2021 75.08 150 SJ9, SJ18, SJ21, SJ3, T256

Note: Site 1 was located in XiangFang County (longitude: 126◦74′–126◦76′ E; latitude: 45◦71′–45◦73′ N), Site 2
was located in Acheng County (longitude: 126◦22′–126◦50′ E; latitude: 45◦34′–45◦46′ N), and Site 3 was located at
the Northeast Agriculture University (longitude: 126◦71′ E; latitude: 45◦7′ N) in the Heilongjiang Province in
northeast China.

The experimental materials used were ten japonica rice cultivars, DN425 and SJ14 (a
low-tillering, large-sized panicle cultivar, large-spike type variety), DN427 and NDJ30 (a
relatively heavy-tillering, small-sized panicle, panicle number variety), and DN426, SJ9,
SJ18, SJ21, SJ3 and T256 (a middle-tillering, mid-sized panicle cultivar, intermediate type
variety). The characteristics of the rice varieties refer to the National Rice Data Center [40]
and laboratory pre-field multi-year measurements of yield and yield components.

2.2. Experimental Design

A summary of weather data between 2014 and 2021 and crop duration date are shown
in Table 3; we have set up a total of 843 plots from 2014 to 2021. For Site 1, the experiment
was conducted from 2014 to 2016, with three replications. The experiment employed a
randomized complete block design with split plots, including twelve planting densities
(D1: 180.18, D2: 150.15, D3: 128.70, D4: 120.12, D5: 100.10, D6: 90.09, D7: 85.80, D8: 75.08,
D9: 72.07, D10: 64.35, D11: 60.06, D12: 51.48, 104 plants/ha) as main plots, and four N
fertilizer applications (N0: 0, N1: 75, N2:150 and N3: 225, kg N/ha) as sub-plots (with
a plot size of 150 m2). Four varieties were selected for Site 1. The number of plots was
240 per year from 2014 to 2016, and the cumulative number of plots in the 3 years was 720.
For Site 2, the experiment was conducted from 2017 to 2019, with three replications. The
experiments employed a randomized complete block design with split plots, including
three planting densities (D1: 60.06, D2: 75.08, D3: 100.10, ×104 plants/ha) as main plots,
and four N fertilizer rates (N0: 0, N1: 75, N2:150 and N3: 225, kg N/ha) as sub-plots (with
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a plot size of 150 m2). Three varieties were selected for Site 2. The number of plots was
36 per year from 2017 to 2019, and the cumulative number of plots in the 3 years was 108.
Meanwhile, for Site 3, from 2019 to 2021, there were three replications. The planting density
was 75.08 × 104 plant/ha and the N fertilizer rate was 150 kg/ha, arranged in a randomized
complete block design with three replications (with a plot size of 100 m2). Five varieties
were selected for Site 3. The number of plots was 5 per year from 2019 to 2021, and the
cumulative number of plots in the 3 years was 15. For each plot, sufficient phosphate (75 kg
P2O5 ha−1) and potash (50 kg K2O ha−1) fertilizers were applied before planting to make
sure that the phosphorus and potassium nutrients were not limiting the plant growth. All
plots were kept free of weeds, insects, and diseases with pesticide applications based on
local standard practices.

Table 3. A summary of weather data between 2014 and 2021. Ten different rice varieties during 2014
and 2021 in this table were used in the analysis.

Continuous Variables Level/Unit Mean Standard Deviation

Average maximum temperature during March and October ◦C 24.84 3.55
Average minimum temperature during March and October ◦C 14.33 4.30

Monthly average of cumulative radiation during March and October MJ/m2 503.37 34.59
Crop duration Days 138 2.98

2.3. Field Sampling and Data Collection

The population structure and plant shape characteristics data were collected at full
heading stage, and NNI and grain yield was determined at the full maturity stage. The
soil information was obtained before transplanting and the weather data was measured
throughout the whole growth period.

At the peak of leaf area (heading stage), 3 hills of representative plants were selected
from each plot, and the punching and weighing method was adopted (a circular puncher
with a diameter of 3 cm2 was used to punch holes in the upper, middle, and lower parts of
the leaves, and we dried the small discs of the leaves and weighed them, calculated the leaf
area, and repeated the method three times). The leaf area was calculated as follows:

Leaf area = W × A (1)

where W is the dried weight of the small discs of the leaves and A is the area of the circular
puncher.

At the full heading stage, we used a Chlorophyll Meter Model SPAD-502 to measure
the living leaves, selected and measured, in turn, the mid-section and about 3 cm up and
down the middle-section of the flag leaves on the main stem of the plant, and calculated
the average value to represent the SPAD value (avoiding leaf veins when measuring). The
main stems of 5 hills of representative plants were selected from each plot, and this was
repeated 3 times.

During the full heading stage, on sunny days from 11:00 to 13:00, we used the plant
canopy analyzer AccuPARLP-80 from the Decagon Company in the United States. We
obtained the determination of photosynthetically active radiation (PAR) in rice. The external
sensor was fixed on the top of the 2 m straight rod to measure the PAR at the top of the
canopy, and then the horizontal probe was used to measure the PAR at the bottom of the
canopy, and the extinction coefficient K was calculated using Beer’s law.

Extinction coefficient(K) = − ln Tr
LAIc

(2)

where Tr is the light transmittance of the canopy group and LAIc is the leaf area index of
the rice group measured by the instrument, not the actual value.
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At the full heading stage, 5 representative points with consistent growth were selected
for each treatment, and each was investigated once. When measuring, the canopy width
was the distance between tillers that were the farthest apart from the ground at a certain
height. The plant height was investigated at the full heading stage, and the plant height
was the height of the plant from the base to the highest point of the panicle. At the full
heading stage, the included angle of the flag leaves was measured, and the included angle
of the leaves of 10 plants with the same growth vigor was measured with a protractor,
which was repeated 10 times.

The plant aboveground biomass was selected from three representative plants in each
plot. The stem, leaf, and spike were separated, and dried at 105 ◦C for 30 min, then dried
at 80 ◦C for constant weight. A digestion method was selected for the determination of N
content in the plant tissues [41]. The NNI was calculated as follows [15]:

NNI = Na/Nc (3)

where Na was the actual plant N concentration and Nc was the critical plant N concentration.
At maturity, 2 square meters plots from the center of each subplot were harvested for

the yield determination and the results were normalized to 14% grain moisture content.

2.4. Regression Models for Predicting the Rice NNI and Yield

In this study, linear regression and ensemble learning models were used. Ridge
regression (RR) was carried out as a linear regression. Random forest regression (RFR) and
Light Gradient Boosting Machine (LGMB) models were used as ensemble learning methods
in machine learning. All models were adopted to predict NNI and yield in 3 stages.

In the first stage, the models were used to predict the rice yield and NNI with pop-
ulation structure, which was leaf area index, SPAD value, and extinction coefficient. In
the second stage, the models were used to predict the rice yield and NNI with population
structure and plant shape characteristics, and the shape characteristics included base angle
of flag leaf, canopy width, and plant height. In the third stage, environment and nutrient
utilization were added to predict the rice yield and NNI, like organic matter, total nitrogen,
total phosphorus, slowly available K, available N, available P, available K, value of pH,
effective accumulated temperature, active accumulated temperature, and solar energy
effective radiation (RA).

For the RR, the parameter of alpha was adjusted, and the best value was 0.2 for the
NNI prediction, and 0.1 for the yield prediction, respectively. For the RFR model, the
parameter of n_estimatorsis was adjusted, and the best value was 71 for the NNI prediction,
and 120 for the yield prediction. For the LGBM model, the parameters of ‘max_depth’ and
‘n_estimators’ were adjusted, the best value was 3590 for NNI prediction, and 4790 for yield
prediction.

2.5. Recommendation for N Fertilizer and Density for Different Types of Rice Varieties

The scenario analysis based on the ensemble learning models (RFR and LGBM) were
performed to determine the optimum N fertilizer and density for different rice as shown
in Figure 1. From historical collected data, the best model was selected with three stages
datasets from 2014 to 2021, combined with population structure (leaf area index, SPAD,
extinction coefficient), plant shape characteristics (angle of flag leaf, canopy width, plant
height), environment, and nutrient utilization. The different type varieties of rice dataset
(the large-spike type, intermediate type, and panicle number type) was used to simulate
optimum density and N amount based on the established ensemble learning models.
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Figure 1. The flow chart of recommendation for N fertilizer and density for different types of rice
varieties based on ensemble learning model. Note: Population structure is leaf area index, SPAD, and
extinction coefficient; Plant shape characteristics is angle of flag leaf, canopy width, and plant height;
Environment and nutrition utilization is organic matter, total nitrogen, total phosphorus, slowly
available K, available N, available P, available K, value of pH, effective accumulated temperature,
active accumulated temperature, and solar energy effective radiation.

2.6. Statistical Analysis

This study collected a total of 295 observations for rice yield and 299 observations
for rice NNI. Two independent datasets were generated by utilizing data collected from
different sites and years. Specifically, data gathered from Site 1 in 2014, Site 2 in 2017, and
Site 3 in 2019 constituted the testing dataset of the model, while the remaining site-year
data comprised the training dataset of the model, which were described in Tables 2 and 4.

Table 4. The descriptive statistics for the nitrogen nutrition index (NNI) and grain yield across sites
and years within the training and the testing datasets.

Dataset
Yield (kg/ha) NNI

n Mean SD Min Max CV n Mean SD Min Max CV

Training 236 10,112.8 3624.5 2170.2 18,774.5 36% 239 0.91 0.18 0.47 1.37 20%
Test 59 10,910.7 3896.4 2445.7 18,514 36% 60 0.92 0.20 0.52 1.40 22%
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The training dataset was used to build a regression model to predict the NNI and
yield, and all models adopted 10-fold cross validation and grid search to adjust optimum
parameters. This method divided the dataset into 10 subsets, with one subset used as the
validation set in each iteration while the remaining subsets were utilized as the training
set. The process was repeated 10 times, selecting a different validation set each time, and
then averaging the resulting model performance evaluation metrics to obtain the final
assessment. Cross validation enabled fuller use of the dataset and reduced bias introduced
by different data divisions [42]. The built regression model was evaluated using the test
dataset. Calculate the coefficient of determination (R2), root mean square error (RMSE),
and relative error (RE) for the testing datasets using the python programming software
(python 3.8) to evaluate the model. The higher the R2 value and the lower the RMSE and
RE values, the better the model. We used OriginPro (Version 2022, OriginLab Corporation,
Northampton, MA, USA) and Mathematica (Wolfram Research, Inc., Mathematica, Version
13.0, Champaign, IL, USA, 2021) to generate the plots.

3. Results
3.1. Development of a Nc Dilution Curve for Japonica Rice Cultivars and Verification of the Nc
Dilution Curve

Plant Nc was diluted with increase of shoot biomass of plant, with critical N curves
fitted following the Nc–biomass mathematical equations (Figure 2). The equations for the
Nc of japonica rice varieties were shown in Table 5, the coefficients of determination were
>0.9 for each cultivars (except DN426). In order to further analyze the significant differences
among the 10 rice varieties, the power function model was first linearized to obtain the
linearized equations for different varieties (Table 5). Analysis of covariance (ANCOVA) at
the 95% confidence interval was used to define the significance of Nc dilution curves of
10 different rice varieties. The F values and Significance of slope and intercept in Table 6
are statistical difference between different types varieties of rice. To ensure the accuracy
of NNI estimation, this study used the Nc–biomass mathematical equation constructed
separately for each variety of rice to calculate the NNI index (Table 5). The predicted Nc
was compared with the measured Nc data, the lower values of RMSE and higher values of
R2 indicated good stability between the predicted and observed Nc (Table 7).
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Figure 2. Critical nitrogen (Nc) dilution curve for japonica rice. The solid lines are the Nc dilution
curves describing the relationships between the Nc and biomass; the dotted lines indicate the 95%
confidence band, the red dotted lines indicate indicate 95% confidence interval upper limit and the
green dotted lines indicate lower limit.
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Table 5. Nc regression equations for different rice varieties.

Japonica Rice
Varieties The Equations for Nc

Coefficients of
Determination

Power Exponential
Function for
Linearization

Formula

SJ9 Nc = 4.34W−0.563 0.9970 lnNc = 1.47 − 0.563
lnW

SJ21 Nc = 3.02W−0.503 0.9895 lnNc = 1.10 − 0.503
lnW

DN425 Nc = 3.56W−0.574 0.9932 lnNc = 1.27 − 0.574
lnW

DN427 Nc = 3.66W−0.514 0.9819 lnNc = 1.30 − 0.514
lnW

SJ18 Nc = 4.03W−0.535 0.9589 lnNc = 1.39 − 0.535
lnW

SJ3 Nc = 3.39W−0.449 0.9846 lnNc = 1.22 − 0.449
lnW

T256 Nc = 3.42W−0.526 0.9887 lnNc = 1.23 − 0.526
lnW

SJ14 Nc = 4.27W−0.624 0.9671 lnNc = 1.45 − 0.624
lnW

MDJ30 Nc = 3.03W−0.443 0.9203 lnNc = 1.11 − 0.443
lnW

DN426 Nc = 3.29W−0.491 0.8493 lnNc = 1.19 − 0.491
lnW

Table 6. Validation Nc models for different types of rice varieties.

Large-Sized Panicle Small-Sized Panicle Mid-Sized Panicle Different Types of Rice

F value DN425 and SJ14 DN427 and NDJ30 DN426, SJ9, SJ18, SJ21,
SJ3 and T256

large-sized panicle, small-sized
panicle and mid-sized panicle

Slope 43.613 ** 6.895 * 35.011 ** 27.031 **
Intercept 62.128 ** 10.219 * 39.848 ** 24.942 **

Note: * Significant at p < 0.05; ** Significant at p < 0.01.

Table 7. Validation of the critical N dilution curve for different types of rice varieties.

Japonica Rice Varieties R2 RMSE RE (%)

SJ9 0.9942 0.0699 2.06
SJ21 0.9891 0.0888 5.34

DN425 0.9921 0.0746 3.11
DN427 0.9809 0.1384 6.13

SJ18 0.9834 0.1254 9.74
SJ3 0.9889 0.0896 5.71

T256 0.9899 0.0957 5.11
SJ14 0.9859 0.1103 8.70

MDJ30 0.9129 0.2088 12.69
DN426 0.8776 0.2175 16.77

3.2. Rice NNI and Grain Yield Variability

A total of 295 rice NNI and 299 yield data points were collected in the experiment.
The rice NNI ranged from 0.47 to 1.37 in the training dataset, with a standard deviation of
0.18 and a CV of 20%; and from 0.52 to 1.40 in the test dataset, with a standard deviation of
0.20 and a CV of 22%. The rice yield ranged from 2170.2 to 18,774.5 kg/ha in the training
dataset, with a standard deviation of 3624.5 kg/ha and a CV of 36%, and from 2445.7 to
18,514 kg/ha in the test dataset, with a standard deviation of 3896.4 kg/ha and a CV of 36%
(Table 4).
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3.3. The Prediction Model of the Rice NNI
3.3.1. NNI Prediction

Ridge regression (RR) and ensemble learning methods (RFR and LGBM) were used
to predict the NNI for the population structure (leaf area index, SPAD value, extinction
coefficient). The test results of the three regression models (RR, RFR, and LGBM) for predicting
the rice NNI are shown in Figure 3. Ensemble learning methods performed almost the same
(RFR: R2 = 0.665, RMSE = 0.0888, RE = 10%; LGBM: R2 = 0.645, RMSE = 0.0978, RE = 11%) or
better than the RR model (R2 = 0.613, RMSE = 0.0813, RE = 12%).
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Figure 3. The performance of light gradient boosting machine LGBM (a), random forest regression
RFR (b) and ridge regression RR (c) to predict nitrogen nutrition index (NNI) for population structure
across site-years, N rates and planting densities based on the test dataset.

The RR and ensemble learning methods were used to predict the NNI for the popula-
tion structure and plant shape characteristics (angle of leaf, canopy width, plant height)
(Figure 4). The prediction results of the model after adding the plant shape characteristics
are slightly poorer than those obtained when using only a single population structure.
RFR performed the best (R2 = 0.635, RMSE = 0.0968, RE = 11%), but RR (R2 = 0.627,
RMSE = 0.0843, RE = 12%) was better than the other ensemble learning method of LGBM
(R2 = 0.622, RMSE = 0.1080, RE = 12%).

The RR and ensemble learning methods were then used to predict NNI for the popula-
tion structure, plant shape characteristics and environment and nutrient utilization index
(Figure 5). The prediction results of the models were the best after adding the environment
and nutrient utilization index. The ensemble models were better than RR (R2 = 0.755,
RMSE = 0.0784, RE = 9%); specifically, the ensemble model LGBM (R2 = 0.921, RMSE =
0.0514, RE = 5%) performed better than RFR (R2 = 0.874, RMSE = 0.0583, RE = 7%) (Figure 5).
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Figure 5. The performance of light gradient boosting machine LGBM (a), random forest regression
RFR (b) and ridge regression RR (c) to predict nitrogen nutrition index (NNI) for population structure,
plant shape characteristic and environment and nutrient utilization index across site-years, N rates
and planting densities based on the test dataset.
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3.3.2. Effects of Population Structure and Plant Shape Characteristics on NNI

For NNI prediction, the feature importance in ensemble learning methods is shown in
Figure 6 based on the Gini index. The top three features were the plant height (0.207), N
fertilizer application (0.144), and total N of soil (0.117).
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Figure 6. Gini coefficients of input variables for ensemble learning model built on the training dataset
to predict nitrogen nutrient index (NNI) across site-years, N rates, and planting densities.

The variation range of the plant height of different types of japonica rice was different,
among which, the CV of plant height of intermediate variety was the largest (11.72%),
followed by the CV of plant height of the panicle number variety (8.85%), and the CV of
plant height of large panicle variety was the smallest (8.45%). The average plant height of
the intermediate variety was the largest (96.2 cm), followed by the average plant height
of the panicle number variety (94.9 cm), and the average plant height of the panicle grain
variety was the smallest (89.3 cm) (Figure 7).
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3.4. The Prediction Model of Rice Yield
3.4.1. Yield Prediction

Ridge regression (RR) and ensemble learning methods (RFR and LGBM) were used
to predict the yield for the population structure (leaf area index, SPAD value, extinction
coefficient). The test results of three regression models (RR, RFR, and LGBM) for pre-
dicting the rice yield are shown in Figure 8. The LGBM model (R2 = 0.589, RMSE =
2191.312, RE = 19%) performed better than RFR model (R2 = 0.524, RMSE = 2378.146, RE
= 17%), both ensemble learning models performed better than the RR model (R2 = 0.386,
RMSE = 1583.354, RE = 28%) (Figure 8).

The RR and ensemble learning methods were used to predict the yield for the popu-
lation structure and plant shape characteristic angle of leaf, canopy width, plant height)
(Figure 9). The ensemble learning methods performed better than RR method. The pre-
diction results of the ensemble learning methods after adding the plant type characteristic
are slightly poorer than those obtained when using only a single population structure.
The LGBM model performed the best (R2 = 0.587, RMSE = 2385.757, RE = 16%), and the
RFR performed (R2 = 0.509, RMSE = 2356.093, RE = 18%) was better than the RR model
(R2 = 0.405, RMSE = 1701.166, RE = 27%). The prediction results of the RR method after
adding the plant type characteristic are slightly better than that of using only a single
population structure.

The RR and ensemble learning methods were then used to predict the yield for the
population structure, plant shape characteristic and environment and nutrient utilization
index (Figure 10). The prediction results of the models are the best after adding environment
and nutrient utilization index. The ensemble models were better than the RR models
(R2 = 0.521, RMSE = 1843.998, RE = 25%); specifically, the ensemble model RFR (R2 = 0.908,
RMSE = 1045.013, RE = 9%) performed better than the LGBM (R2 = 0.901, RMSE = 1179.365,
RE = 10%).
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Figure 8. The performance of light gradient boosting machine LGBM (a), random forest regression
RFR (b) and ridge regression RR (c) to predict yield for population structure across site-years, N rates
and planting densities based on the test dataset.
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Figure 9. The performance of light gradient boosting machine LGBM (a), random forest regression
RFR (b) and ridge regression RR (c) to predict yield for population structure and plant shape
characteristics across site-years, N rates and planting densities based on the test dataset.
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Figure 10. The performance of light gradient boosting machine LGBM (a), random forest regression
RFR (b) and ridge regression RR (c) to predict yield for population structure, plant shape characteristic
and environment and nutrient utilization index across site-years, N rates and planting densities based
on the test dataset.



Agronomy 2024, 14, 1028 16 of 28

3.4.2. Effects of Population Structure and Plant Shape Characteristics on Yield

For yield prediction, the feature importance in ensemble learning methods is shown in
Figure 11 based on the Gini index. The top three features were the N fertilizer application
(0.399), density (0.151) and leaf area index (0.073). The variation range of the leaf area index
of different types of japonica rice was different (Figure 12), among which, the CV of the
leaf area index of the large panicle variety was the largest (30.22%), followed by the CV of
the leaf area index of the panicle number variety (19.68%), and the CV of the intermediate
variety was the smallest (19.17%). The average leaf area index of the panicle number variety
was the largest (6.49), followed by the average leaf area index of the intermediate variety
(6.17), and the average leaf area index of the large panicle variety was the smallest (5.48).
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3.5. Evaluating Different NNI and Yield Diagnostic Models

While environmental and nutritional factors were added, the prediction performance
of the model was significantly improved, in either the linear model or the ensemble learning
model. The prediction results of the three models are shown in Table 8.

Table 8. The performance of ridge regression, random forest regression and random forest regression
models for predicting NNI and grain yield (kg/ha) combing soil, weather, and management variables
with vegetation indices across site-years, N rates and planting densities in the training dataset.

Model
Ridge Regression Random Forest Regression Light Gradient Boosting Machine

R2 RMSE RE (%) R2 RMSE RE (%) R2 RMSE RE (%)

NNI 0.755 0.0784 9 0.874 0.0583 7 0.921 0.0514 5
Yield 0.521 1843.998 25 0.908 1045.013 9 0.901 1179.365 10

Although the LGBM model (R2 = 0.901, RMSE = 1179.365, RE = 10%) was slightly
inferior to the RFR model (R2 = 0.908, RMSE = 1045.013, RE = 9%) in evaluating the yield,
the difference was small. The evaluation results of the LGBM model are better than those
of the RFR model (R2 = 0.874, RMSE = 0.0583, RE = 7%) when evaluating the NNI.

3.6. Coupling Effect of Density and Fertilizer on Yield and NNI of Rice
3.6.1. Yield of Rice

To pursue high-yield, high-efficiency, high-quality, and sustainable production of rice,
this study took yield as the evaluation index to comprehensively evaluate the coupling
effect of density and N on rice. Density and N amount were independent variables, and
yield was the response variable. Using the prediction results of yield in the third stage of
LGBM model (R2 = 0.901, RMSE = 1179.365, RE = 10%), based on the least squares method,
the experimental data were analyzed using Mathematica 13.0 software, and a binary
quadratic regression equation was established to calculate the density and N required to
maximize the above parameters (Table 9). The optimal system of a single index was solved,
and the density and N amount corresponding to the optimal solution of each index in the
confidence interval were obtained. The results show that the effects of density and N input
on the dependent variable were significant (p < 0.01) (Table 9). The density and N amount
corresponding to the maximum value of yield of each variety are shown in Table 9.

Table 9. Regression equation between the input of density, nitrogen amount and yield in different
types of rice varieties. The maximum yield match with the amount of density and nitrogen in different
types of rice varieties.

Response
Variable Y Regression Equation Y Max

(kg/ha)

D
(10,000

Plant/ha)

N
(kg/ha) R2

Yield/Y1 Y1 = 466.891D + 55.305N − 2.518D2 − 0.294N2 + 0.397DN − 13,947.457 15,314.6 105.768 165.301 0.75
Yield/Y2 Y2 = 393.942D + 94.142N − 2.193D2 − 0.246N2 − 0.200DN − 11,901.280 11,803.4 82.630 157.826 0.88
Yield/Y3 Y3 = 89.028D + 53.710N − 0.491D2 − 0.180N2 − 0.073DN + 3218.703 10,392.9 80.815 133.192 0.69

Note: D and N mean density and nitrogen amount, respectively. Y1 represents the yield of large-spike type variety;
Y2 represents the yield of intermediate type variety; Y3 represents the yield of panicle number type variety.

As shown in Table 9, the optimum N amount and density were different for different
varieties. In the large-spike variety of rice, the maximum yield of 15,314.6 kg/ha was
obtained when planting densities of 105.768 × 104 plant/ha and 165.301 kg/ha of N were
applied. In the intermediate variety of rice, the maximum yield of 11,803.4 kg/ha was
obtained when planting densities of 82.630 × 104 plant/ha and 157.826 kg/ha of N were
applied. In the panicle number variety of rice, the maximum yield of 10,392.9 kg/ha was
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obtained when planting densities of 80.815 × 104 plant/ha and 133.192 kg/ha of N were
applied.

Because the transplanting density of the rice transplanter was adjusted in units of
inches in actual production, the density value calculated in the model could not meet the
actual needs of rice transplanting production. Thus, it was necessary to further analyze
the density and N amount combination to obtain the best indicators. The coupling ef-
fects of density and N amount on the yield in different types of rice varieties exhibited a
downward convex shape. Therefore, with the combination of the optimal planting density
corresponding to each variety in Table 9 and the actual production situation, the large-spike
variety of rice was obtained with the density of 1,001,000 plant/ha (9 inches × 3 inches), the
intermediate variety of rice and the panicle number variety of rice were obtained with the
density of 750,800 plant/ha (9 inches × 4 inches). According to the actual planting density
corresponding to different varieties, the yield of different rice varieties and acceptable
regions was analyzed, it could be simultaneously obtained within the 99% acceptable
range, and the yield ranges were similar (Figure 13). The optimal yield of the large-spike
variety of rice was obtained with the density and N amount of 100.1 × 104 plant/ha
(9 inches × 3 inches) and 161.05–161.90 kg ha−1, respectively. The optimal yield of the
intermediate variety of rice was obtained with the density and N amount of 75.08 × 104

plant/ha (9 inches × 4 inches) and 159.52–162.33 kg ha−1, respectively. The optimal yield
of the panicle number variety of rice was obtained with the density and N amount of
75.08 × 104 plant/ha (9 inches × 4 inches) and 133.47–135.254 kg ha−1, respectively.
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3.6.2. NNI of Rice

An NNI of around 1 indicates that the plant N nutrition is sufficient. Using the pre-
diction results of NNI in the third stage of LGBM model (NNI: R2 = 0.921, RMSE = 0.0514,
RE = 5%), we did not calculate the maximum value of the NNI according to the prediction
model, but set the optimal value of NNI to 1. Moreover, three rice varieties with plant-
ing densities between 100.1 × 104 plant/ha (9 inches × 3 inches) to 75.08 × 104 plant/ha
(9 inches × 4 inches) (Table 10). Then, according to the model, the optimum N fertilizer
application rate corresponding to each variety was obtained (Table 10). According to the
actual planting density corresponding to different varieties, the NNI of different types of
rice varieties and acceptable regions was analyzed, it could be simultaneously obtained
within the 99% acceptable range, and the ranges were similar (Figure 14). The optimal
yield of the large-spike variety of rice was obtained with the density and N amount of
100.1 × 104 plant/ha (9 inches × 3 inches) and 53.856–74.155 kg ha−1, respectively. The opti-
mal yield of the intermediate variety of rice was obtained with the density and N amount of
75.08 × 104 plant/ha (9 inches × 4 inches) and 161.406–194.003 kg ha−1, respectively. The opti-
mal yield of the panicle number variety of rice was obtained with the density and N amount of
75.08 × 104 plant/ha (9 inches × 4 inches) and 121.691–193.900 kg ha−1, respectively.

Table 10. Regression equation between the input of density, nitrogen amount and NNI in different
types of rice varieties. The optimal value of NNI match with the amount of density and nitrogen in
different types of rice varieties.

Response
Variable Y Regression Equation Y

Max
D

(10,000 Plant/ha) N (kg/ha) R2

NNI/Y4
Y4 = 3.879 × 10−2D + 8.633 × 10−4N − 2.309 ×

10−4D2 − 5.218 × 10−6N2 + 7.402 × 10−6DN − 0.689
1 75.08 ≤ x ≤ 100.1 53.856 ≤ N ≤ 74.155 0.62

NNI/Y5
Y5 = 3.800 × 10−3D + 1.640 × 10−3N − 2.522 ×

10−5D2 − 3.663 × 10−6N2 + 1.665 × 10−5DN + 0.434
1 75.08 ≤ x ≤ 100.1 161.406 ≤ N ≤ 194.003 0.82

NNI/Y6
Y6 = 4.456 × 10−2D + 1.520 × 10−3N − 2.879 ×

10−4D2 − 5.083 × 10−6N2 + 1.490 × 10−5DN − 0.968
1 75.08 ≤ x ≤ 100.1 121.691 ≤ N ≤ 193.900 0.74

Note: D and N mean density and nitrogen amount, respectively. Y4 represents the yield of large-spike type variety;
Y5 represents the yield of intermediate type variety; Y6 represents the yield of panicle number type variety.
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We found that the yield and NNI model prediction results are considerably different
between the large-panicle varieties and the intermediate varieties. Large-spiked varieties
require that the nitrogen concentration of the plant is in a surplus state to obtain a high
yield, while intermediate varieties can achieve higher yields when the plants are in a
state of N concentration deficiency. Moreover, the panicle number varieties had the same
basic trend in the combined yield and NNI model prediction results (Tables 9 and 10).
Combining the yield and NNI model prediction results, we finally determined that the
optimal yield (15,327.99 kg ha−1) and NNI (1.12) of the large-spike type variety of rice were
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obtained with the density and N amount of 100.1 × 104 plant/ha (9 inches × 3 inches)
and 161.05 kg ha−1, respectively; the optimal yield (11,680.30 kg ha−1) and NNI (0.89)
of the intermediate type variety of rice were obtained with the density and N amount of
75.08 × 104 plant/ha (9 inches × 4 inches) and 159.52 kg ha−1, respectively; and the
optimal yield (10,376.89 kg ha−1) and NNI (1.01)of panicle number type variety of rice
were obtained with the density and N amount of 75.08 × 104 plant/ha (9 inches × 4 inches)
and 133.47 kg ha−1, respectively.

4. Discussion
4.1. Comparison of the Regression Models for Predicting NNI and Grain Yield

The N application amount and transplanting density are important field management
factors that affect the rice yield [2,7]. Most of the relevant research on precision agriculture
models has focused on the effect of N fertilizer application on crop yield [5,9], while
there have been few studies related to precision agriculture models on the effects of N
application and density on rice yield [10]. It is a promising approach to determine optimal
N rates under different soil and weather conditions [43]. Some studies suggested that there
was no difference in the critical N% changes of japonica rice in the same ecological type.
Usually, data from different cultivars of the same subtype of rice were combined to improve
the applicability of the curve [44,45]. However, the results of this study did not entirely
support this conclusion; the F values and significance of slope and intercept of Nc–biomass
mathematical equation are statistical different between different rice type varieties (Table 6).
Many factors involving genetics, the environment, and management affected critical N
concentration dilution curve of rice [44,46]. Determining which N dilution curve to use
for data calculation is crucial. To ensure the accuracy of NNI estimation, this study used
the Nc–biomass mathematical equation constructed separately for each variety of rice to
calculate the NNI index (Table 5). In order to explore optimal N application and density for
rice, the parameters of actual environmental conditions (e.g., soil properties and weather
conditions) and crop management information in production should be considered when
predicting the NNI and yield and N fertilizer and density management.

Multiple linear regression models can integrate multiple factor data for model build-
ing and data prediction [47]. The RR model is an empirical approach to the multi-
ple linear regression model, and it can show correlations with the yield and integrate
morpho-physiological indexes to determine the yield [48]. In this study, the RR model
using the PS data (leaf area index, SPAD value, extinction coefficient) could only explain
61.3% and 38.6% of the NNI and yield variability based on the test dataset, respectively
(Figures 3 and 8). This result is similar to that of studies that characterized the influence
of initial conditions, crop management, soil management, and N fertilizer management,
which were used to predict corn yield under different regions (R2 = 0.350) [49]. Com-
pared with the RR model using only the PS data, the prediction effect of the RR model
improved the accuracy of the NNI and yield prediction by using the PS and PSC data
(NNI: R2 =0.627; yield: R2 = 0.405) and by using PS, PSC and ENI (NNI: R2 = 0.755; yield:
R2 = 0.521). Previous research reported improved NNI and grain yield prediction accuracy
when multiple linear regression models with the remote sensing data, soil data, weather
data, and management data were used [5,10]. In this study, the prediction of the NNI by
the linear model was significantly better than that of the yield. This may be because the
NNI is closely related to the population structure, such as LAI [50,51] and plant height, and
the model for predicting the NNI based on LAI has been confirmed by a large number of
studies [52,53].

Over the past decade, ML methods have developed rapidly in the field of precision
agriculture [5,10,25–29]. ML and deep learning methods can solve significant nonlinear
problems using datasets from multiple sources. On the contrary, linear regression models
have limitations in analyzing nonlinear relationships, high-order interactions, and non-
normal data [54]. At present, most of the PNM model predictions about the NNI and
yield level use the RFR model [5,28,29,38], while there have been few related studies on
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the prediction of the yield and NNI using the LGBM model that focus on the ensemble
learning method. Previous research found that the RFR model was better at predicting the
corn NNI and grain yield than linear regression [5]. In this study, the ensemble learning
model (RFR and LGBM) was better than the linear model (Figures 3–5 and 8–10), which is
consistent with the results of previous studies [5].

In contrast, in the second stage, the NNI and yield prediction effect of the ensem-
ble model (NNI: LGBM model R2 = 0.622, RFR model R2 = 0.635; yield: LGBM model
R2 = 0.587, and RFR model R2 = 0.509) did not improve but decreased compared with
that of the first stage (NNI: LGBM model R2 = 0.645, RFR model R2 = 0.665; yield: LGBM
model R2 = 0.589, and RFR model R2 = 0.524) (Figures 3 and 8). This is different from
the result of a previous study, which found that the ensemble model outperformed when
using multiple types of data [49]. There are two main reasons for this situation. First, the
modeling data used by predecessors did not include experimental data such as population
plant types [5]; however, the population plant type data and NNI and yield had a complex
relationship with the variety [18], fertilizer dosage [55], transplanting density [19], and
cultivation environment conditions [10]. Another possible reason is the relatively small
dataset size, which may have limited the performance of the ML methods.

Moreover, in the third stage, the NNI and yield prediction effect of the ensemble
learning model was significantly improved compared to that of the other two stages, and
the R2 of LGBM and RFR in yield reached 0.901 and 0.908, respectively, while the R2 of
LGBM and RFR in NNI reached 0.921 and 0.874, respectively. This is consistent with most
research findings [5,12,28].

4.2. N and Density Recommendation Based on the Ensemble Learning Model

Previous studies have demonstrated that a small dataset (<500) can be used to build
models for predictive analysis with deep learning [56]. This study aimed to evaluate the
predictive performance of ensemble learning model for N and density recommendation
in the northeast China under wide range of conditions in three types of rice, for a small
dataset (<500). Both N and density are key information for developing methods for on-farm
crop management and growth monitoring [56,57]. However, there is very little known
about the effect of the small and diverse dataset with three types of rice on the predictive
performance of various ensemble learning models such as RFR and LGBM. We developed,
tested, and also inter-compared two ensemble learning models for their generalizability on
independent data.

The determination of the N and density recommendation for different varieties of
rice is challenging because of the interactions of crop variety [58], environmental weather
conditions [5], soil properties [34], and field management techniques [35]. Most of the data
used for the prediction by ML models in the past were obtained by sensors [12,25,28], and
owing to the difficulty of traditional data collection, the model prediction of yield and the
NNI has not been combined with characteristic value data, such as the population structure
or plant shape characteristics. In addition, most crop growth model-based approaches
to predict optimal N rate used average N rates across many years or sites, but are not
site-specific [59]. Therefore, there is an urgent need to develop a PNM strategy combining
plant population structure and plant shape characteristics for sustainable rice production
in northeast China.

Yield, N application, and planting density have a quadratic, quadratic plus plateau,
or linear plus plateau relationship with the N application rate and are only linear in rare
cases [60–63]. As a result, it was difficult to determine the optimum N rate and density that
would maximize grain yield and NNI in a linear fashion (RR) (Figures 5 and 10). Therefore,
the RR model was not suitable for determining the optimum N rate and density of rice
(NNI: R2 = 0.755; yield: R2 = 0.521) (Figures 5 and 10).

At present, most of the PNM model predictions about the NNI and yield level use the
RFR model [5,28,29,38]. However, there have been few related studies on the prediction of
the yield and NNI using the LGBM model, which focus on the ensemble learning method.
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Because the LGBM model is an efficient gradient boosted decision tree, it speeds up the
training process and is sometimes more accurate [26]. In this study, based on the accuracy
of predictions, an innovative N and density recommendation strategy was developed using
the RFR prediction model to simulate yield (Figure 10) and the LGBM prediction model
was used to simulate NNI responses to a series of N application and density management
scenarios (Figure 5).

4.3. The Application Potential of N and Density Recommendation Model Based on Multiple
Regression Analysis

Predecessors have used the multiple regression analysis method to comprehensively
evaluate the effects of water and N fertilizers on the yield, agronomic traits, NUE, and water
use efficiency of different crops [5]. These studies pointed out that the multiple regression
analysis method can accurately quantify the optimal value of the target and meet different
requirements rather than comparing trends and simple size [64]. In this study, we further
analyzed the relationships between the N rate, density, yield, and the NNI by considering
for the maximum values of different types of rice varieties of yield and a suitable NNI
based on the analysis of Mathematic 13.0 (Tables 9 and 10; Figures 13 and 14). Because the
NNI is a reliable indicator for diagnosing the N status of crops, an NNI of around one
indicates that the plant N nutrition is sufficient [65]. Therefore, in this study we set the
optimal value of NNI to one. We found that high-density (100.1 × 104 plant/ha; 9 inches
× 3 inches) and high-N rate (161.05 kg ha−1) cultivation techniques could be selected for
large panicle cultivars, and a high yield (15,327.99 kg ha−1) could be obtained by the slight
surplus status of the NNI (1.12) (Tables 9 and 10; Figures 13 and 14). Relevant studies
have found that high-N fertilizer (220 kg ha−1) and low-density levels (13.1 × 104 hills
ha−1) can enable low-tillering and large-sized panicle cultivar japonica rice varieties to
achieve high yields [19], which is inconsistent with the results of this study. In contrast, the
intermediate varieties can obtain a high yield (11,680.30 kg ha−1) under the conditions of
medium-density (75.08 × 104 plant/ha; 9 inches × 4 inches) and medium-N rate (159.52
kg ha−1) cultivation techniques, even if the plants are in a state of N deficiency (NNI,
0.89) (Tables 9 and 10; Figures 13 and 14). Some studies have reported that dense planting
is a feasible strategy to reduce N input in inbred rice [57], japonica inbred rice [19], and
perennial rice [66], which can enable high-yield rice. This is not the same as the results
of this study, our findings indicate that the intermediate varieties can achieve high yields
under moderate to high-N fertilizer conditions and at lower planting densities. For the
panicle number type variety, the N rate (133.47 kg ha−1) can be appropriately reduced
under a condition of medium density (75.08 × 104 plant/ha; 9 inches × 4 inches), and
a high yield (10,376.89 kg ha−1) can be obtained when the NNI (1.01) is maintained at
about one (Tables 9 and 10; Figures 13 and 14). In contrast, other studies have reported
that high-tillering rice cultivars should be planted with more seedlings per hill to obtain a
higher yield [19].

In summary, according to previous studies and the results of this study, it can be
concluded that there is no uniform optimal planting density, owing to the different cultivar
characteristics. Therefore, the method based on ML can determine the optimal planting
density and fertilization amount for different kinds of varieties, which can effectively exert
the characteristics of varieties and achieve the purpose of increasing yield.

Note that this study only covered one soil type, three different cultivar types, and several
years of weather data. More annual site-N rate experiments need to be conducted under
different soil and weather conditions to train and test the ensemble learning model and
thereby more accurately evaluate the N fertilizer and density recommendation strategy based
on the ensemble learning method. Moreover, the potential of the ensemble learning model for
N and density recommendation strategies can be optimized based on the data acquired from
sensors such as Crop Circle ACS 430 and RapidSCAN CS-45 [67,68]. In addition, unmanned
aerial vehicle remote sensing or satellite remote sensing can also be used to monitor the N
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status of large-scale crops and improve the ensemble learning model so as to guide the N
management of japonica rice in cold regions in the Heilongjiang Province [10].

5. Conclusions

This study compared the performance of the RR, RFR, and LGBM models for predic-
tion of NNI and yield using PS, PSC, and ENI data and developed an ensemble learning
model-based N and D recommendation strategy for different types of rice. The results
demonstrate that in the three stages of prediction of NNI and yield, the prediction effect of
the ensemble learning model was significantly better than that of the linear model. The
prediction effect of the linear model improved gradually with the increase in the number
of types of data (NNI: R2 = 0.613, 0.627, 0.755; yield: R2 = 0.386, 0.405, 0.521). In the
third stage, the NNI and yield prediction effect of the ensemble learning model was more
significantly improved than that of the other two stages; the R2 of LGBM and RFR in
yield reached 0.901 and 0.908, respectively; and the R2 of LGBM and RFR in NNI reached
0.921 and 0.874, respectively. An innovative N and density recommendation strategy was
developed using the RFR prediction model to simulate yield and the LGBM prediction
model to simulate NNI responses to a series of N application and density management
scenarios. The scenario analysis results show that the optimal yield (15,327.99 kg ha−1) and
NNI (1.12) of the large-spike variety of rice were obtained with a density and N amount
of 100.1 × 104 plant/ha (9 inches × 3 inches) and 161.05 kg ha−1, respectively; the op-
timal yield (11,680.30 kg ha−1) and NNI (0.89) of the intermediate variety of rice were
obtained with a density and N amount of 75.08 × 104 plant/ha (9 inches × 4 inches)
and 159.52 kg ha−1, respectively; and the optimal yield (10,376.89 kg ha−1) and NNI
(1.01) of panicle number variety of rice were obtained with a density and N amount of
75.08 × 104 plant/ha (9 inches × 4 inches) and 133.47 kg ha−1, respectively. It is concluded
that the ensemble learning model-based N and D recommendation strategy combining
crop sensing data with PS, PSC, and ENI information is a promising approach to improve
rice N and D management.
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