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Abstract: The duration of the high-grade matte converting process is short, the amount of slag is
small, and it is difficult for the original impurity removal operation in the low-grade matte converting
process to meet the current production demand. Because the removal method for impurity elements
during high-grade matte converting is unclear, the phase transformation of impurity elements during
this process is investigated in this study. The results show that arsenic exists mainly in the form of
FeAsO4 and As2O5, antimony in the form of Sb and Sb2O5, and lead in the form of PbS and PbO in
high-grade matte. During the converting process, arsenic and antimony mainly exist in the melt in
the form of oxides and gradually aggregate into large particles with increasing copper content in the
melt. Lead exists in matte in the form of PbS until the end of the converting process, and PbS is not
completely oxidized until the matte converted to blister copper phase. The phase transformation
characteristics of copper, iron, sulfur and impurity elements in the process of high-grade matte
converting were revealed. This study provides a theoretical reference for the formulation of an
efficient impurity removal scheme for the converting process.

Keywords: P-S converting; high-grade matte; impurity element; phase transformation

1. Introduction

P-S converters occupy a leading position in the matte converting industry, and are
favored by many smelters because of their simple processing, mature technology and large
production scale. Since its birth in 1905, this process has gradually been used around
the world. The data show that 70% to 80% of the world’s converting process still uses a
P-S converter, which is more convenient to operate, inexpensive, and shows its special
advantages in dealing with self-produced matte and purchased scrap copper [1]. Therefore,
P-S converting technology will continue to be used in the foreseeable future. At present, the
P-S converting technology has been significantly improved in terms of the operation process,
mechanical automation and environmental protection, but there are still some problems
with this technology [2]. Due to the periodic intermittent operation of P-S converting,
problems such as high heat loss, low sulfur recovery caused by large soot emissions and
composition fluctuations, and SO2 low-altitude pollution caused by unsealed furnace
bodies need to be improved and optimized [3,4].

With the progress of modern converting technology, the problems of mineral utiliza-
tion, production efficiency, direct copper yield and low-altitude pollution have been solved
to varying degrees in the matte smelting process [5–9]. To improve the efficiency of the
copper pyrometallurgy process, the grade of the matte has also increased. It is difficult for
the original low-grade matte converting technology to meet the requirement of removing
impurities in the process of modern converting. This makes the impurities in the blister
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copper excessively high, seriously affecting subsequent pyrometallurgical refining and
electrolytic refining [10].

In modern copper smelting, matte with a grade greater than 70% is generally called
high-grade matte. The higher the grade of matte is, the lower the content of other elements
such as iron and sulfur, and the reduction in the content of iron is accompanied by a
reduction in the amount of slag in the converting process. The heat required for the con-
verting process is provided by the oxidation exotherm of FeS, Cu2S and other sulfides. The
improvement in the matte grade makes it difficult to meet the heat needs of the converting
temperature in the oxidation reaction during the converting process, and additional coal
injection is often needed to ensure the converting temperature [11,12]. With increasing
maturity grade, less oxygen is needed, the time required for the entire converting process
is reduced, the converting cycle is shortened, and the indicators that rely on the converting
time in the original low-grade matte converting process, such as the copper content in slag
and impurity removal, become difficult to determine [13,14].

The oxides of the impurity elements arsenic and antimony are difficult to react with
quartz flux, and mainly rely on the volatilization of their monomers or low-valent oxides to
remove them [15–18]. According to scholars, in the simulation of the distribution proportion
of arsenic in the converting process, 77% of arsenic volatilizes into gas, but the factory
production data are far from the difference, which is strongly related to the matte grade
in the converting process [19,20]. The P-S converter selects quartz as the converting flux,
which can enter a large amount of amorphous PbSiO3 produced by PbO slagging during
the slagging period. However, it is difficult for quartz flux to remove the complex salt of
lead, and the lead in the melt can form lead arsenic antimonate during the copper-making
period and can form complex compounds with other oxides to remain in the blister copper.
In the process of converter production, the removal rate of lead can reach approximately
87%, and the amount of lead converted into gas through volatilization is twice that removed
from the slag [21,22]. When scholars studied the distribution of impurity elements in the
converting process, it was found that the residual impurities in the blister copper products
increased significantly with increasing matte grade because of the high copper content in
the matte, the small blast volume of the matte, and the small amount of slag formed [23–25].

At present, research on impurity elements in the converting process has focused mainly
on the direction and distribution of impurity elements, and the law of phase transformation
of impurity elements remains to be studied. To master the method and principle of impurity
removal in the P-S converting process, based on the detection results of matte impurity
element content and phase characteristics, the distribution behavior of impurity elements
in each phase was studied by analyzing the changes in impurity element content and phase
characteristics in different stages of the converting process, and the phase transformation
laws of arsenic, antimony and lead in the converting process were revealed. This study
provides a theoretical reference for improving the removal efficiency of impurities in the
P-S converting process.

2. Materials and Methods
2.1. Materials

The raw material used in this research was a high-grade matte produced by the
bottom blow smelting furnace of a copper smelting plant. After the high-grade matte was
broken, the sample was finely ground to less than 60 mesh using a vibrating mill. The
chemical composition of the high-grade matte sample was analyzed by means of chemical
composition analysis and inductively coupled plasma emission spectrometry (ICP-OES),
and the results are listed in Table 1. The converting process used a ferrosilicon slag system.
The content of SiO2 in quartz flux was more than 85%, the moisture content was less than
6%, the powder content was less than 5%, and the impurities were less than 3%. We added
coal powder at the beginning of the converting to ensure the converting temperature. The
proximate analysis of the coal powder is listed in Table 2.
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Table 1. Chemical analysis of high-grade matte.

Element Cu Fe S Pb Zn Ca As Si Ni Sb

Content (wt.%) 72.22 3.72 18.38 1.38 0.39 0.28 0.25 0.2 0.18 0.07

Table 2. Industrial analysis of carbon powder.

Species Mad Aad Vad Fcad

Content (wt.%) 0.48 15.53 8.68 75.31

The results of X-ray diffraction (XRD) analysis of the high-grade matte are shown in
Figure 1. The main phases of high-grade matte are Cu2S and FeS, but compounds with low
contents of As, Sb, Pb and other elements cannot be detected by XRD.
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Figure 1. XRD pattern of high-grade matte.

2.2. Research Methods
2.2.1. Experimental Methods

The operating system for high-grade matte converting is shown in Figure 2. In the
process of high-grade matte converting, about 110 t matte was added to the converter in
3 batches during the feeding period. Before oxygen blowing, the first batch of 51 t included
the 1, 2, and 3 packages of molten matte, and 8 t of the cold charge were added. During the
whole converting process, 2 t coal powder were added three times through the tuyere to
stabilize the converting temperature. After oxygen blowing for 35 min, the air flow was
stopped, and the second batch 20 t of molten matte (package 4) and 6 t of the cold charge
was added. The converter proceeds rotated to the converting position for oxygen blowing.
The third batch is the fifth package 19 t of molten matte and 6 t of the cold charge. The
feeding period lasted 100 min. Subsequently, the furnace continuous oxygen blowing and
converting lasted 130 min until end. During the whole converting process, 1.7 t quartz flux
was added into the furnace in 4 times. After the converting, the slag was released before
the copper was released. 17 t converting slag and 75 t blister copper were produced.
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A series of experiments were carried out in the process of converting high-grade matte.
First, chemical phase analysis of the high-grade matte was performed. Then, the high-grade
matte converting process was sampled according to the converting time. The sampling
operation determined the sampling time point according to the oxygen converting time.
Starting from the addition of molten matte into the converter, sampling was carried out
every 30 min, and a total of 7 samples were obtained. The molten sample was obtained by
inserting steel into the melt at the air inlet. The extracted sample was water-quenched to
reduce the influence of the air composition on the sample.

2.2.2. Analytical Methods

The elemental content in the sample was detected by chemical analysis, and the phase
in the raw material and each sample was analyzed by an X-ray diffractometer (Rigaku
TTR III, Tokyo, Japan). The phase composition of the impurity elements in the matte
was determined by chemical phase analysis. The migration and transformation of each
element in the sample during the converting process were analyzed by scanning electron
microscopy (CIQTEK SEM5000, Hefei, China) and an Energy Dispersive Spectrometer
(EDS) (Oxford Xplore30, Shanghai, China).

3. Results and Discussion
3.1. Transformation of the Main Elements during Converting

The contents of Cu, Fe and S in samples 1–7 are listed in Table 3. Figure 3 shows
changes in the Cu, Fe and S contents with the time during the converting process. After
oxygenating for 95 min, all the molten matte was added to the converter melt, and the
Cu content in the melt increased to 80.44%. The Cu content in the melt only increased
3.68% after continued to oxygenating for 60 min. When continuing oxygen blowing for
30 min, the Cu content in the melt rapidly increased to 97.38%. The Cu content increased
from 97.38% to 98.86% in the last 30 min. Compared with the trend for copper, the S
content decreased slowly in the slagging stage and rapidly decreased with an increasing
Cu content after 160 min. When the Cu content reached more than 97.38%, the S content
decreased below 0.02% until it reached 0%. After the first feeding, the Fe content was
rapidly reduced by more than 50%, then the Fe content in the melt changed little within
120 min after converting, and the Fe content was again rapidly reduced to 0.3% in the last
30 min of converting.
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Figure 4 shows the XRD pattern analysis of the sample taken according to the convert-
ing time in the production process of the P-S converter. The phase transformation with the
converting time can be seen.
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Table 3. Cu, Fe and S contents during the converting process.

Element Cu S Fe

Sample 1 72.22 18.38 3.72
Sample 2 78.21 17.06 1.33
Sample 3 80.44 16.16 1.20
Sample 4 80.68 16.15 1.06
Sample 5 84.12 13.13 1.10
Sample 6 97.38 0.02 1.19
Sample 7 98.86 0 0.30
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Figure 4. XRD of time sampling during the converting process. (a) XRD of all samples. (b) XRD of
sample 1. (c) XRD of sample 2. (d) XRD of sample 3. (e) XRD of sample 4. (f) XRD of sample 5.

The temperature was maintained at around 1200 ◦C (±10 ◦C) during the convert-
ing process. Sample 1 was collected when air was blown. As shown in the figure, the
diffraction peak of Cu2S in sample 1 was the strongest, and there was no phase of Cu2O or
metallic copper, so the main component of the raw material used for converting was Cu2S.
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The phases of samples 2–5 in the melt were mainly the gradually decreasing Cu2S and
increasing amounts of copper, which was due to reactions in the melt pool (Reaction (1))
and (Reaction (2)). The sampling time of sample 2 occurred before the fourth package
was added, and the XRD pattern showed the presence of the Cu phase, indicating that
copper formation reaction had occurred in the melt. It could be considered that there was
no slagging stage period or copper formation period, with clear time boundaries in the
process of high-grade matte conversion.

2/3Cu2S(l) + O2(g) = 2/3Cu2O(l) + 4/3SO2(g) ∆Gθ = −699.29 + 0.1947T (1)

Cu2S(l) + 2Cu2O(l) = 5Cu(l) + SO2(g) ∆Gθ = 42.18 − 0.0542T (2)

In the process of high-grade matte conversion, the iron was first oxidized to magnetic
iron and floated to the surface of the melt, resulting in a rapid decrease in the content of Fe
in the melt and Cu2S in the melt pool. After oxygenating for 100 min, the matte was added,
and the Cu concentration in the melt reached 80.68%. After further converting, the melt
was a mixture of Cu2S and Cu2O, and the proportion of Cu2S decreased with increasing
converting time. After oxygenation for 60 min, a large amount of copper reacted, sulfur
escaped as SO2, and the Cu grade in the melt began to increase rapidly. In the last 30 min,
Cu2S was completely transformed into Cu, the grade reached more than 98.86%, the iron in
the melt was greatly reduced, and the blister copper was stratified with the slag.

3.2. Transformation of Impurity Elements during Converting
3.2.1. The Form of Impurity Elements in the High-Grade Matte

Table 4 lists the chemical phase analysis results of the high-grade matte. Evidently,
As is mainly in the form of As2S3 and FeAsO4. FeAsO4 is easily decomposed into Fe3O4
As2O3 andCO2 under converting conditions. There is also a small amount of As in the
matte in the form of As2O3 and others. Sb mainly exists in the form of element Sb, Sb2O5
and Sb2O3 in the raw material, and a small part exists in the form of Sb2S3. Pb mainly exists
in the form of PbS, PbO and element Pb in the raw materials, and a small part exists in the
form of PbSiO3.

Table 4. Phase analysis of impurity elements in high-grade matte.

Elements Phase Content/(wt.%) Proportion

Arsenic

As2O3 0.003 1.28%
As2S3 0.160 64.00%

FeAsO4 0.086 34.40%
others 0.001 0.40%
Total 0.250 100%

Antimony

Sb2O3 0.008 11.11%
Sb 0.044 61.11%

Sb2S3 0.003 4.17%
Sb2O5 0.017 23.61%
Total 0.072 100%

Lead

Pb 0.240 17.60%
PbS 0.660 47.82%
PbO 0.370 26.85%

PbSiO3 0.100 7.40%
Total 1.380 100%

Figure 5a shows the microscopic morphology of sample 1 (high-grade matte) in the
converting process at 2000× magnification, and Figure 5 shows the distribution of the
elements around the impurity elements and the energy dispersive spectrometer analysis
when the local area of the high-grade matte was amplified by 10,000× magnification. In the
early stage of converting, the enrichment area of the impurity elements in the high-grade



Minerals 2024, 14, 499 7 of 14

matte was relatively dispersed, the area was small, and the accumulation area of a few
impurities was generally less than 3 µm. The analysis showed that most of the impurity
elements in the high-grade matte were dispersed in the melt. The distribution of elements
in the sample, combined with EDS analysis, showed that the main phase of the high-grade
matte was Cu2S. In the copper-poor region, it is a substance or compound of impurity
elements, including Fe, As, Sb and Pb. Table 4 lists that the content of FeAsO4 in matte
was 0.086%. Due to the low content, the FeAsO4 phase may not be shown in Figure 5.
In addition, the FeAsO4 may decompose into other phases. The impurities arsenic and
antimony were enriched at the oxygen enrichment points, and their distribution in other
areas was relatively dispersed, so the main phases of arsenic and antimony may be As2O3,
Sb2O3, and small amounts of As2S3, Sb2S3, and Sb. The distribution of the impurities
overlapped with that of sulfur, except for slight enrichment in the oxygen enrichment area.
The main phases of lead are PbS and a small amount of PbO.
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Figure 5. SEM-EDS image of the impurity distribution in the high-grade matte. (a) the microscopic
morphology of the high-grade matte at 2000× magnification. (b) the microscopic morphology of
the high-grade matte at 10,000× magnification. (Spot A) the high-grade matte. (Spot B) Impurity
enrichment region. (Spot C) Impurity enrichment region.

3.2.2. Impurity Element Content and Distribution in Melt

Table 5 and Figure 6 show the variation in the contents of the As, Sb and Pb as the
converting process of high-grade matte conversion progressed. Before 100 min of convert-
ing, the content of arsenic in the melt slowly decreased with the converting time, and after
130 min of converting, the content of arsenic gradually increased until it reached the highest
value before copper production. It was found that the arsenic phase FeAsO4 decompose
and oxidized during the early stage of matte smelting, and some As2O3 volatilized into
gas, while some As2O3 remained in the matte. As the sulfur in the melt was oxidized to
SO2, the overall melt mass decreased, and the content of arsenic increased.
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Table 5. As, Sb and Pb contents during the conversion process.

Element As Sb Pb

Sample 1 0.250 0.072 1.380
Sample 2 0.080 0.050 0.770
Sample 3 0.050 0.020 0.400
Sample 4 0.050 0.030 0.420
Sample 5 0.100 0.070 0.440
Sample 6 0.111 0.051 0.210
Sample 7 0.113 0.056 0.240
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Before converting oxygen for 100 min, the content of Sb in the melt slowly decreased
with increasing converting time. It can be seen from the continuous oxygen conversion
that the antimony content in the melt gradually increased. However, after 160 min of
oxygen conversion, the antimony content in the melt decreased with an increasing oxygen
conversion time. In the last 30 min, the Sb content increased from 0.051% to 0.056%. The
analysis showed that the elemental antimony in the matte was oxidized to Sb2O3 and
volatilized to gas, which decreased the content of antimony in the melt with increasing
converting time. As the sulfur in the melt was oxidized to SO2, the overall mass of the
melt decreased, and the content of antimony increased. The oxygen potential of the melt
increased with the continuous blowing of oxygen-enriched air during the conversion
process. The increased oxygen potential led to antimony to be oxidized to Sb2O3 into the
gas or into the slag as Sb2O5. In addition, a large amount of SO2 was produced during this
period, which provides favorable volatilization conditions for Sb2O3. Before the end of the
converting process, the Sb content increased slightly due to the change in melt quality.

Because the lead phase in high-grade matte mainly includes PbO and Pb, some lead
volatilizes into the gas during the slagging period. The quartz flux added in the middle
of the converting process reacts with PbO in the melt to form PbSiO3, which makes the
lead content in the melt change little. When Cu2O is present at the end of the converting
process, PbS is oxidized to form volatile PbO, which enters the gas with a large amount of
escaped SO2. The lead content in the blister copper was 0.24%, which seriously affected the
subsequent smelting.

Figure 7a shows the microscopic morphology of sample 4 (white matte) in the con-
verting process at 4000× magnification, and Figure 7 shows the elemental distribution
and energy dispersive spectrometer analysis of the impurities when the local area of the
white matte was increased by 20,000× magnification. The main phase in the melt at the
end of the slagging period of high-grade matte smelting was Cu2S. The impurity elements
began to gradually accumulate in the form of oxides or compounds, and the elements Fe,
As and Sb exhibited a relatively obvious aggregation phenomenon. There were impurity
particles measuring approximately 5 µm, which were wrapped in the Cu2S phase. The
distribution regions of the impurity elements As and Sb were consistent and overlapped
with the oxygen-enriched regions, but the distribution of As was greatly affected by Si,
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while the element Sb was not. Therefore, arsenic may exist in the form of As2O3 or As2O5,
and Sb may exist in the form of Sb2O3 or Sb2O5 or form complex compounds with other
impurity elements. The distribution area of Pb in the white matte overlapped more with
that of S and Cu and differed greatly from that of Si. It is speculated that Pb was not
oxidized at the end of the slagging period and mainly existed in the Cu2S phase in the form
of PbS. The impurity particles in the melt in the middle stage of converting were centered
on SiO2, which was surrounded by oxides of Fe, As and Sb, while Pb was present in the
Cu2S phase in the form of PbS.
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(Spot C) Impurity enrichment region.

Figure 8a shows the microscopic morphology of sample 6 (blister copper) in the
converting process at 1000× magnification, and Figure 8 shows the distribution of elements
around the impurity elements and energy dispersive spectrometer analysis when the local
area of the blister copper was enlarged by 5000× magnification. The region denoted as point
A is the Cu phase, point B is the matte phase, and point C is the impurity enrichment region.
Before the end of the high-grade matte converting, the main phase of the product was
element Cu, and the impurities As, Sb, and Pb and small amounts of Ni and Bi obviously
aggregated. Most of the impurity particles were approximately 5 µm long, large particles
with a radius of approximately 15 µm were also present, and impurity particles existed at
the edge of the Cu2S phase. The analysis revealed that the impurities gradually increased
in abundance in the matte, and with the gradual transformation of Cu2S to element Cu, the
impurities gradually precipitated and increased in abundance. The distribution region of
Pb overlapped with the distribution region of S and was not distributed in the Cu phase. It
was presumed that Pb is not oxidized in matte at the end of copper converting and is not
distributed in the Cu phase because PbS is oxidized after Cu2S, which may mainly exist
in the form of PbS in matte and impurity particles. The distributions of the impurities As
and Sb overlapped with the distribution of oxygen, and it is speculated that As and Sb may
exist in the form of oxides in blister copper.
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(Spot C) impurity enrichment region.

Table 6 lists the element contents of converting slag. According to the matte, converting
slag quality, the quality of arsenic entering the slag phase was 1.85% of the total. The
distribution ratio of lead in slag was 12.21%. Because the total amount of antimony in matte
is low, antimony could not be detected in the slag.

Table 6. Chemical analysis of converting slag.

Element Cu Fe S Pb Zn As SiO2 Ni

Content (wt.%) 16.16 38.22 0.21 1.09 1.06 0.03 18.65 0.11

3.2.3. Phase Transformation Mechanism of Impurity Elements

The phase transformation mechanism of the high-grade copper matte converting
process into As is shown in Figure 9. According to the thermodynamic equation for
Reaction (3), As in the form of FeAsO4 is decomposed into As2O3 during the process of
converting. In addition, As in the form of element As and As2S3 can also be oxidized to
As2O3 (Reactions (4) and (5)).

3FeAsO4(l) + 7/4C(s) = 3/2As2O3(g) + Fe3O4(l) + 7/4CO2(g) ∆Gθ = 89.7 − 0.4945T (3)

2/9As2S3(l) + O2(g) = 2/9As2O3(g) + 2/3SO2(g) ∆Gθ = −2684.11 + 0.5542T (4)

4/3As(l) + O2(g) = 2/3As2O3(g) ∆Gθ = −1170.27 + 0.4461T (5)

Comprehensive analysis showed that As2O3 can be partially volatilized to the gas
phase, and some will remain in the melt. As2O3 in the melt is further oxidized to As2O5
(Reaction (6)) when the oxygen potential is high.

As2O3(g) + O2(g) = As2O5(l) ∆Gθ = −230.52 + 0.268T (6)
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As2O5 is an acidic oxide that can combine with other basic oxides, such as CaO, to
form a stable arsenate (Reaction (7)), which easily enters the slag phase.

As2O5(l) + 3CaO(l) = Ca3(AsO4)2(l) ∆Gθ = −470.51 + 0.0054T (7)
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Figure 9. Migration and transformation of As during the process of conversion.

The phase transformation mechanism of the high-grade copper matte conversion
process into Sb is shown in Figure 10. The antimony in the form of element Sb and Sb2S3
was oxidized to Sb2O3 (Reactions (8) and (9)) in the slagging period of converting, and
Sb2O3 was volatile when heated.

2/9Sb2S3(l) + O2(g) = 2/9Sb2O3(g) + 2/3SO2(g) ∆Gθ = −2570.61 + 0.7201T (8)

4/3Sb(l) + O2(g) = 2/3Sb2O3(g) ∆Gθ = −1201.64 + 0.4352T (9)

Some unvolatilized Sb2O3 can be oxidized to Sb2O5 (Reaction (10)) in regions with
high oxygen potential.

Sb2O3(g) + O2(g) = Sb2O5(l) ∆Gθ = −275.98 + 0.3154T (10)

Sb2O5 is an acidic oxide that reacts with other basic oxides in the melt to form anti-
monate (Reaction (11)), which is stable, less dense, and easily enters the slag phase.

Sb2O5(l) + 3CaO(l) = Ca3(SbO4)2(l) ∆Gθ = −277.27−0.1407T (11)

The phase transformation mechanism of the high-grade copper matte for converting
Pb is shown in Figure 11. Comprehensive analysis revealed that lead in the form of PbS is
oxidized to PbO (Reaction (12)) at the end of copper production. Pb, PbS and PbO in the
matte can be volatilized into gas under converting conditions.

2/3PbS(l)+ O2(g) = 2/3PbO(g) + 2/3SO2(g) ∆Gθ = −824.01−0.1945T (12)

Pb(l) + O2(g) = 2PbO(l) ∆Gθ = −331.56 + 0.1407T (13)
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PbO reacts with PbS to form Pb (Reaction (14)); the density of Pb is greater than that
of Cu; and PbS easily remains in the blister copper to form impurities.

2PbO(l) + PbS(l) = 3Pb(l) + SO2(g) ∆Gθ = 207.83−0.4572T (14)

During the whole converting process, the unvolatilized PbO reacts with SiO2 to form
PbSiO3 (Reaction (15)), which is the reason why the use of ferrosilicon slag in the converting
process more easily removes lead.

PbO(l) + SiO2(l) = PbSiO3(l) ∆Gθ = −80.84 + 0.0852T (15)

4. Conclusions

In this paper, the changes in element content and phase in the products at each stage of
the blowing process were studied. Based on the experimental results, the slagging period
and the copper-making period in the process of high-grade matte converting overlap in
time. Arsenic in the form of FeAsO4 and As2S3 undergoes decomposed and oxidized
reactions in the pre-converting stage. At the same stage, antimony in the form of Sb and
Sb2S3 is oxidized to Sb2O3. In white matte, the elements As and Sb exist mainly in the
form of oxides. Lead in the form of PbO leaves the melt by volatilization; in white matte
it is in the form of PbS. As the converting proceeds, the impurities dispersed in the melt
gradually congregate with the disappearance of the matte phase, forming particles in the
blister copper phase. At the end of the converting process, the oxides of the elements
As and Sb and the unoxidized PbS congregate to form complex compounds with other
impurities in the blister copper. The content of Pb in the blister copper reaches 0.24 wt.%,
which affects the subsequent smelting process.

Clarifying the transformation law of impurity elements in the process of converting is
conducive to the targeted regulation of impurity elements, which is helpful for improving
the quality of blister copper.
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