
Citation: Tong, K.; Chen, X.; Yan, S.;

Dai, L.; Liao, Y.; Li, Z.; Wang, T.

PlantMine: A Machine-Learning

Framework to Detect Core SNPs in

Rice Genomics. Genes 2024, 15, 603.

https://doi.org/10.3390/

genes15050603

Academic Editor: Qinghu Ma

Received: 28 March 2024

Revised: 5 May 2024

Accepted: 7 May 2024

Published: 9 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

genes
G C A T

T A C G

G C A T

Article

PlantMine: A Machine-Learning Framework to Detect Core
SNPs in Rice Genomics
Kai Tong 1,†, Xiaojing Chen 2,3,†, Shen Yan 4, Liangli Dai 1, Yuxue Liao 1, Zhaoling Li 1,* and Ting Wang 5,6,*

1 School of Biological Engineering, Sichuan University of Science & Engineering, Yibin 644000, China;
tongkai@suse.edu.cn (K.T.); 322086002309@stu.suse.edu.cn (L.D.); 323083202108@stu.suse.edu.cn (Y.L.)

2 National Agriculture Science Data Center, Agricultural Information Institute, Chinese Academy of
Agricultural Sciences, Beijing 100081, China; 82101225580@caas.cn

3 National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572024, China
4 State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of

Agricultural Sciences, Beijing 100081, China; yanshen@caas.cn
5 Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
6 Key Laboratory of Big Agri-Data, Ministry of Agriculture and Rural Areas, Beijing 100081, China
* Correspondence: lzl_lizhaoling@163.com (Z.L.); wangting01@caas.cn (T.W.); Tel.: +86-0831-5980220 (Z.L.)
† These authors contributed equally to this work.

Abstract: As a fundamental global staple crop, rice plays a pivotal role in human nutrition and
agricultural production systems. However, its complex genetic architecture and extensive trait
variability pose challenges for breeders and researchers in optimizing yield and quality. Particularly
to expedite breeding methods like genomic selection, isolating core SNPs related to target traits
from genome-wide data reduces irrelevant mutation noise, enhancing computational precision
and efficiency. Thus, exploring efficient computational approaches to mine core SNPs is of great
importance. This study introduces PlantMine, an innovative computational framework that integrates
feature selection and machine learning techniques to effectively identify core SNPs critical for the
improvement of rice traits. Utilizing the dataset from the 3000 Rice Genomes Project, we applied
different algorithms for analysis. The findings underscore the effectiveness of combining feature
selection with machine learning in accurately identifying core SNPs, offering a promising avenue to
expedite rice breeding efforts and improve crop productivity and resilience to stress.

Keywords: feature selection; genomic prediction; machine learning; rice breeding; SNP

1. Introduction

The quest for global food security is one of the most pressing challenges of the 21st
century, exacerbated by a burgeoning global population projected to reach nearly 10 billion
by 2050 [1,2] and the multifaceted threats posed by climate change. Rice, as a staple food
for over half of the world’s population, is at the heart of this challenge, necessitating inno-
vative approaches to enhance its yield, nutritional value, and resilience to environmental
stresses [3]. The genetic improvement of rice through breeding has historically played
a pivotal role in addressing food security, with the Green Revolution serving as a land-
mark achievement that significantly increased crop yields. However, traditional breeding
methods are increasingly seen as insufficient to meet the contemporary demands for rapid,
sustainable, and environmentally friendly crop improvement [4].

Recent developments in genomics and biotechnology have paved the way for advance-
ments in crop improvement, and breeders are now able to conduct research on the relation-
ship between single nucleotide polymorphisms (SNPs) and various crop phenotypes at the
genome-wide level. As the most prevalent form of genetic variation, genome-wide SNPs
are essential for dissecting the genetic foundations of key phenotypic traits such as yield,
disease resistance, and drought tolerance [5–7]. Leveraging the analysis and processing of
genome-wide SNPs in rice breeding can markedly hasten the creation of superior varieties,
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thereby presenting an effective strategy to bolster food security. Nevertheless, the challenge
of handling SNPs at the genome-wide level lies in their high dimensionality and sheer
volume. Utilizing unselected and unfiltered SNPs directly in subsequent analyses can
lead to significant statistical challenges, a situation exacerbated by the small sample sizes
available in current rice genomic datasets. Consequently, it is crucial to choose appropriate
feature extraction methods to isolate important SNPs closely associated with target pheno-
types [8], known as core SNPs, from the multitude of genome-wide SNPs. This selection
aids in supporting further research on genomic prediction and related studies, ensuring
more targeted and effective analyses. Various methods for identifying core SNPs have been
developed. These methods rely on manual identification, use tools such as Genome-Wide
Association Studies (GWAS), or focus solely on the diversity between genotypes, disregard-
ing the intended phenotypes for computation [9,10]. However, these methods have various
shortcomings. For example, methods based on manual identification are time-consuming
and costly, methods using GWAS lack the ability to capture minor and rare mutations, and
methods that focus only on genotypes to maximize genetic diversity struggle to retain
sufficient information for targeted phenotypes. Most importantly, these methods only focus
on the single step of capturing core SNPs and cannot meet the needs of subsequent algo-
rithms for predicting different phenotypes. Machine learning (ML) has revolutionized data
analysis by providing sophisticated tools to handle the vast and complex datasets generated
by recent genomic studies. ML techniques, particularly feature selection methods, have
shown great potential for identifying the most informative genetic markers from large sets
of SNPs, thereby improving the efficiency and accuracy of genomic selection [11]. Feature
selection not only aids in reducing the dimensionality of genomic data but also enhances
model interpretability and reduces overfitting, making it an invaluable component of ML-
based genomic selection strategies [12,13]. Machine learning methods, such as Random
Forest, have been utilized for SNPs screening to enhance model predictive capability [14].
Therefore, using appropriate feature selection methods can quickly eliminate the impact of
unnecessary features from genome-wide markers in rice, thereby enhancing the accuracy of
subsequent analyses and increasing computational speed [15,16]. However, considering the
varying compatibility between different feature selection methods and genomic prediction
algorithms, it becomes a challenge for breeders to select the most suitable feature selection
method based on their genomic prediction algorithms.

To facilitate fast and efficient identification of key SNP sets associated with specific
traits, this study introduced an innovative computational framework, PlantMine, which
uses three feature selections paired with four machine learning approach techniques,
respectively, so as to facilitate the management of high-dimensional feature data and to
compare the combinations of techniques that can be used to efficiently mine the core set of
SNPs associated with rice breeding, as illustrated in Figure 1. We validated the effectiveness
of the PlantMine framework using the phenotype data—day to heading from the rice
3 k dataset as a feature. Utilizing PlantMine, we are able to swiftly determine the optimal
feature selection and machine learning-based predictive methodologies based on genotypic
and targeted phenotypic data, thereby facilitating the rapid identification of key genetic
markers associated with the desired crop phenotypes. This study provides new data
analysis and processing approaches for subsequent rice genomic prediction models and
whole-genome selection breeding.
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Figure 1. PlantMine framework for detection of core SNPs in rice genomics. The workflow for 
constructing PlantMine. In this framework, three feature selection methods and four machine 
learning methods are combined to seek the optimal results. The meanings of the abbreviations in 
the figure are as follows: ANOVA: Analysis of Variance, MIC: Maximal Information Coefficient, F-
SCORE: Fisher Score, XGBoost: eXtreme Gradient Boosting, SVM: Support Vector Machine, KNN: 
K-Nearest-Neighbors, RF: Random Forest. 

2. Materials and Methods 
2.1. Dataset 

The 3000 Rice Genomes Project constitutes a comprehensive gigabyte-scale dataset 
encompassing genome sequences from 3010 distinct rice varieties, capturing the extensive 
genetic and functional diversity of rice on a global scale [17]. From the rice dataset, we 
retrieved 2799 samples containing 404,000 core SNPs and the phenotypes data—day to 
heading from the public database (https://snpseek.irri.org/_download.zul, accessed on 15 
December 2023). It should be noted that the 404,000 core SNPs here were initially selected 
by the provider of the dataset without any regard for the target phenotype. For these 
SNPs, we first applied a filtering process using PLINK based on linkage disequilibrium 
(LD) with parameters (indep-pairwise 1000 100 0.1), which resulted in 7202 SNPs. We then 
conducted a secondary screening of these 7202 SNPs using the PlantMine framework to 
validate its effectiveness. Considering the differences in quantity and quality traits, we 
segmented the original continuous data into categorical data. We sorted all the specific 
heading days data, and regardless of the exact number of days, the shortest 25% were 
uniformly assigned as Level 1, the middle 25% to 75% were assigned as Level 2, and the 
longest 25% were assigned as Level 3 [18] (Figure S1, Supplementary S2). These samples 
were divided into a training set consisting of 2239 samples and a test set consisting of 560 
samples, which ensured a robust framework for subsequent analysis and model training. 

2.2. PlantMine Framework 
The PlantMine computational framework establishes two tasks, regression and 

classification (Figure 1). In the regression task, the goal is to identify SNPs suitable for 
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Figure 1. PlantMine framework for detection of core SNPs in rice genomics. The workflow for
constructing PlantMine. In this framework, three feature selection methods and four machine
learning methods are combined to seek the optimal results. The meanings of the abbreviations in
the figure are as follows: ANOVA: Analysis of Variance, MIC: Maximal Information Coefficient,
F-SCORE: Fisher Score, XGBoost: eXtreme Gradient Boosting, SVM: Support Vector Machine, KNN:
K-Nearest-Neighbors, RF: Random Forest.

2. Materials and Methods
2.1. Dataset

The 3000 Rice Genomes Project constitutes a comprehensive gigabyte-scale dataset
encompassing genome sequences from 3010 distinct rice varieties, capturing the extensive
genetic and functional diversity of rice on a global scale [17]. From the rice dataset, we
retrieved 2799 samples containing 404,000 core SNPs and the phenotypes data—day to
heading from the public database (https://snpseek.irri.org/_download.zul, accessed on 15
December 2023). It should be noted that the 404,000 core SNPs here were initially selected
by the provider of the dataset without any regard for the target phenotype. For these SNPs,
we first applied a filtering process using PLINK based on linkage disequilibrium (LD) with
parameters (indep-pairwise 1000 100 0.1), which resulted in 7202 SNPs. We then conducted
a secondary screening of these 7202 SNPs using the PlantMine framework to validate its
effectiveness. Considering the differences in quantity and quality traits, we segmented
the original continuous data into categorical data. We sorted all the specific heading days
data, and regardless of the exact number of days, the shortest 25% were uniformly assigned
as Level 1, the middle 25% to 75% were assigned as Level 2, and the longest 25% were
assigned as Level 3 [18] (Figure S1, Supplementary S2). These samples were divided into
a training set consisting of 2239 samples and a test set consisting of 560 samples, which
ensured a robust framework for subsequent analysis and model training.

2.2. PlantMine Framework

The PlantMine computational framework establishes two tasks, regression and classifi-
cation (Figure 1). In the regression task, the goal is to identify SNPs suitable for quantitative
trait screening, whereas in the classification task, we classified the genomic variation dataset
into three categories of samples based on flowering time, namely, early, mid, and late sam-
ples for training, and used them to identify SNPs that are suitable for qualitative trait
screening. In order to effectively eliminate useless features and reduce the dimensionality
of input features, PlantMine employs three feature selection methods: analysis of variance

https://snpseek.irri.org/_download.zul
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(ANOVA), maximal information coefficient (MIC), and Fisher score (F-SCORE), which
help to improve the operational efficiency of the algorithm. After the feature selection is
completed, PlantMine pairs the three feature selection methods with eXtreme Gradient
Boosting (XGBoost), Support Vector Machine (SVM), K-Nearest-Neighbors (KNN) and
Random Forest (RF), and at the same time, the incremental feature selection (IFS) strategy
was adopted to gradually increase the features to select the best subset of features, avoiding
the computational complexity and overfitting problems that may be caused by selecting all
the features at one time, and ultimately completing the efficient prediction of the core SNPs
that are closely related to the key traits of rice resistance and yield.

2.3. Feature Selection Method

The feature selection methods used in this study include ANOVA, MIC, and F-SCORE.
ANOVA, also known as Fisher’s analysis of variance, tests for statistical significance by the
ratio of between-group variance to within-group variance, is a filtering method used to
capture the linear relationship between each feature and the labels, and is suitable for both
regression and classification tasks [19]. MIC is a non-parametric exploratory statistic based
on maximum information for identifying and categorizing larger classes of relationships,
which can measure the degree of association between two variables, thus filtering out the
more influential characteristic variables [20]. F-SCORE is a measure of the ability of features
to discriminate between two classes, a technique that selects specific features such that in
the same class the feature values are similar and in dissimilar classes the feature values are
completely different [21]. We select the above three representative methods to process the
dataset separately to eliminate irrelevant features, reduce the dimensionality of the data,
and provide effective information input for the next machine learning algorithm to process
the task.

2.4. Genomic Prediction Method

After determining that the high-dimensional feature data are processed effectively,
we assess the quality of the core SNPs identified by different methods based on their
performance in genomic prediction tasks. Until now, many machine learning algorithms
have appeared for genomic prediction. In this study, four machine learning models, namely,
XGBoost, SVM, KNN, and RF, are used in a collaborative feature selection method to
construct the PlantMine framework. In order to reduce the risk of overfitting algorithms
and to increase the algorithms’ ability to generalize, an incremental feature selection method
was adopted for the prediction of key SNPs related to rice breeding.

2.4.1. XGBoost Algorithm

In this study, we employed the XGBoost algorithm, a state-of-the-art machine learning
technique renowned for its efficiency, performance, and flexibility in handling complex
datasets. XGBoost is an advanced implementation of gradient boosted decision trees
designed for speed and performance. It is particularly adept at handling sparse data
and has been widely adopted in various domains, including genomics, for its superior
predictive capabilities and efficiency in feature selection [22,23].

2.4.2. SVM Algorithm

To address the feature selection challenges inherent in screening core SNPs in rice, we
utilized the SVM algorithm. SVM is a supervised machine learning model that is widely
recognized for its robustness and effectiveness in binary classification tasks, making it
particularly suitable for genomic data analysis [24,25]. The algorithm operates by finding
the hyperplane that best separates the data points of different classes in the feature space,
maximizing the margin between the closest points of the classes, which are referred to as
support vectors.
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2.4.3. KNN Algorithm

The KNN algorithm classifies each data point based on the majority vote of its ‘k’ near-
est neighbors, with ‘k’ being a user-defined constant. The proximity between data points is
typically measured using distance metrics such as Euclidean, Manhattan, or Minkowski
distance. For our study, we chose the Euclidean distance due to its intuitive geometric
interpretation and effectiveness in high-dimensional spaces like those encountered in
SNP datasets.

2.4.4. RF Algorithm

The RF operates by constructing a multitude of decision trees during the training phase
and outputting the class, which is the mode of the classes predicted by individual trees for
classification tasks. Each tree in the forest is built from a random sample of the training
set, and at each node, a subset of features is randomly selected to determine the split. This
approach, known as bootstrap aggregating or bagging, coupled with feature randomness,
ensures diversity among the trees, thereby enhancing the model’s generalization ability.

2.5. Evaluation Metrics

In order to verify the effectiveness of the proposed framework, the quantitative metrics
accuracy, recall, precision, and F1score are used to compare the performance of different
combinations, and the above four metrics take values in the range of 0 to 1. A high value
indicates good performance of the algorithm, which is defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Recall =
TP

TP + FN
(2)

Precision =
TP

TP + FP
(3)

F1score =
2 × (precision × recall)

precision + recall
(4)

where TP, TN, FP, and FN represent the numbers of true positives, true negatives, false
positives, and false negatives, respectively.

2.6. Analysis of the Differences in SNPs Selected by Various Methods

To visually understand the differences among the SNP selection methods of ANOVA,
F-SCORE, and MIC, we employed the R package RIdeogram to map the distribution of
the top 300 SNPs on rice chromosomes as identified by each method. Additionally, for a
clearer comparison of the outcomes produced by different methods, we utilized the Python
package Venn to generate Venn diagrams for the top 300 and top 1000 SNPs selected by
each method.

3. Results
3.1. Suitable for Screening for Quantitative Traits

Based on the IFS strategy, the predictive accuracy results of three feature selection
methods and four machine learning algorithms on the training set are summarized in Table 1
and Table S1. The results indicate that the KNN algorithm, in concert with different feature
selection methods, has accuracy rates of 73.70%, 69.14%, and 70.82%. Overall performance
is good, and the prediction accuracy is the highest in the framework when paired with the
ANOVA feature selection method, achieving an accuracy rate of 73.70% while utilizing
only 1170 SNPs. In addition, when paired with the ANOVA feature selection method,
the RF algorithm demonstrated performance similar to that of KNN, which indicates to
some extent that the core SNPs can be identified to be closely related to rice traits based
on the PlantMine Framework and that ANOVA was effective in identifying core SNPs
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and eliminating redundant information. It is noteworthy that in the course of the training
process, the Random Forest algorithm, in conjunction with ANOVA, FS, and MIC feature
selection methodologies, demonstrated exceptionally high accuracies (97.87%, 97.86%, and
97.88%, respectively). Nevertheless, the quantities of SNPs employed were considerably
elevated (7190, 3360, and 3690, respectively), suggesting that the RF algorithm contributed
to a certain extent of overfitting.

Table 1. Comparison of accuracies of computational framework regression task.

Feature Selection Methods Machine Learning Algorithms Optimal Features Accuracy (%)

ANOVA

KNN 1170 0.737001
SVM 790 0.636433

XGBoost 510 0.607868
RF 880 0.730588

F-SCORE

KNN 170 0.691149
SVM 800 0.6801

XGBoost 790 0.698819
RF 950 0.701213

MIC

KNN 1540 0.70826
SVM 740 0.655904

XGBoost 2070 0.698285
RF 2290 0.694212

In addition, as can be seen from Figure 2, under the IFS strategy, the prediction accu-
racy of each model reaches the maximum value with the increase in SNPs and gradually
tends to be stable. However, the accuracy of the KNN algorithm decreases significantly
when the number of SNPs required reaches a certain number under different feature
selection methods, in which the decreasing trend is slowed down compared with the
ANOVA method when paired with the F-SCORE and MIC methods. This implies that
for quantitative traits, it is feasible to remove the redundant SNP information through
appropriate feature selection, and the fluctuation of its accuracy may be due to the fact that
the KNN algorithm is a distance metric-based method, and in the high-dimensional space,
the distances between the sample points become sparse, which leads to the failure of the
distance metric and thus the accuracy of the KNN algorithm is affected. Considering that
ensuring performance while minimizing the number of SNPs is beneficial for reducing sub-
sequent computational difficulties, the ANOVA as a feature selection strategy, performed
particularly well. These findings provide strong support for the efficient identification and
utilization of core SNPs in rice breeding, showcasing the immense potential of combining
feature selection with machine learning algorithms in the analysis of genomic data.

3.2. Suitable for Screening for Quality Traits

The approach of integrating feature selection with machine learning is equally ap-
plicable to the classification tasks of qualitative traits. As can be seen in Table 2 and
Table S2, within the test dataset, the overall performance of the SVM model is excellent, and
the SVM model utilizing F-SCORE shows the optimal performance, achieving an accuracy
of 65.48%. The second good prediction performance is the SVM model utilizing MIC, which
requires much fewer SNPs than under F-SCORE methods, but the accuracy is only 0.17%
lower than F-SCORE, respectively. Furthermore, as depicted in Figure 3, aside from the
KNN algorithm, which demonstrates a trend of performance decline with an increase in
the number of features, indicating instability, the MIC feature selection method is capable
of achieving comparable predictive performance to F-SCORE across different models with
fewer features. This underscores the superior generalization ability and optimal overall
classification performance of the MIC method in this classification task.
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Table 2. Comparison of accuracies of computational framework classification task.

Feature Selection Methods Machine Learning Algorithms Optimal Features Accuracy (%)

ANOVA

KNN 10 0.466071
SVM 940 0.647621

XGBoost 510 0.607868
RF 5210 0.642267

F-SCORE

KNN 50 0.546494
SVM 1660 0.654765

XGBoost 500 0.616071
RF 1170 0.65253

MIC

KNN 110 0.342857
SVM 430 0.652978

XGBoost 500 0.65
RF 1790 0.650299



Genes 2024, 15, 603 8 of 12

Genes 2024, 15, x FOR PEER REVIEW 8 of 12 
 

 

Table 2. Comparison of accuracies of computational framework classification task. 

Feature Selection Methods Machine Learning Algorithms Optimal Features Accuracy (%) 

ANOVA 

KNN 10 0.466071 
SVM 940 0.647621 

XGBoost 510 0.607868 
RF 5210 0.642267 

F-SCORE 

KNN 50 0.546494 
SVM 1660 0.654765 

XGBoost 500 0.616071 
RF 1170 0.65253 

MIC 

KNN 110 0.342857 
SVM 430 0.652978 

XGBoost 500 0.65 
RF 1790 0.650299 

 
Figure 3. The IFS curves show the performance of three feature selections (ANOVA, F-SCORE, and 
MIC) and the four models in the classification task. The blue curve represents KNN, yellow 
represents RF, green represents XGBoost, and red represents SVM. 

Figure 3. The IFS curves show the performance of three feature selections (ANOVA, F-SCORE, and
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3.3. The Differences in SNPs Selected by Various Methods

The top 300 SNPs selected by different methods exhibit distinct tendencies (Figure 4A,
Supplementary S3), regardless of whether the task is regression or classification. Among
the three methods, the important SNPs selected by MIC are notably more dispersed across
the chromosomes, while F-SCORE tends to select SNPs close to key regions, and the
results of ANOVA between these two approaches. This variation is clearly visible on
chromosome 12, where the blue representing F-SCORE is concentrated in certain areas,
while the red representing MIC displays a different trend. Figure 4B shows the varying
degrees of overlap in the selection results of the three methods for both regression and
classification tasks. It is noteworthy that only a very small number of SNPs are selected
by all three methods. Significantly, SNPs at the end of chromosome 3 are selected by all
three methods in both regression and classification tasks, suggesting that this region may
play a crucial role in the development of the target phenotype. Figure 4C further illustrates
the intersections of the top 300 and top 1000 SNPs selected by different methods. Within
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the top 300 SNPs chosen by each method, only a very small fraction (9 in regression, 4 in
classification) are selected by all three methods (Table S3). When the scope is expanded to
the top 1000 SNPs, this proportion increases (69 in regression, 63 in classification).
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Figure 4. Differences between various feature selection methods: (A). Distribution of the top 300 SNPs
selected by different feature selection methods on rice chromosomes (left is regression tasks, right is
classification tasks). Green represents ANOVA, blue represents F-SCORE, and red represents MIC.
(B). Intersection of results from different feature selection methods (left is regression tasks, right is
classification tasks). Also using the top 300 SNPs, blue represents SNPs selected by only one method,
yellow represents SNPs selected by two methods, and red represents SNPs selected by all three
methods. (C). Venn diagrams of features selected by different methods. From left to right: regression
tasks with the top 300 SNPs, classification tasks with the top 300 SNPs, regression tasks with the top
1000 SNPs, and classification tasks with the top 300 SNPs.

4. Discussion

Although machine learning has increasingly become an important research tool in
botanical fields such as genomic prediction, feature selection is important to ensure the qual-
ity of data input for machine learning algorithms [26]. In prediction tasks, challenges such
as information redundancy and noise are common; not every feature of high-dimensional
data is effective for model prediction; irrelevant features reduce the accuracy of the algo-



Genes 2024, 15, 603 10 of 12

rithm; and for larger datasets, a higher search space not only increases the computation
time but also affects the model’s generalization ability [26,27].

We have developed a computational framework capable of effectively identifying
core SNPs closely associated with rice traits, as illustrated in Figure 1. The essence of
this study lies in the integration of feature selection with machine learning algorithms, a
strategy based on training with genomic variation data aimed at identifying core SNPs
sets related to specific traits. When dealing with high-dimensional feature data, challenges
such as overfitting, information redundancy, and noise are common. These issues not only
reduce the generalization ability of the model but also affect predictive performance in
cross-validation. Conversely, while low-dimensional features can enhance the robustness of
the model, the limited number of features may not provide sufficient information, thereby
impacting predictive accuracy.

To address these challenges and effectively manage high-dimensional data, selecting
representative core SNPs is particularly crucial. This not only allows for a deeper under-
standing of the intrinsic properties of the rice genome but also improves the interpretability
and accuracy of the predictive models. This study employs four machine learning algo-
rithms and three feature selection methods, based on an IFS strategy, to efficiently mine the
core SNP set related to rice breeding. The aim is to provide more precise genetic informa-
tion for rice breeding, thereby facilitating the improvement of rice varieties and ensuring
food security.

It merits emphasis that, based on our investigation, the efficacy of identical feature
selection methodologies exhibits distinct variability contingent upon the nature of the task
and the selection of computational models. This is particularly evident when dealing with
quantitative traits, where the results are subject to disturbances from multiple factors. This
may be due to regression tasks being highly sensitive, as they depend on the combined
effects of numerous low-efficiency SNP loci. This further underscores the significance of
the Plantmine framework, which acknowledges that no single feature selection method can
universally apply to all problems and models. Instead, by integrating multiple conditions,
it determines the most suitable methods and parameters for the intended task, ensuring a
more tailored and effective approach.

For the same task, different feature selection methods might identify almost entirely
different SNPs, as demonstrated in Figure 4, because each method analyzes data discrep-
ancies from unique perspectives. For example, the MIC method focuses on detecting
nonlinear correlations between variables, which allows it to capture minor effect loci dis-
persed throughout various regions of the genome. The substantial differences in how these
algorithms perform can affect the results of genomic predictions when they are combined
with different genomic prediction algorithms. Therefore, there is no single best feature
prediction method but rather an optimal combination of feature selection and genomic
prediction methods. This is why PlantMine provides a framework that includes feature
selection, genomic prediction, and IFS curves instead of simply suggesting the best SNP
selection method. As technology progresses and more rice datasets are developed, new
feature selection methods and genomic prediction algorithms will emerge. When breeders
are unsure about which feature selection algorithm to use or how to select core SNPs for
genomic prediction, the technical framework offered by PlantMine can provide them with
substantial guidance.

Furthermore, our research has uncovered several findings of significant referential
value. Firstly, the performance of the KNN algorithm rapidly declines after reaching a
peak as the number of features increases. This suggests to breeders that when directly
predicting with high-density SNP datasets, the KNN model should ideally be avoided,
whereas it might represent a viable option when fewer markers are employed. Secondly,
simple feature extraction algorithms, such as ANOVA, can exhibit commendable perfor-
mance in regression tasks. This perhaps elucidates why ANOVA remains the analytical
tool most frequently selected in contexts such as field experiments; simplicity does not
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necessarily equate to inadequacy. Lastly, the stable performance of MIC in classification
tasks underscores its formidable capability for extracting pertinent information.

5. Conclusions

This study presents a comprehensive computational framework designed to identify
core SNPs that are closely associated with rice traits. By integrating feature selection
techniques with machine learning algorithms, we have addressed the challenges posed by
high-dimensional genomic data, such as overfitting, information redundancy, and noise,
which often compromise model generalization and predictive performance. Our approach,
which leverages an IFS strategy, has demonstrated significant efficacy in mining core SNP
sets pertinent to rice breeding, thereby offering a pathway to enhance the precision of
genetic information used in rice variety improvement and contributing to global food
security efforts.
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www.mdpi.com/article/10.3390/genes15050603/s1, Table S1: Performance of different combinations
on the test and training datasets in regression tasks. Table S2: Performance of different combinations
on the test and training datasets in Classification tasks. Table S3: The intersection of the top 300 SNPs
selected by different feature selection methods. Figure S1: Schematic of the method for generating
classification labels. Supplementary S1: The results of ranking SNPs by importance using different
feature selection methods. Supplementary S2: The raw regression labels and the classification labels.
Supplementary S3: The top 300 SNPs selected by different feature selection methods.

Author Contributions: Conceptualization, K.T. and T.W., methodology, X.C. and S.Y., data curation,
S.Y.; writing—original draft preparation, K.T. and X.C.; writing—review and editing, L.D., Y.L. and
Z.L.; project administration, T.W.; funding acquisition, K.T. and S.Y. All the authors reviewed the
manuscript and made significant editorial contributions. All authors have read and agreed to the
published version of the manuscript.

Funding: This work is supported by the National Natural Science Foundation of China (Grant No.
32371996 to S.Y.) and the Open Project Program of the Key Laboratory of Agricultural Big Data,
Ministry of Agriculture and Rural Affairs (202207).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data will be made available on request. The ranking results for the
importance of SNPs by three different methods are provided in Supplementary S1. We declare that
the data generated in this work are based on our recognition of the spirit of the Toronto Statement.
These data are merely a reordering of the SNP data provided by the 3 K Rice Genomes, using our
method. These data are solely used for validating our framework. The raw dataset is available at the
SNP-Seek database (http://snp-seek.irri.org/download.zul, accessed on 15 December 2023).

Acknowledgments: We thank all participants of the 3K Rice Genomes Project and the SNPseek
project, as all validation data used in this paper come from their platforms.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Wing, R.A.; Purugganan, M.D.; Zhang, Q. The rice genome revolution: From an ancient grain to Green Super Rice. Nat. Rev.

Genet. 2018, 19, 505–517. [CrossRef]
2. Muller, A.; Schader, C.; El-Hage Scialabba, N.; Bruggemann, J.; Isensee, A.; Erb, K.H.; Smith, P.; Klocke, P.; Leiber, F.; Stolze,

M.; et al. Strategies for feeding the world more sustainably with organic agriculture. Nat. Commun. 2017, 8, 1290. [CrossRef]
[PubMed]

3. Rosegrant, M.W.; Cline, S.A. Global food security: Challenges and policies. Science 2003, 302, 1917–1919. [CrossRef] [PubMed]
4. Wu, B.; Hu, W.; Xing, Y.Z. The history and prospect of rice genetic breeding in China. Yi Chuan 2018, 40, 841–857. [PubMed]
5. Ganal, M.W.; Altmann, T.; Roder, M.S. SNP identification in crop plants. Curr. Opin. Plant Biol. 2009, 12, 211–217. [CrossRef]
6. Huang, J.; Li, Z.; Zhang, J. Research on Plant Genomics and Breeding. Int. J. Mol. Sci. 2023, 24, 15298. [CrossRef] [PubMed]
7. Wang, H.; Liang, P.; Zheng, L.; Long, C.; Li, H.; Zuo, Y. eHSCPr discriminating the cell identity involved in endothelial to

hematopoietic transition. Bioinformatics 2021, 37, 2157–2164. [CrossRef]

https://www.mdpi.com/article/10.3390/genes15050603/s1
https://www.mdpi.com/article/10.3390/genes15050603/s1
http://snp-seek.irri.org/download.zul
https://doi.org/10.1038/s41576-018-0024-z
https://doi.org/10.1038/s41467-017-01410-w
https://www.ncbi.nlm.nih.gov/pubmed/29138387
https://doi.org/10.1126/science.1092958
https://www.ncbi.nlm.nih.gov/pubmed/14671289
https://www.ncbi.nlm.nih.gov/pubmed/30369468
https://doi.org/10.1016/j.pbi.2008.12.009
https://doi.org/10.3390/ijms242015298
https://www.ncbi.nlm.nih.gov/pubmed/37894978
https://doi.org/10.1093/bioinformatics/btab071


Genes 2024, 15, 603 12 of 12

8. Thachuk, C.; Crossa, J.; Franco, J.; Dreisigacker, S.; Warburton, M.; Davenport, G.F.J.B.B. Core Hunter: An algorithm for sampling
genetic resources based on multiple genetic measures. BMC Bioinform. 2009, 10, 243. [CrossRef] [PubMed]

9. Jeong, S.; Kim, J.Y.; Jeong, S.C.; Kang, S.T.; Moon, J.K.; Kim, N. GenoCore: A simple and fast algorithm for core subset selection
from large genotype datasets. PLoS ONE 2017, 12, e0181420. [CrossRef]

10. Yan, J.; Wang, X. Machine learning bridges omics sciences and plant breeding. Trends Plant Sci. 2023, 28, 199–210. [CrossRef]
11. Li, J.; Cheng, K.; Wang, S.; Morstatter, F.; Trevino, R.P.; Tang, J.; Liu, H. Feature Selection: A Data Perspective. ACM Comput. Surv.

2017, 50, 1–45. [CrossRef]
12. Cai, J.; Luo, J.; Wang, S.; Yang, S. Feature selection in machine learning: A new perspective. Neurocomputing 2018, 300, 70–79.

[CrossRef]
13. Bhardwaj, A.; Bag, S.K. PLANET-SNP pipeline: PLants based ANnotation and Establishment of True SNP pipeline. Genomics

2019, 111, 1066–1077. [CrossRef] [PubMed]
14. Jing, X.Y.; Li, F.M. Predicting Cell Wall Lytic Enzymes Using Combined Features. Front. Bioeng. Biotechnol. 2020, 8, 627335.

[CrossRef] [PubMed]
15. Wang, H.; Lin, Y.; Yan, S.; Hong, J.; Tan, J.; Chen, Y.; Cao, Y.; Fang, W. NRTPredictor: Identifying rice root cell state in single-cell

RNA-seq via ensemble learning. Plant Methods 2023, 19, 119. [CrossRef] [PubMed]
16. Wang, W.; Mauleon, R.; Hu, Z.; Chebotarov, D.; Tai, S.; Wu, Z.; Li, M.; Zheng, T.; Fuentes, R.R.; Zhang, F.; et al. Genomic variation

in 3010 diverse accessions of Asian cultivated rice. Nature 2018, 557, 43–49. [CrossRef]
17. Yan, J.; Xu, Y.; Cheng, Q.; Jiang, S.; Wang, Q.; Xiao, Y.; Ma, C.; Yan, J.; Wang, X. LightGBM: Accelerated genomically designed crop

breeding through ensemble learning. Genome Biol. 2021, 22, 271. [CrossRef] [PubMed]
18. Zhang, Z.; Yang, Y.; Ding, H.; Wang, D.; Chen, W.; Lin, H. Design powerful predictor for mRNA subcellular location prediction in

Homo sapiens. Brief. Bioinform. 2021, 22, 526–535. [CrossRef] [PubMed]
19. Li, Y.; Huang, G.; Chen, Z.; Xiong, Y.; Huang, Q.; Xu, X.; Huo, Z. Effects of irrigation and fertilization on grain yield, water and

nitrogen dynamics and their use efficiency of spring wheat farmland in an arid agricultural watershed of Northwest China. Agric.
Water Manag. 2022, 260, 107277. [CrossRef]

20. Dhal, P.; Azad, C.J.A.I. A comprehensive survey on feature selection in the various fields of machine learning. Appl. Intell. 2022,
52, 4543–4581. [CrossRef]

21. Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2000, 29, 1180–1232. [CrossRef]
22. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM Sigkdd International

Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794.
23. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
24. Lewis, D.P.; Jebara, T.; Noble, W.S. Support vector machine learning from heterogeneous data: An empirical analysis using

protein sequence and structure. Bioinformatics 2006, 22, 2753–2760. [CrossRef] [PubMed]
25. Lourenço, V.M.; Ogutu, J.O.; Rodrigues, R.A.P.; Posekany, A.; Piepho, H.-P. Genomic prediction using machine learning: A

comparison of the performance of regularized regression, ensemble, instance-based and deep learning methods on synthetic and
empirical data. BMC Genom. 2024, 25, 152. [CrossRef] [PubMed]

26. Mahood, E.H.; Kruse, L.H.; Moghe, G.D. Machine learning: A powerful tool for gene function prediction in plants. Appl. Plant Sci.
2020, 8, e11376. [CrossRef]

27. Sandhu, K.S.; Lozada, D.N.; Zhang, Z.; Pumphrey, M.O.; Carter, A.H. Deep learning for predicting complex traits in spring wheat
breeding program. Front. Plant Sci. 2021, 11, 613325. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1186/1471-2105-10-243
https://www.ncbi.nlm.nih.gov/pubmed/19660135
https://doi.org/10.1371/journal.pone.0181420
https://doi.org/10.1016/j.tplants.2022.08.018
https://doi.org/10.1145/3136625
https://doi.org/10.1016/j.neucom.2017.11.077
https://doi.org/10.1016/j.ygeno.2018.07.001
https://www.ncbi.nlm.nih.gov/pubmed/31533899
https://doi.org/10.3389/fbioe.2020.627335
https://www.ncbi.nlm.nih.gov/pubmed/33585423
https://doi.org/10.1186/s13007-023-01092-0
https://www.ncbi.nlm.nih.gov/pubmed/37925413
https://doi.org/10.1038/s41586-018-0063-9
https://doi.org/10.1186/s13059-021-02492-y
https://www.ncbi.nlm.nih.gov/pubmed/34544450
https://doi.org/10.1093/bib/bbz177
https://www.ncbi.nlm.nih.gov/pubmed/31994694
https://doi.org/10.1016/j.agwat.2021.107277
https://doi.org/10.1007/s10489-021-02550-9
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1007/BF00994018
https://doi.org/10.1093/bioinformatics/btl475
https://www.ncbi.nlm.nih.gov/pubmed/16966363
https://doi.org/10.1186/s12864-023-09933-x
https://www.ncbi.nlm.nih.gov/pubmed/38326768
https://doi.org/10.1002/aps3.11376
https://doi.org/10.3389/fpls.2020.613325

	Introduction 
	Materials and Methods 
	Dataset 
	PlantMine Framework 
	Feature Selection Method 
	Genomic Prediction Method 
	XGBoost Algorithm 
	SVM Algorithm 
	KNN Algorithm 
	RF Algorithm 

	Evaluation Metrics 
	Analysis of the Differences in SNPs Selected by Various Methods 

	Results 
	Suitable for Screening for Quantitative Traits 
	Suitable for Screening for Quality Traits 
	The Differences in SNPs Selected by Various Methods 

	Discussion 
	Conclusions 
	References

