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Abstract: This paper makes a significant contribution by focusing on estimating the coefficients
of a sample of non-linear time series, a subject well-established in the statistical literature, using
bilinear time series. Specifically, this study delves into a subset of bilinear models where Generalized
Autoregressive Conditional Heteroscedastic (GARCH) models serve as the white noise component.
The methodology involves applying the Klimko–Nilsen theorem, which plays a crucial role in
extracting the asymptotic behavior of the estimators. In this context, the Generalized Autoregressive
Conditional Heteroscedastic model of order (1,1) noted that the GARCH (1,1) model is defined as
the white noise for the coefficients of the example models. Notably, this GARCH model satisfies
the condition of having time-varying coefficients. This study meticulously outlines the essential
stationarity conditions required for these models. The estimation of coefficients is accomplished by
applying the least squares method. One of the key contributions lies in utilizing the fundamental
theorem of Klimko and Nilsen, to prove the asymptotic behavior of the estimators, particularly how
they vary with changes in the sample size. This paper illuminates the impact of estimators and their
approximations based on varying sample sizes. Extending our study to include the estimation of
bilinear models alongside GARCH and GARCH symmetric coefficients adds depth to our analysis
and provides valuable insights into modeling financial time series data. Furthermore, this study
sheds light on the influence of the GARCH white noise trace on the estimation of model coefficients.
The results establish a clear connection between the model characteristics and the nature of the white
noise, contributing to a more profound understanding of the relationship between these elements.

Keywords: bilinear time series models; GARCH model; least squares approach; advanced in
functional equations

1. Introduction

In recent decades, a diverse range of time series models has emerged, thanks to the
contributions of an expanding community of scholars. This interest has attracted not only
mathematicians but also economists and sociologists, who recognize the broad applicability
of these models in finance and economics. Nonlinear time series models, in particular,
have gained prominence due to their ability to capture the nonlinear characteristics often
observed in empirical finance models describing volatility and returns. These models
find applications across various disciplines, including marketing, insurance, virology [1],
and chemistry.

One of the two models introduced by Ganger and Andersen [2] in 1978 is a bilinear time
series model. Applications of bilinear models can be found in the domains of engineering,
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medicine, and biology. Later research, like that carried out by Subba [2], concentrated on
these models’ statistical and probabilistic aspects.

Numerous approaches, such as moments and least squares (LS), have been used to
address the estimating problem for bilinear models. Meanwhile, both Autoregressive
Conditional Heteroskedasticity (ARCH) and Generalized Autoregressive Conditional Het-
eroskedasticity (GARCH) models are important in financial time series analysis. They are
used to estimate economic activities, analyze holding risk, and assess option pricing.

As a subclass of nonlinear models, bilinear time series models have attracted interest
because of their capacity to capture complex relationships in data. These models find use
in a variety of industries, including engineering, medicine, and biology. Bilinear models
have been studied since Ganger and Andersen’s 1978 paper [1], when curiosity about their
statistical and probabilistic characteristics first arose.

In financial time series analysis, Generalized Autoregressive Conditional Heteroskedas-
ticity (GARCH) models have become essential tools. GARCH models were developed
to capture time-varying variances and volatility clustering. They offer insights into eco-
nomic forecasting, asset pricing, risk management, and option valuation. Prominent
scholarly contributions, including those from the authors, highlighted in the introduc-
tion (references [3–6], for example), have demonstrated GARCH models’ applicability in
various financial contexts.

When it comes to bilinear time series models, the least squares method is a basic
estimation technique. The least squares approach, which is popular due to its ease of use
and effectiveness, attempts to reduce the sum of squared residuals to provide estimates
for the model parameters. The least squares method is a useful technique for estimating
parameters in the domain of bilinear models, where interactions between variables may
display nonlinearity. Its use in bilinear models makes it easier to understand how variables
relate to one another and makes it possible to simulate intricate, time-varying events.

This paper is organized as follows. Section 2 provides notifications and significant
results on GARCH with bilinear time series as preliminaries. Section 3, using the nature
of the proposed model, presents the estimation approach for all coefficients of bilinear
mixed models using white noise GARCH. Section 4 illustrates the asymptotic behavior
of the estimators and their mechanisms through numerical examples and simulations,
employing the Klimko–Nilsen theorem. Section 5 discusses the importance of the paper and
its differences from other published works, defining the content of the new work related to
this research. To enrich our study, a comparison was made between two bilinear models,
the first followed by GARCH and the second by Symmetric GARCH.

2. Preliminaries

In 2004, Bibi studied, in reference [6], a sample of bilinear models with time-varying
coefficients that we define in a probability space (Ω, Γ, P) according to the following general
stochastic expression:

Xt =
p

∑
i=1

ui,t(a)Xt−i +
q

∑
j=1

vt,j(a)εt−j +
p0

∑
i=1

q0

∑
j=1

ϕt,ij(a)Xt−iεt−j + εt. (1)

The process (Xt)t∈Z denoted by BL(p, q, p0, q0), where

{ui,t(a)t}1≤i≤p, {vj(t)}1≤j≤q, {ϕij(t)}, 1 ≤ i ≤ p0, 1 ≤ j ≤ q0

are usually constants, but there will be time-varying coefficients that take their values in
R; where a is a vector, the white noise sequence (εt)t∈Z takes many forms and is generally
distributed according to Gaussian law with zero mean and variance σ2 < ∞. But we
will aim at a specified sample of bilinear coefficient models provided by GARCH(1, 1)
white noise. {

εt = htηt,
h2

t = γ0 + αt(α)ε2
t−1 + βt(β)h2

t−1.
(2)
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where the general GARCH (p0, q0) model is defined as follows:{
ε2(t) = h2(t)η2(t)

h2(t) = γ0 + ∑
p0
i=1 αiε

2
t−i + ∑

q0
j=1 βih2

t−j
(3)

Note that with the distribution ηt ∼ N (0, 1), the sequences αt(α) and βt(β) are time-
varying coefficients while maintaining γ0 > 0 as a constant. ht is independent of the
σ−field generated by {ηt+k, k ≥ 0}. And εt is a measurable function of the variables
ηt−ℓ, ℓ ≥ 0 . It is well known that the strong GARCH(1,1) model is strictly stationary if and
only if

−∞ ≤ E log
∣∣∣αt(α)η

2
t + βt(β)

∣∣∣ < 0. (4)

We define the function φ as following φ(η2
t ) = αt(α)η2

t + βt(β), and through this function,
we can write h2

t as the following form:

h2
t =γ0 + αt(α)h2

t−1η2
t−1 + βt(β)h2

t−1

=γ0 +
{

αt(α)η
2
t−1 + βt(β)

}
h2

t−1

=γ0 + φ(η2
t−1)h

2
t−1.

The last expression can be written recurrently using the following formula:

h2
t = γ0 + γ0

q

∑
i=1

{
i

∏
j=1

φ(η2
t−j)

}
+

{
q+1

∏
j=1

φ(η2
t−j)

}
h2

t−q−1. (5)

According to the stability conditions, we can demonstrate that E(h2
t ) < ∞; the proof will be

checked, where it suffices to show that the following product is less than 1. Then, according
to Jensen inequality, q tends to infinity, so

h2
t = γ0

[
1 +

∞

∑
i=1

{
i

∏
j=1

φ(η2
t−j)

}]
. (6)

We can prove that lim
q→∞

{
q+1
∏
j=1

φ(η2
t−j)

}
= 0; it is clear that

lim
q→∞

E

{
q+1

∏
j=1

φ(η2
t−j)

}
≤

∞

∏
j=1

E
{

φ(η2
t−j)

}
=

∞

∏
j=1

{αt(α) + βt(β)}.

By considering the following inequality αt(α) + βt(β) = δ < 1, we will ensure that

∞

∏
j=1

δj, δj = δ = c, (7)

where c is a constant, (7) tends towards zero, which demonstrates the following:

lim
q→∞

{
q+1

∏
j=1

φ(η2
t−j)

}
= 0.
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In another way, we can prove that the series is almost surely convergent, h2
t , if we take the

general term of the series and apply the Cauchy criterion of convergence:

lim
n→∞

{
n

∏
j=1

φ(η2
t−j)

} 1
n

= lim
n→∞

e
1
n

n
∑

j=1
ln φ(η2

t−j)

.

Also, if vt is an i.i.d sequence of random variables admitting an expectation which can

be infinite, then 1
n

n
∑

k=1
vk is approximate towards E(v1). So, through this construction and

using Jensen’s inequality we obtain the following:

lim
n→∞

e
1
n

n
∑

j=1
ln φ(η2

t−j)

= lim
n→∞

eE(ln φ(η2
t−1)

≤ eln Eφ(η2
t−1)

= eln(αt(α)+βt(β))

< 1,

which will show that the series is convergent.

2.1. Stationarity Study

In the following subsection, we will deal with the following bilinear model:

Xt = ϕt(a)Xt−sεt−1 + εt, (8)

where s ≥ 1, and εt is the white noise that follows the GARCH (1,1) model with time-
varying coefficients, which was defined above using Expression (1); {ϕt(a), t ∈ Z} is a
sequence of time-varying coefficients, and a is defined as a vector a = (a1, a2, . . . , am)
included in subset Θ of Rm. It is well known that stationary solutions exist for this model
if ϕ2

t (a)E(ε2
t ) < 1, where we can give some extensions of stability according to the white

noise and, recurrently, εt is written as follows:

εt = Xt +
t−1

∑
k=1

(−1)k

{
k−1

∏
i=0

ϕt−k(a)

}
×
(

k−1

∏
i=0

Xt−i−s

)
Xt−k. (9)

In the case where

E(ε2
t ) =E(η2

t )E(h2
t ) = E(h2

t )

=γ0 + αt(α)E(h2
t−1)E(η2

t−1) + βt(β)E(h2
t−1)

=γ0 + αt(α)E(ε2
t−1) + βt(β)E(ε2

t−1).

And, where E(ε2
t ) = E(ε2

t−1), we find that E(ε2
t ) =

γ0
1−αt(α)−βt(β)

, such as αt(α) + βt(β) < 1;
then, the necessary conditions for model stability will be

ϕ2
t (a)γ0

1 − αt(α)− βt(β)
< 1. (10)

And the recurring expression of the model in case, where s ̸= 1, will be

Xt = εt +
[t/s]−1

∑
j=1

[
j−1

∏
i=0

{ϕt−is(a)εt−is−1}
]

εt−sj. (11)



Symmetry 2024, 16, 581 5 of 17

where [y] denotes the integer part of value y, Model (3) under a condition of stability and
the unique solution with recursive form when s = 1:

Xt = εt +
∞

∑
j=1

[
j−1

∏
i=0

{ϕt−i(a)εt−i−1}
]

εt−j. (12)

Theorem 1. The model solution series (12) under a condition of stability is almost surely convergent.

Proof. Our method of proof will be based on showing that E(Xt) < ∞. So, by using the
Schwartz inequality, we have

S = E

∣∣∣∣∣εt−j

j−1

∏
i=0

{ϕt−i(a)εt−i−1}
∣∣∣∣∣

≤ {E(ε2
t−j)}0.5

j−1

∏
i=0

|ϕt−i(a)|
{

E(ε2
t−i−1)

}0.5

≤ {E(h2
t−j)}0.5

j−1

∏
i=0

|ϕt−i(a)|
{

E(ε2
t−i−1)

}0.5
.

and as |ϕt−i(a)|
{

E(ε2
t−i−1)

}0.5
= ρ < 1, {E(h2

t−j)}0.5 = M is bounded:

∞

∑
j=1

E

∣∣∣∣∣εt−j

j−1

∏
i=0

{ϕt−i(a)εt−i−1}
∣∣∣∣∣ ≤ M

∞

∑
j=1

ρj

<
M

1 − ρ
.

By showing that the series is a converging geometric series, our proof is complete here.

Theorem 2. Consider the stochastic process defined by Model (3), driven by the noise ARCH(1). If
the following conditions hold,

1. For all t, αt(α) ∈ [0, 1),

2. |ϕt(a)|
√

γ0
1−αt(α)

< 1,

then the series

Xt = εt +
∞

∑
j=1

{
j−1

∏
i=0

ϕt(a)εt−i−1

}
εt−j = f (13)

almost surely converges, and the defined Xt is the unique, strictly stationary solution.

Proof. Firstly, we show that E
[∣∣∣∏j−1

i=0 ϕt(a)εt−i−1

∣∣∣] < ∞, where j is any integer, by using
the Schwartz inequality and the condition of stability:

E
[∣∣∣∣∣j−1

∏
i=0

ϕt(a)εt−ik−1

∣∣∣∣∣
]
≤
(

j−1

∏
i=0

E
[
|ϕt(a)εt−ik−1|2

])0.5

=
(
E
[
(ϕt(a)εt−ik−1)

2
])0.5

= |ϕt(a)|
√

γ0

1 − αt(α)

≤ ζ < 1,

then
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∞

∑
j=1

j−1

∏
i=0

E[|ϕt(a)εt−ik−1|] ≤
∞

∑
j=1

ξ i < ∞,

where s ̸= 1, because of the recurrent model

Xt = εt +
⌊t/s⌋−1

∑
j=1

[
j−1

∏
i=0

(ϕt−is(a)εt−is−1)

]
εt−sj = g.

Here, ⌊y⌋ denotes the greatest integer less than or equal to y. It is worth noticing that
|g| ≤ | f | implies E[|g|] ≤ E[| f |].

Theorem 3. Let s = 1 in Model (3) be driven by the noise ARCH(1). If the condition E ln|ϕt(a)εt| ∈
[−∞, 0] holds, then it implies that, for αt(α) ∈ [0, 1],

|ϕt(a)|
√

γ0

1 − αt(α)
< 1,

where αt(α) represents the parameter in the range [0, 1].

Proof. Using Jensen’s inequality, we have

E ln|ϕt(a)εt| ≤ ln E|ϕt(a)εt|.

Now, by applying the Schwartz inequality, we obtain

ln E|ϕt(a)εt| ≤ ln
{

E|ϕt(a)εt|2
}0.5

= ln

∣∣∣∣∣ϕt(a)
{

γ0

1 − αt(α)

}0.5
∣∣∣∣∣ < 0,

where we observe that
∣∣∣∣ϕt(a)

{
γ0

1−αt(α)

}0.5
∣∣∣∣ < 1, ensuring the logarithm is negative.

Thus, we have shown that the condition E ln|ϕt(a)εt| ∈ [−∞, 0] implies that |ϕt(a)|√
γ0

1−αt(α)
< 1, for αt(α) ∈ [0, 1], which completes the proof.

Theorem 4. For the ARCH(1) model, under the condition |αt(α)| < 1 and γ0 = 0, the process
is bounded.

Proof. Since εt = ηtht and ht = αt(α)εt−1, we find that

ht−i =
i

∏
k=1

αt(α)εt−i−1,

then, limi→∞ ht−i = 0, demonstrating that there exists M such that |εt| ≤ M.

2.2. Klimko–Nilsen Theorem and Estimation Approach

This theorem played a fundamental role in proving the existence and uniqueness of
the estimators, as well as their asymptotic behaviors according to the approach of square
worlds. Here is its text in the form of the hypotheses.

Firstly, let HN(Xt) be the σ-field generated by the set of observations {Xt, t =
1, . . . , N} and the vectors a = (a1, a2, . . . , an1); as for the white noise coefficients, we
consider here the vectors α = (α1, α2, . . . , αn2) and β = (β1, β2, . . . , βn3), where the image
of these vectors with their functions exists in R. Then, the parameter that we are going to
estimate will be ω = (a, γ0, α, β), and we assume ω0 is a true value of ω included in an
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open Ω of Rn1+n2+n3+1. We introduce the predictor or orthogonal projection ρt|t−1 on the
observations up to time t − 1 by the following difference: ρt|t−1(ω) = Xt − εt(ω).

So, the principle of the least squares method is based on looking for the parameter ω,
such that the penalty function will be defined with the following standard algorithm of
estimation:

w1 = a1, . . . , ωn1 = an1 ,
...

ωn1+1 = γ0, ωn1+2 = α1, . . . , ωn1+n2+1 = αn2 ,

ωn1+n2+2 = β1, . . . , ωn1+n2+n3+1 = βn3 .

Theorem 5. Under stable conditions for (Xt)t∈Z generated by Equation (8), and by adding
|ϕ(a)| < 1, where its white noise follows GARCH(1,1), we suppose that ρt|t−1(ω) is almost surely
doubly continuously differentiable in an open subset containing the true value ω0 of the vector ω.
We assume two constants, K0 and K1, such that

(a) Eω0

{
∂ε2

t (ω)
∂ωi

}4
≤ K0, i = n1 + n2 + n3 + 1.

(b) Eω0

{(
∂2ε2

t (ω)
∂ωi∂ωj

− Eω0

{
∂2ε2

t (ω)
∂ωi∂ωj

| Ht−1

})2}
≤ K1, i, j = n1 + n2 + n3 + 1.

(c) 1
2N

N
∑

t=1
Eω0

{
∂2ε2

t (ω)
∂ωi∂ωj

| HN−1

}
converges almost surely to the matrix M(ω) which is strictly

positive.

(d) limN→∞

{
supδ→0

∣∣∣∣ 1
δN ∑N

t=1

[(
∂2ε2

t (ω)
∂ωi∂ωj

)
ω=ω̃

−
(

∂2ε2
t (ω)

∂ωi∂ωj

)
ω=ω0

]∣∣∣∣} < ∞, where ∥ω−ω0∥ <

δ, δ > 0, where ω̃ represents the intermediate value between ω and ω0.

Then, there exists an estimator ω̂N such that ω̂N → ω0 as N → ∞, if these conditions are
satisfied as well as the following assumption:

(e) 1
N

N
∑

t=1

[
Eω0

{
∂ε2

t (ω)
∂ω

∂ε2
t (ω)

∂ωT | Ht−1

}
− Eω0

{
∂ε2

t (ω)
∂ω

∂ε2
t (ω)

∂ωT

}]
→ 0 as N → ∞.

Proof. See [7].

We will prove some elements of this theorem according to the model proposed in this
paper. First, we will give some techniques to calculate the derivatives. Let

∂ε2
t (ω)

∂ωi
= −2εt(ω)

∂εt(ω)

∂ωi
= −2εt(ω)

∂ρt|t−1(ω)

∂ωi
.

Then, 8Eω0

{
ε4

t (ω)
}
= Eω0

{(
∂ρt|t−1(ω)

∂ωi

)4
}

.

So, in case s = 1, we obtain

ρt|t−1(ω) =
∞

∑
j=1

[
j−1

∏
i=0

{ϕt−i(a)εt−i−1}
]

εt−j. (14)

In the case where ωp = ap, p = 1, . . . , n, we will use

∂ρt|t−1(ω)

∂ωi
=

t−1

∑
k=1

(−1)k

{
∂

∂ai

k−1

∏
i=0

ϕt−k(a)

}
(15)

×
(

k−1

∏
i=0

Xt−i−s

)
Xt−k.
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And

Z1 =
∂

∂ap

k−1

∏
i=0

ϕt−k(a) =
k−1

∑
p=0


k−1

∏
i=0
i ̸=p

ϕt−i(a)

∂ϕt−p(a)
∂ap

, (16)

where we put q = max
{

∂ϕt−i(a)
∂ap

}
, and |ϕt−i(a)| ≤ θ < 1; then, it will be

|Z1| ≤ q(k)θk−1.

We will obtain ∣∣∣∣∣∂ρt|t−1(ω)

∂ωi

∣∣∣∣∣ ≤ t−1

∑
k=1

(−1)kq(k)θk−1

(
k−1

∏
i=0

|Xt−i−s|
)
|Xt−k| < ∞. (17)

In addition, we establish E
∣∣∣∣ ∂ρt|t−1(ω)

∂ωi

∣∣∣∣ < ∞. According to previous analysis, given E
{

ε2
t (ω)

}
=

E
{

η2}E(h2
t ), where E(h2

t ) is bounded, it follows that E
{

ε4
t (ω)

}
< ∞. Consequently, we

deduce Eω0

{
∂ε2

t (ω)
∂ωi

}4
≤ K0, thus validating the hypothesis. Further details are provided in

the subsequent sections (see [7]).

3. Least Squares Approach

The least squares estimators for ARCH models are asymptotically normal, though less
efficient than methods such as the generalized method of moments (GMM) and maximum
likelihood estimation (MLE) [7–9]. However, in this section, we will focus on the least
squares method, particularly in situations where the coefficients are time-varying and
driven by white noise with time-varying coefficients.

3.1. Algorithm

The primary algorithm of the least squares method aims to find the estimator ω̂N by
minimizing the penalty function qN(ω), defined as follows:

arg min
ω∈Ω

qN(ω), (18)

where

qN(ω) =
1
N

N

∑
t=1

ε2
t (ω). (19)

3.2. Derivation Techniques

The least squares approach relies on Taylor’s second-degree formula. For any i, j ∈
{1, . . . , n1 + n2 + n3 + 1}, we have the following:

qN(ω) = qN(ω0) + (ω − ω0)
∂qN

∂ωT (ω0) +
1
2
(ω − ω0)

∂2qN

∂ωT∂ω
(ω̃)(ω − ω0)

T , (20)

where ω̃ is an intermediate point between ω and ω0 with ∥ω − ω̃∥ ≤ δ, δ > 0. The

derivatives ∂qN(ω)
∂ωi

form a vector with n1 + n2 + n3 + 1 coordinates, and ∂2qN(ω)
∂ωi∂ωj

presents a

matrix of size (n1 + n2 + n3 + 1)2.
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3.3. Derivatives Calculation

We derive expressions for the first and second derivatives concerning the parameters
ωi and ωj. Firstly, for ωℓ = aℓ, we have

∂ε2
t (ω)

∂ωℓ
= 2εt(ω)

∂εt(ω)

∂ωℓ
= 2εt(ω)

∂ρt|t−1(ω)

∂ωℓ
, (21)

where
∂ρt|t−1(ω)

∂ωℓ
=

t−1

∑
k=1

(−1)k

{
∂

∂aℓ

k−1

∏
i=0

ϕt−k(a)

}(
k−1

∏
i=0

Xt−i−s

)
Xt−k. (22)

Similarly, for ωℓ = αℓ, the expression is given by

∂ε2
t (ω)

∂ωℓ
= 4η2

t
αt(α)

1 − βt(β)
εt−1

∂εt−1

∂ωℓ
, (23)

with
∂εt−1

∂ωi
=

t−2

∑
k=1

(−1)k

{
∂

∂ωi

k−1

∏
i=0

ϕt−1−k(a)

}(
k−1

∏
i=0

Xt−1−i−s

)
Xt−1−k. (24)

For the second derivative, considering ωi = ai and ωj = αj, we have

∂ε2
t (ω)

∂ωi∂ωj
= 4η3

t
∂εt−1

∂ωi
×
[

∂

∂ωj

{
αt(α)

1 − βt(β)

}
ht +

∂ht

∂ωj

αt(α)

1 − βt(β)

]
. (25)

Additionally, when ωi = αi and ωj = αj, where i, j ∈ {1, . . . , n2}, the second derivative
is given by

∂ε2
t (ω)

∂ωi∂ωj
= 4η3

t
∂εt−1

∂ωi
×
[

∂

∂ωj

{
αt(α)

1 − βt(β)

}
ht +

∂ht

∂ωj

αt(α)

1 − βt(β)

]
. (26)

These derivative expressions facilitate the computation of second-order terms in the
least squares optimization process.

The derived equations lay the foundation for implementing the least squares approach,
enabling the estimation of time-varying coefficients within the framework of ARCH models.
This method offers a practical means of modeling volatility dynamics, particularly in
financial time series data, where coefficients may exhibit temporal variations.

In summary, the least squares approach outlined here provides a systematic method-
ology for estimating parameters in ARCH models, leveraging optimization principles
and derivative calculus to refine parameter estimates iteratively. Through careful consid-
eration of the model structure and the properties of the underlying data, this approach
offers valuable insights into the dynamics of volatility and enables effective forecasting in
various domains.

4. Simulation and Graphic Illustrations

This section presents a simulation study and graphical illustrations for the model
under consideration. We begin by defining a vector of parameters a = (a1, a2, a3) belonging
to an open subset I1 × I2 × I3 within R3. We impose the constraint a2 = 1− a1 and consider
a3 = max(a1, a2). The time-varying coefficients are expressed as follows:

ϕt(a) =


a1, t ≡ 1[3],
a2, t ≡ 2[3],
a3, t ≡ 0[3].

(27)
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The objective of this section is to simulate the model Xt = ϕt(a)Xt−sεt−1 + εt with
GARCH(1,1) white noise, where γ0 = 0.005, α = (α1, α2), and β = (β1, β2), such that

αt(α1, α2) =

{
α1, t ∈ 2N+ 1,
α2, t ∈ 2N.

βt(β1, β2) =

{
β1, t ∈ 2N+ 1,
β2, t ∈ 2N.

We employ the notation of Ns for the number of simulations, N for the sample size,
the true parameter values (a1, a2, a3), and their estimated counterparts (â1, â2, â3). In our
simulations, we set s = 2 and adopt the GARCH white noise formulation:{

εt = ηtht

h2
t = 0.005 + αt(0.3, 0.4)ε2

t + βt(0.003, 0.001)h2
t .

(28)

where ω = (0.005, 0.3, 0.4, 0.003, 0.001) is the real value proposed for the model and ω̂ is its
estimated value. In a situation where βt(β) = 0, we have the following simulation.

By considering Tables 1–3, we can take the same model proposed but with constant
coefficients and with the same GARCH proposed in our paper to extend our study of this
model on the side of simulations and get the following Table 4.

Xt = aXt−sεt−1 + εt. (29)

Table 1. Estimation of model coefficients according to different sizes, where s = 1.

Ns N Real Values
(a1, a2, a3)

Estimates
(â1, â2, â3)

250 300 (0.0097, 0.3230, 0.3706)

600 (0.0182, 0.2872, 0.3797)

900 (0.02, 0.25, 0.45) (0.0129, 0.2879, 0.3802)

500 300 (0.0166, 0.2704, 0.4119)

600 (0.0225, 0.2787, 0.4152)

900 (0.0220, 0.2795, 0.4456)

Table 2. Estimation of model coefficients and ARCH white noise coefficients, where s = 1.

Ns N Real Value Estimates ω̂

250 300 0.015, 0.098, 0.235, 0.082, 0.033

600 0.009, 0.165, 0.385, 0.007, 0.014

900 ω 0.003, 0.263, 0.388, 0.007, 0.014

500 300 0.003, 0.369, 0.387, 0.006, 0.003

600 0.003, 0.369, 0.387, 0.006, 0.002

900 0.004, 0.318, 0.407, 0.010, 0.002

Table 3. Estimation of the model according to other coordinates, for (a1, a2, a3, γ0, α1, α2).

Ns N (â1, â2, â3, γ̂0, α̂1, α̂2)

250 300 (0.022, 0.234, 0.453, 0.005, 0.289, 0.406)

500 600 (0.0198, 0.252, 0.398, 0.005, 0.301, 0.411)
where (a1, a2, a3, γ0, α1, α2) = (0.02, 0.25, 0.45, 0.005, 0.3, 0.4).
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Table 4. Estimation of GARCH model coefficients for a bilinear model with constant coefficients.

True Values: θ0 = (a, γ0, α1, α2, β1, β2) = (0.07, 0.01, 0.1, 0.3, 0.6, 0.7)

N Ns θ̂ = (â, γ̂0, α̂1, α̂2, β̂1, β̂2)

300 250 (0.0694, 0.0124, 0.0999, 0.4179, 0.5825, 0.5125)

...
...

...

600 500 (0.0642, 0.0115, 0.1004, 0.4145, 0.5997, 0.5122)

Notably, models featuring estimated coefficients and bilinear models guided by the
GARCH(1,1) model with true coefficients exhibit compatibility as shown in Figures 1–3.
This compatibility effectively demonstrates that the estimation of these proposed models
delivers efficient outcomes. Furthermore, these models validate the asymptotic behaviors
of the estimators.

Figure 1. Simulation for bilinear time series model with its true values N = 900, Ns = 250.

Figure 2. Simulation for bilinear time series model replaced by its estimated values N = 900, Ns = 250.
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Figure 3. Comparisonbetween the two models.

4.1. Asymmetric and Symmetric GARCH Models

The significance and impact of symmetric and asymmetric GARCH models in financial
econometrics cannot be overstated. These models serve as indispensable tools for capturing
the intricate dynamics of volatility in financial time series data.

Symmetric and asymmetric GARCH models offer distinct methodologies for volatility
modeling. Symmetric GARCH models assume equal effects of positive and negative shocks
on volatility, while asymmetric models such as EGARCH or GJR-GARCH allow for varying
responses to such shocks. Depending on the characteristics of the data, one model type
may yield more precise estimates of volatility dynamics than the other.

The choice of a GARCH model profoundly influences the accuracy of results in sim-
ulating future scenarios or conducting Monte Carlo simulations in financial modeling.
Asymmetric GARCH models, adept at capturing the asymmetry and skewness commonly
observed in financial returns data, often provide more realistic simulations of future volatil-
ity and asset prices. Moreover, the selection between symmetric and asymmetric GARCH
models carries implications for risk management practices. Asymmetric GARCH models
excel in capturing volatility clustering, a critical aspect for assessing and managing finan-
cial risk. However, it is essential to note that asymmetric GARCH models may require
more computational resources for estimation and simulation, particularly when dealing
with large datasets or extensive simulations. Researchers and practitioners must care-
fully consider computational efficiency alongside model accuracy when choosing between
symmetric and asymmetric GARCH models.

Extending the analysis, GARCH models are recognized for their superiority in cap-
turing large shocks and volatility clustering compared to ARCH models, as highlighted
by Patton and Sheppard (2015). Nevertheless, GARCH models have notable limitations,
particularly their assumption of symmetric volatility regardless of the nature of shocks, as
emphasized by Lubrano (2001) [10]. In contrast, ARCH and GARCH models are considered
more suitable for risk measurement than descriptive statistics, especially in scenarios where
stock returns undergo frequent fluctuations and the distribution of returns is markedly
non-symmetric, according to Ang and Bekaert (2007) [11]. Despite this, variance remains
a trusted measure for positive volatility, an aspect often overlooked by stockholders, un-
derscoring the issue of instability and the uneven distribution of stock returns. Also,
see [12–14].
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To address the challenge of asymmetric instability, the present study explores various
models for measuring GARCH effects, with a specific focus on GARCH symmetry.{

ε(t) = z(t)η(t)
z2(t) = |θ0|+ |θ1|ε2(t − 1) + |θ2|z2(t − 1)

. (30)

And in another way, the following model explains the Asymmetric GARCH model:{
ε(t) = z(t)η(t)

z(t) = θ0 + θ1|ε(t − 1)|+ θ2z(t − 1)
. (31)

To construct the asymmetry in a model driven by GARCH, we can write our model
using the following expression:{

X(t) = θ0X(t − s)ε(t − 1) + ε(t)
ε(t)⇝ GARCH(1, 1)

. (32)

The asymmetric or symmetric nature of the white noise GARCH component imparts
its characteristic properties to the bilinear models of the time series. This influence is
demonstrated through the resulting curves, which depict the intricate interplay between
volatility dynamics and the underlying characteristics of the GARCH model. By incorpo-
rating asymmetric or symmetric GARCH into bilinear models, we can capture the nuanced
features of volatility, including asymmetry, clustering, and the impact of shocks, thereby
enhancing our ability to model and forecast financial time series data accurately. The curves
serve as visual representations of how the properties of GARCH reverberate through the
bilinear models, providing valuable insights into the complex interactions within the data
and informing our understanding of financial market behavior. See [15–18].

The estimation of model coefficients oriented by a GARCH model gives us the es-
timated data with the following Table 5, where a is the true value of model (32), â is its
estimators, and ns represents the number of simulations

Table 5. The estimation of model coefficients oriented by a GARCH model.

ns N θ0 θ̂0 Using Symmetric GARCH θ̂0 Using Asymmetric GARCH

100 120 0.09 0.0879 0.1672

100 240 0.09 0.0902 0.1677

100 300 0.09 0.0898 0.1399

300 120 0.2 0.1944 0.1944

300 240 0.2 0.1967 0.1967

300 300 0.2 0.2013 0.2013

900 120 0.7 0.5972 0.5972

900 240 0.7 0.6897 0.6897

900 300 0.7 0.7011 0.7011

1200 1200 0.9 0.9002 0.9038

It can be observed that estimators of variable values in the bilinear model, as defined
by its expression, yield efficient results when driven by Symmetric GARCH compared
to Asymmetric GARCH, indicating that symmetry plays a crucial role in enhancing the
accuracy of estimation for the proposed model [19–25].

4.2. Graphic Illustration

It is evident from the graphs that the impact of GARCH white noise on the bilinear
model is pronounced. The asymmetry and symmetry inherent in GARCH manifest clearly
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in the original bilinear models depicted in the following Figures 4–9. Additionally, some
deviations from symmetry are observable in the models, indicating that the time-varying
coefficients, specifically the constant coefficients of the models, contribute to maintaining
the properties of white noise. The final graph illuminates the overall symmetry of graphs
driven by symmetric GARC.

Figure 4. The time plot of daily Iran stock returns.

Figure 5. The number of simulations.

Figure 6. Bilinear time series model with constant coefficients driven by Asymmetric GARCH, where
Ns = 1200 and N = 900.
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Figure 7. The number of simulations.

Figure 8. Bilinear time series model with constant coefficients driven by Symmetric GARCH, where
Ns = 5000 and N = 1000.
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Figure 9. Curve illustrates the symmetry of the bilinear model driven by symmetric GRACH
compared with several lines.

5. Concluding Comments

The simulations conducted on the bilinear model outlined in our paper illustrate a
notable trend: as the sample size increases, the estimators converge toward their true values.
This underscores the critical role of sample size in achieving accurate approximations.
Additionally, we observe that increasing the number of simulations enhances the proximity
between the estimated values and their true counterparts.

Interestingly, the white noise ARCH(1) model demonstrates commendable accuracy
in approximating the estimators compared to the GARCH model for the coefficients.
Moreover, we consistently observe a close resemblance between the two graphs, indicating
robustness in the estimation process.

It is noteworthy that there exists a critical sample size, beyond which slight perturba-
tions may arise in our simulations. However, the asymptotic behaviors of the estimators
remain unaffected, suggesting the efficiency of our estimation approach in capturing tem-
poral variations in coefficients.

In summary, our estimation approach, incorporating time-varying coefficients in the
bilinear model along with a GARCH white noise component, yields significant theoretical
and numerical insights, as evidenced by the simulations. Future research endeavors will
delve into exploring various models in economics that integrate a combination of GARCH
models to better capture and model realistic data patterns.
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