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Abstract: Chronic kidney disease (CKD) and cardiovascular disease (CVD) are highly prevalent
conditions, each significantly contributing to the global burden of morbidity and mortality. CVD
and CKD share a great number of common risk factors, such as hypertension, diabetes, obesity, and
smoking, among others. Their relationship extends beyond these factors, encompassing intricate
interplay between the two systems. Within this complex network of pathophysiological processes,
vitamin D has emerged as a potential linchpin, exerting influence over diverse physiological path-
ways implicated in both CKD and CVD. In recent years, scientific exploration has unveiled a close
connection between these two prevalent conditions and vitamin D, a crucial hormone traditionally
recognized for its role in bone health. This article aims to provide an extensive review of vitamin D’s
multifaceted and expanding actions concerning its involvement in CKD and CVD.

Keywords: vitamin D; calcitriol; calcidiol; kidney disease; cardiovascular disease; hypertension;
osteoporosis; mineral bone disease; metabolic disease

1. Introduction

Chronic kidney disease (CKD) is a widespread health condition, commonly occurring
and associated with a significant burden and significant morbidity. Globally, it has been
documented with 697.5 million cases, representing a prevalence of 9.1%. CKD contributes
to 35.8 million Disability-Adjusted Life Years (DALYs) and 1.2 million deaths in 2017 [1].
Although chronic kidney disease (CKD) is both preventable and treatable, its incidence is
on the rise among the general population. Between 1990 and 2017, its prevalence surged by
29.3%, while the overall mortality rate increased by 41.5%. These statistics correspond with
current forecasts, which predict CKD to become the fifth leading cause of global mortality
by 2024 [2].

On the other hand, cardiovascular disease (CVD), despite a continuous expansion
of biomedical knowledge and a constant effort in prevention and treatment, remains the
primary cause of mortality and morbidity in Western countries [3].

CVD and CKD share many common risk factors, such as diabetes, hypertension,
smoking, and obesity [4–6], and even some protective factors [7]. However, their relation is
not limited to a number of common pre-existing predisposing conditions, but it is rooted in
a more complex and interlinked mutual cross-talk [8].

Individuals afflicted with chronic kidney disease frequently face heightened suscep-
tibility to cardiovascular complications, including coronary artery disease, heart failure,
arrhythmias, and sudden cardiac death [9,10]. Although individuals in early stages of
chronic kidney disease (CKD) (stages 1–3) already exhibit a higher occurrence and preva-
lence of cardiovascular events compared to the general population, those in advanced
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stages (stages 4–5) face an even greater risk. Among this high-risk group, cardiovascular
complications, rather than end-stage kidney disease (CKD stage 5), emerge as the primary
cause of mortality [11]. Traditional cardiovascular determinants present in CKD are not
able to justify this excess risk in CKD, which appears to be an independent CVD risk
factor itself [12]. Some evidence suggests that, among the main alterations caused by CKD,
accelerated atherosclerotic degeneration and the development of vascular calcification are
linked to worse prognosis [13,14]. This could possibly provide an explanatory mechanism
for increased CVD damage in CKD patients [15,16].

In this context, vitamin D naturally emerges as a key factor in promoting both cal-
cium/phosphorus metabolism imbalance, and thus CKD-related vascular calcification, and
atherosclerosis, with a great impact on cardiovascular health [17,18]. In this review, the
main roles of vitamin D in kidney and cardiovascular disease will be described.

2. What Is Vitamin D?

Vitamin D is a secosteroid, a steroid hormone obtained through dietary intake and by
endogenous synthesis requiring exposure to sunlight. Essential vitamins are defined as
substances that a living organism cannot produce adequately on its own and must acquire
exclusively from its diet; for this reason, vitamin D it is not a true “vitamin”. There are six
distinct steroid hormones referred to as vitamin D, each with different levels of activity.
These include the endogenous precursor cholecalciferol (D3), derived from cholesterol; its
partially active hydroxylated form, calcidiol (25(OH)D3), synthesized by the liver; and
its active dihydroxy form, calcitriol (1,25(OH)2D3), hydroxylated in the kidneys [19,20].
Additionally, there is a plant-derived form known as ergocalciferol (D2), characterized by a
worse pharmacokinetic profile, less biological activity, and lower stability than its animal-
derived analogues [21,22]. Calcitriol’s most known effect is enhancing the absorption of
calcium in the intestines and controlling phosphate levels. Vitamin D nuclear receptors
(VDRs) are also present in a plethora of tissues, such as breast, brain, breast, lymphocyte
and other immune cells, and prostate [23]; thus, it is unsurprising that vitamin D has
various pleiotropic effects that are currently still under investigation, such as immune
modulation, the onset of cancer, and insulin regulation [24,25]; many other cardiovascular
regulatory functions will be described in greater detail in dedicated sections of this article.

The binding of calcitriol with VDR causes a conformational change in the receptor,
leading to its heterodimerization with the retinoic acid X receptor (RXR) (Figure 1). Ad-
ditionally, VDR can form heterodimers with other members of the steroid receptor gene
family [26]. The transactivation of VDR results in the expression or repression of numer-
ous genes, with estimates suggesting that calcitriol influences over 200 genes directly or
indirectly, impacting a diverse array of physiological processes [27]. Notably, VDR–DNA
binding aids in targeting genes that may undergo further modification by calcitriol. How-
ever, it is important to note that in many instances, changes in gene expression are not
directly mediated by VDR but involve various co-regulatory elements [28]. These com-
plexes typically include a VDR regulatory component and exhibit significant enzymatic
activity [26].
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Figure 1. The dimer formed by 1,25(OH)2D3–VDR2 interacts with the retinoid X receptor (RXR) and 
translocates into the nucleus. Within the nucleus, it attaches to vitamin D response elements (VDRE) 
found in the promoter region of specific genes. 25(OH)D obtained from the bloodstream can be 
converted locally into 1,25(OH) D within cells expressing 1α-hydroxylase. Adapted from Latic [29]. 

2.1. Vitamin D Deficiency 
Vitamin D normal levels are not unanimously established, although many authors 
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deficiency” [30,31]; levels below 10–12 ng/mL, associated with rickets and ostemalacia, are 
considered severe deficiency [32,33]. Furthermore, the clinical guidelines established by 
the Endocrine Society Task Force on Vitamin D have set a deficiency threshold for vitamin 
D at 50 nmol/L [30]. It must be noted that, while calcitriol is acknowledged as the most 
metabolically active vitamin D, its serum concentration is not regularly monitored. This 
is due to its short half-life, susceptibility to exogenous administration, and, most 
importantly, absence of a standardized assay. Consequently, calcidiol is the predominant 
biomarker utilized in both clinical and research settings [34]; however, calcidiol and 
calcitriol deficiency could impact mineral metabolism in different ways [35]. 

Recent data suggest that low vitamin D levels are common worldwide, varying 
across different ages and ethnicities, with a prevalence of 24% in the US and 40% in 
Europe, and over 20% in India and Pakistan [36,37]. In some groups of individuals, it can 
be even more common, such as in subjects with celiac disease or in obese and sedentary 
subjects [38,39]; in CKD patients, vitamin D deficiency prevalence can rise up to 85–99% 
[40,41]. 

There are some limitations that must be taken into account when pondering this 
information, hence the great disagreement in a generally acceptable definition of “normal 
values” of vitamin D and its deficiency [42]: 
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• Great variability in vitamin D levels among different populations and ethnicities, 

both due to genetic and geographical factors [46–49]; 
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Figure 1. The dimer formed by 1,25(OH)2D3–VDR2 interacts with the retinoid X receptor (RXR) and
translocates into the nucleus. Within the nucleus, it attaches to vitamin D response elements (VDRE)
found in the promoter region of specific genes. 25(OH)D obtained from the bloodstream can be
converted locally into 1,25(OH) D within cells expressing 1α-hydroxylase. Adapted from Latic [29].

Vitamin D Deficiency

Vitamin D normal levels are not unanimously established, although many authors
recognize that calcidiol serum levels <30 ng/mL can be described as “Vitamin D defi-
ciency” [30,31]; levels below 10–12 ng/mL, associated with rickets and ostemalacia, are
considered severe deficiency [32,33]. Furthermore, the clinical guidelines established by
the Endocrine Society Task Force on Vitamin D have set a deficiency threshold for vitamin
D at 50 nmol/L [30]. It must be noted that, while calcitriol is acknowledged as the most
metabolically active vitamin D, its serum concentration is not regularly monitored. This is
due to its short half-life, susceptibility to exogenous administration, and, most importantly,
absence of a standardized assay. Consequently, calcidiol is the predominant biomarker uti-
lized in both clinical and research settings [34]; however, calcidiol and calcitriol deficiency
could impact mineral metabolism in different ways [35].

Recent data suggest that low vitamin D levels are common worldwide, varying across
different ages and ethnicities, with a prevalence of 24% in the US and 40% in Europe, and
over 20% in India and Pakistan [36,37]. In some groups of individuals, it can be even more
common, such as in subjects with celiac disease or in obese and sedentary subjects [38,39];
in CKD patients, vitamin D deficiency prevalence can rise up to 85–99% [40,41].

There are some limitations that must be taken into account when pondering this
information, hence the great disagreement in a generally acceptable definition of “normal
values” of vitamin D and its deficiency [42]:

• No consensus on a standardized laboratory assay [43–45];
• Great variability in vitamin D levels among different populations and ethnicities, both

due to genetic and geographical factors [46–49];
• Not clear whether the total or the free (unbound to carrier proteins) vitamin D should

be measured [50,51].

3. Vitamin D in the Context of CKD

Chronic kidney disease is one of the main causes of vitamin D deficiency, and the
progressive decline of renal function is associated with its worsening [52,53].

Vitamin D’s role in kidney health is complex. Its deficiency is both a consequence of
kidney disease and a prognostic factor for progression of kidney damage and is linked
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to graft survival in kidney transplant recipients [42]. Vitamin D is also an extremely
important therapeutic target, as its analogues have a role in the treatment of mineral and
bone alterations, proteinuria, and in the reduction in kidney inflammation and fibrosis [54].

Due to various factors, individuals with CKD frequently encounter deficiencies in both
calcidiol and calcitriol (Figure 2). CKD hampers the activity of 1α-hydroxylase CYP27B1,
the enzyme responsible for hydroxylation of calcidiol into calcitriol [55,56]. Moreover, this
deficiency can result from compromised skin synthesis or dietary constraints, restricting
the access to cholecalciferol and ergocalciferol precursors. Additionally, proteinuria and
uremia associated with chronic kidney disease (CKD) can lead to the depletion of vitamin
D binding proteins and 1,25-dihydroxyvitamin D [55].
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3.1. Vitamin D in Mineral and Bone Disease

Vitamin D is a key component of calcium/phosphate homeostasis and bone metabolism:
in healthy subjects, parathyroid hormone (PTH), fibroblast growth factor-23 (FGF23), and
vitamin D act as deeply interlinked regulators of this delicate and complex physiological
mechanism [58,59]. The disruptions in mineral metabolism caused by CKD, rising PTH,
and lower vitamin D levels are presently recognized as integral components of the chronic
kidney disease–mineral and bone disorder (CKD–MBD) definition [60].

Vitamin D exerts its effect on calcium homeostasis, forming a complex with VDR
and RXR, binding to the vitamin D response element to regulate the transcription of
various genes, including epithelial calcium channels and calcium-binding proteins [61–63].
Subsequently, calcitriol deficiency will result in reduced calcium absorption from the
intestine; to counteract this effect and avoid hypocalcemia, PTHs activate osteoclasts,
thus reabsorbing calcium from the bone. In CKD, various mechanisms contribute to the
overproduction of PTH, a condition known as secondary hyperparathyroidism (sHPT), a
disease totally different from disorders in the parathyroid glands (primary HPT) [57,58].

The clinical implications of CKD–MBD involve parathyroid gland hyperplasia, bone
abnormalities, and vascular calcification; as CKD progresses, the parathyroid glands un-
dergo nodular hyperplasia due to persistent overstimulation by hypocalcemia and hy-
perphosphoremia [58,62,64,65]. The reduced sensitivity to vitamin D and calcium signals,
attributed to the loss of respective receptors, further complicates the situation, leading to
parathyroidectomy in the most severe cases [60,62,66].

Bone abnormalities, encompassing different patterns under the term renal osteodys-
trophy, lead to osteoporosis and an increasing risk of fracture, worsening together with the
decline in renal function [67].

The disturbance in mineral homeostasis within CKD–MBD, through the elevated
serum phosphate levels leading to deposit of calcium phosphate salts in the arteries walls,
heightens the risk of vascular calcification, thereby increasing susceptibility to cardiovascu-
lar diseases [66,68,69]. Managing mineral imbalances like hyperphosphatemia and SHPT
is still regarded as one of the prevailing approaches for addressing vascular calcification
in CKD. This involves the use of phosphate binders in hyperphosphatemic patients at
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all stages of CKD, along with implementing dietary phosphate restrictions and utilizing
calcimimetics [70]. Vitamin D compounds continue to be one of the primary choices for
preventing and treating SHPT in CKD [60].

3.2. Vitamin D as RAAS Inhibitor

The role of vitamin D in renin–angiotensin–aldosterone system (RAAS) inhibition is
nowadays undisputed [71,72]. In experimental models of chronic kidney disease, pari-
calcitol, a synthetic analogue of vitamin D, diminishes the renal expression of renin, the
(pro)renin receptor, angiotensinogen, and the type 1 angiotensin receptor. Furthermore,
vitamin D hinders the activity of tumor necrosis factor α-converting enzyme (TACE),
which controls the shedding of angiotensin-converting enzyme 2 (ACE2), a crucial enzyme
responsible for metabolizing angiotensin II in the proximal tubule (Figure 3) [72,73].
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Several pioneering studies have found a negative correlation between the concen-
tration of plasma 1,25(OH)2D3 and blood pressure, as well as plasma renin activity, in
both normotensive men and individuals with essential hypertension [74–76]. It has been
documented that supplementation with vitamin D3 reduces blood pressure in individuals
with essential hypertension (19, 20). Treatment with 1,25(OH)2D3 also leads to a reduc-
tion in blood pressure, plasma renin activity, and angiotensin II levels in patients with
hyperparathyroidism [77,78]. Furthermore, exposure to ultraviolet light, necessary for
vitamin D biosynthesis, is inversely related to increases in blood pressure and the preva-
lence of hypertension in the general population, demonstrating blood pressure-lowering
effects [79,80].

3.3. Vitamin D and Proteinuria

Proteinuria is one of the main predictors of chronic kidney disease progression and
stands out as a potent and autonomous predictor of adverse outcomes in cardiovascular
health. Importantly, these associations are significant regardless of the glomerular filtration
rate level. Moreover, these connections hold true across populations with varying degrees
of risk for kidney disease progression and cardiovascular disease development. The
association between proteinuria and CVD persists even at proteinuria levels below existing
thresholds for microalbuminuria [81,82]. Being recognized as the main therapeutic target
in the management of CKD, it is not surprising that international guidelines recommend
every possible effort to reduce it to the lowest achievable level [83].

Effective therapies that can reduce proteinuria include inhibitors of RAAS, such
as angiotensin receptor blockers (ARBs) and angiotensin-converting enzyme inhibitors
(ACEi) [84,85]. However, their effect is often suboptimal, and possible persisting residual
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proteinuria is still an important predictor of renal impairment. Since the acknowledgement
of potential serious adverse effects of “dual blockade” of RAAS, combined with the lack of
evidence of a reduction in mortality and improvement of kidney function of this therapeutic
regimen, there has been a need for drugs capable of limiting residual proteinuria [86–88].

More recently, with the introduction of sodium–glucose transporter type 2 inhibitors
(SGLT2i), a further step towards a better treatment of proteinuric patients has been
made [89,90]. Notably, increasing evidence shows that SGLT2i can modulate phosphate
homeostasis, increasing serum phosphate, PTH, and FGF23 [91,92]. Due to the role of
FGF23 in promoting cardiac fibrosis [93], these data apparently contrast with the reduction
in cardiovascular events with SGLT2i therapy [94]

Several studies reported vitamin D’s role in various groups of proteinuric patients: the
exact mechanisms are still not fully understood, but they appear to be due to an inhibition
of RAAS, as described earlier in this paper [95], and to a direct effect on podocytes. As they
express both VDR and 1-α-hydroxylase, podocytes can produce calcitriol and respond to
autocrine or endocrine calcitriol. In cultured podocytes, calcitriol triggers a dose-dependent
activation of transcription of the nephrin gene [96,97]. Nephrin serves both structural
and signaling functions, working in conjunction with other slit diaphragm components
to create a permeable molecular sieve. This sieve primarily accounts for the retention of
proteins [98,99].

Vitamin D analogues, such as paricalcitol, have shown a potential in treating residual
proteinuria in various subsets of patients, including kidney transplant recipients [100–103].
Despite an increasing number of randomized controlled trial and observational studies,
however, the quality of evidence and the strength of the recommendation are not yet able to
suggest a routinary use of paricalcitol for the sole aim of reducing proteinuria, but further
research is encouraged.

3.4. Anti-Inflammatory Effects

VDRs play a significant role in overseeing processes like inflammation, epithelial-to-
mesenchymal transition, and podocyte integrity [104].

Together, VDR and vitamin D influence the apoptosis of cultured mouse podocytes
and modulate transforming growth factor β (TGFβ) through the nuclear factor κB (NF-κB)
pathway; VDR-mediated sequestration of NF-κB signaling also gives vitamin D potent
antiproliferative, prodifferentiative, and immunomodulating activities, thus dampening
renal inflammation [104,105].

Vitamin D also hinders NFκB transactivation by modulating the advanced glyca-
tion end products and their receptor (AGE–RAGE system), a mechanism underlying the
progression of various kidney diseases, including diabetic nephropathy, hypertensive
nephropathy, obesity-related glomerulopathy, lupus nephritis, amyloidosis, autosomal
dominant polycystic kidney disease, and septic acute kidney injury [106–108]. It also pro-
motes the production of IL-10 while reducing the production of TNF-α, IL-12, IL-6, and
IFN-c, resulting in an anti-inflammatory cytokine profile [109]. Other research suggests
that dendritic cells are the primary target of the immunosuppressive activity induced by
vitamin D. This is because it hinders the differentiation, maturation, and survival of these
cells, ultimately resulting in compromised activation of alloreactive T cells [110]. Moreover,
many of the cells engaged in both innate (monocytes, dendritic cells) and adaptive (T cells,
B cells) immune responses express both CYP27B1 and VDR. This suggests their ability to
both synthesize calcitriol from calcidiol and respond to its effects through autocrine and
paracrine pathways.

More recently, several studies have shown a great potential of vitamin D immunomod-
ulatory activities in various non-renal immune diseases, such as vitiligo and multiple
sclerosis [111–113].

The immunomodulatory effect of vitamin D, and especially its action on T cells,
with the shift toward a less inflammatory and a more tolerogenic phenotype, could be
responsible for its potential counteraction of chronic allograft dysfunction, thus enhancing
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graft survival [114–118]. Despite these considerations, data on the clinical effectiveness of
vitamin D supplementation for prolonging graft survival are controversial; furthermore,
much of the available evidence comes from observational studies rather than randomized
controlled trials [40,119–122].

The anti-inflammatory and antiproliferative role of vitamin D also has important
effects on atherosclerosis, as will be better described further in this paper.

4. Interplay between Vitamin D and Cardiovascular Disease

Cardiovascular disease stands as the predominant cause of global mortality and
morbidity. Its multifaceted etiology involves an array of risk factors, categorized into
modifiable biochemical or physiological characteristics—such as elevated blood pressure,
increased plasma total cholesterol, hyperglycemia, obesity, or thrombogenic factors—and
nonmodifiable personal characteristics, including age, sex, or a family history of coronary
heart disease (CHD) or other atherosclerotic vascular diseases at an early age [123,124].

Significant strides in scientific research have expanded our understanding of cardio-
vascular disease, uncovering novel therapeutic targets. Among these emerging targets,
vitamin D has garnered attention for its potential role in the pathogenesis of various cardio-
vascular diseases [24]. Figure 4 provides a schematic summary of various roles of vitamin
D in the genesis of CVD.
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4.1. Hypertension

Untreated hypertension poses a significant risk for cardiovascular diseases like coro-
nary artery atherosclerosis, stroke, or myocardial infarction [125,126]. Research findings
indicate that a lack of vitamin D exacerbates the progression of hypertension (HT); thus,
vitamin D deficiency emerges as an autonomous risk factor for elevated blood pressure
and plays a role in fostering cardiovascular mortality [126–128].

Several mechanisms can explain vitamin D’s role in hypertension.
As previously stated, vitamin D exerts a regulatory activity in RAAS. These effects

unsurprisingly show a consequence in the development of hypertension, as confirmed in
many studies both on animal and human [129,130]. Vitamin D can reduce sympathetic
activity directly related to high plasma levels of renin, which influences vascular tone
through an increase in intraglomerular pressure [131].

Beyond that, vitamin D is involved in calcium homeostasis by increasing renal reab-
sorption, increasing calcium release from bone by osteoclasts, and stimulating the produc-
tion of calcium transporters [132].
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In addition, vitamin D acts at the level of peripheral vascular resistance tone by
regulating the influx of calcium and thus acting on increased or decreased peripheral
vascular resistance; in fact, VDR is also expressed on vascular smooth muscle cells, and
directly influences muscle relaxation [132,133].

Vitamin D also seems to exert a direct impact on vascular stiffness. This is due to the
presence of 1α-hydrolase in endothelial cells and vascular smooth muscle cells (VSMCs),
enabling them to convert calcidiol to calcitriol [134]. Research indicates that inflammatory
molecules like TNF-α and lipopolysaccharide activate this enzyme in Human Umbilical
Vein Endothelial Cells (HUVECs) [135]. Furthermore, the addition of calcidiol and calcitriol
externally attracts monocytes and increases their binding to HUVECs [135]. Vitamin D
activation by macrophage is less tightly regulated than in the kidney; in atherosclerotic
lesions, these macrophages penetrate the arterial wall, allowing the activated vitamin to
directly influence VSMCs [136]. This can enhance the response to vasopressors, promote
calcification, and induce cell dedifferentiation and oxidative stress [137–140].

Despite these proven effects, vitamin D supplementation has shown negligible effects
in the treatment of hypertension in some recent clinical trials, although some studies are
more encouraging. It is possible that our understanding of vitamin D’s effects on blood
pressure regulation is still too poor to give us the ability to use it effectively in a clinical
context [141].

4.2. Vitamin D Deficiency in Atherosclerosis

Atherosclerosis overwhelmingly stands as the predominant underlying factor for
coronary artery, carotid, and peripheral arterial disease. This is a pathological condition
characterized by changes in the wall of the arteries, which lose their elasticity due to the
accumulation of calcium, cholesterol, inflammatory cells, and fibrotic material.

Among the many cardiovascular risk factors, an elevated plasma cholesterol level is
probably unique in being sufficient to drive the development of atherosclerosis, even in the
absence of other known risk factors [142–144].

Other risk factors involved in the atherosclerotic process include hypertension, male
sex, diabetes mellitus, elevated homocysteine levels, and obesity. These factors contribute
to accelerating the process of atherosclerosis triggered by lipoproteins [145].

Among these “classic”, well-established risk factors, several studies have shown
possible involvement of vitamin D in the pathogenesis of atherosclerosis.

Vitamin D directly influences the cardiovascular system, as evidenced by the presence
of VDRs in various cardiovascular cell types, including endothelial cells, vascular smooth
muscle cells, circulating monocytes, platelets, dendritic cells, macrophages, and activated T
lymphocytes [146].

Inside endothelial cells, vitamin D regulates the production of nitric oxide (NO) by
modulating the activity of endothelial NO synthase (eNOS). In pathological situations,
oxidative stress induced by the overproduction of reactive oxygen species (ROS) promotes
NO breakdown and inhibits NO synthesis, leading to decreased NO availability. However,
vitamin D counteracts the role of nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase, the generator of ROS, and augments antioxidant capacity by increasing the activity
of antioxidant enzymes such as superoxide dismutase [147]. Studies have demonstrated
that 1,25(OH)2D3 inhibits the proliferative effects of epidermal growth factor and endothe-
lin on vascular smooth muscle cells (VSMCs). Specifically, it achieves the latter by reducing
the activity of cyclin-dependent kinase 2, a regulator of the cell cycle machinery [148]. The
impact of 1α,25(OH)2D3 on VSMC migration seems to vary. At elevated levels, calcitriol can
stimulate VSMC migration. Conversely, at physiological concentrations, both 25(OH)D and
calcitriol impede VSMC migration and proliferation by decreasing the activity of vitamin
D-binding protein. This effect is mediated by the reduction in extracellular signal-regulated
kinase 1/2 phosphorylation [149]. The decrease in the formation of atherosclerotic lesions
resulted from the inhibition of immune responses, wherein at least two types of cells play a
crucial role in the effects of vitamin D3 (specifically, CD4+CD25+ Forkhead box protein
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[Foxp] 3+ regulatory T cells [Tregs] and dendritic cells [DCs]) [150]. Additionally, there ex-
ists a putative role for vitamin D in the process of vascular calcification [151]. 1,25-vitamin
D has a significant association with vascular calcification, and, quite unexpectedly, it is a
negative correlation, revealing that higher serum levels of 1,25-vitamin D were associated
with less vascular calcification. Vitamin D, in addition to being involved in calcium deposi-
tion in the axillary skeleton, could in fact also regulate calcium deposition in the vascular
wall [151].

4.3. The Role of Vitamin D in Heart Failure

Heart failure (HF) is a pathological state characterized by the heart’s inability to meet
the metabolic demands of the body. The prevalence of HF varies significantly, ranging
from 1% to 12%, as documented in comprehensive reports from the United States and
Europe [152]. At the core of HF pathology lies the breakdown of compensatory mechanisms
designed to ensure sufficient nutrient delivery to tissues. These mechanisms encompass
the neurohormonal system, renin–angiotensin system, aldosterone, parietal remodeling,
and chronic inflammation [153].

Patients with HF exhibiting low vitamin D levels tend to experience unfavorable out-
comes, aligning with established clinical correlations and biomarkers [154]. In the context
of HF affecting myocardial cells, the surplus of ionized calcium (Ca2) detrimentally impacts
the contraction and relaxation of the heart [155]. Conversely, vitamin D deficiency may
perturb the activities of Ca2 in cardiac cells, contributing to fibrosis, intra-organizational
inflammation, and cardiomyocyte hypertrophy [156,157]. Additionally, diminished vita-
min D levels can induce inflammation, activate the renin–angiotensin system, and lead to
endothelial dysfunction [158].

Several epidemiological and observational studies confirmed a higher risk of car-
diovascular events and related mortality in patients with vitamin D deficiency [159,160];
furthermore, this category of individuals shows significantly higher LV wall thickness,
diameter, and LV mass, and impaired myocardial performance index in comparison to the
rest of the population [161,162].

While observational and epidemiological data, together with pathophysiological
studies, suggest that vitamin D supplementation may ameliorate ventricular remodeling in
HF patients, the clarity of this relationship remains elusive [163].

Evidence from many interventional studies, such as RECORD, EVITA, ViDA, VINDI-
CATE, and the most recent VITAL, has shown little or no benefit from vitamin D supple-
mentation in reducing adverse cardiovascular events or CVD-related mortality [164–168].

4.4. Atrial Fibrillation

Atrial fibrillation (AF), the most prevalent sustained arrhythmia, is linked to substan-
tial morbidity, diminished functional status, compromised quality of life, and heightened
mortality, with an adjusted rate of 4.72% per year. A significant proportion of deaths,
approximately 46%, are attributed to cardiological causes, encompassing sudden cardiac
death, heart failure, and myocardial infarction. In contrast, a minority are associated with
nonhemorrhagic strokes (5.7%) or hemorrhagic events (5.6%) [169].

The established risk factors for AF include advanced age, male sex, hypertension,
alcohol consumption, and valvular disease, with emerging factors such as hypertrophic
cardiomyopathy, obstructive sleep apnea syndrome (OSAS), coronary artery disease, and
chronic kidney disease gaining recognition [170,171]. The role of vitamin D in the patho-
genesis of atrial fibrillation remains contentious, with divergent findings in the literature.
Some studies indicate a positive correlation between hypovitaminosis D and atrial fibril-
lation, while others do not establish a clear link [172,173]. A plausible correlation may lie
in vitamin D’s interference with reactive oxygen species (ROS) production in the atrium,
contributing to the arrhythmic substrate of atrial fibrillation. Additionally, vitamin D has
been observed to negatively modulate the renin–angiotensin–aldosterone system, thereby
mitigating atrial remodeling, a phenomenon commonly observed in atrial fibrillation [174].
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4.5. Vitamin D, Cardiac Fibrosis, and Cardiorenal Syndrome

As previously stated, CKD progression triggers a gradual increase in FGF23 levels, in
an attempt to overcome the impaired phosphate metabolism [175], binding to FGF receptor
(FGFR) via an associated coreceptor, klotho [176]. However, FGF23 has a putative role
in promoting cardiac fibrosis and left ventricular hypertrophy, as shown in animal and
human studies, via FGFR-dependent activation of the calcineurin–NFAT pathway; this
mechanism appears to be independent by the presence of klotho, which is necessary for
FGF23 in exerting its role in parathyroid glands and kidneys [177,178]. Conversely, other
studies suggest that the soluble form of klotho (s-klotho) can prevent these effects of FGF23
on cardiomyocytes.

This FGF23-mediated disruption of cardiac tissue and the subsequent left ventricular
hypertrophy establish one of the many forms of the cardiorenal syndrome [179].

Several studies enquired about the efficacy of vitamin D and its analogues in contrast-
ing cardiac fibrosis due to high levels of FGF23: while animal models showed promising
results with the use of vitamin D analogues such as paricalcitol [180,181], data derived
from clinical settings are ambiguous [182,183]. Even further, the most recent clinical trials
showed no cardiovascular benefit in vitamin D supplementation [184].

It must be noted that in some genetic forms of hypophosphatemia and rickets char-
acterized by increased levels of FGF23, such as X-linked hypophosphatemia, cardiac ab-
normalities are not a common finding: this opens up controversies on the effective role of
FGF23 in developing cardiac fibrosis and left ventricular hypertrophy [185].

5. Vitamin D in Pharmacological Therapy

Vitamin D serum essays and supplement prescription are becoming increasingly
common worldwide, especially in the last decade; despite this great interest both by
physicians and patients towards this issue, inappropriate testing can be confounding, and
inadequate prescription can lead to potentially harmful consequences, not to mention the
associated costs for individuals and society [186].

To this day, vitamin D supplementation is recommended by numerous scientific
societies and experts panels, mainly in the treatment of osteoporosis, CKD–mineral bone
disorder, and prevention of rickets [30,31,60]; these recommendations, however, are not
homogeneous, but rather contradictory, showing that the scientific debate is still ongoing
due to contrasting evidence.

An increasing amount of data, as described earlier, suggest a potential pathogenetic
role for vitamin D deficiency in a vast number of diseases and conditions; thus, it is
unsurprising that the idea of supplementing vitamin D, both as a nutraceutical supplement
in the form of ergocalciferol, or as cholecalciferol, can be fascinating for both healthcare
providers and patients. During the early phases of the COVID-19 pandemic, vitamin D was
also enthusiastically proposed for the treatment of SARS-CoV2 infection due to previous
evidence of a protective effect against respiratory tract infections [187], but further evidence
did not support this hypothesis [188,189].

Many observational studies suggest that vitamin D supplementation can, in fact,
provide a beneficial effect in various settings, such as cardiovascular disease, multiple
myeloma and solid tumors, multiple sclerosis, rheumatoid arthritis, and other autoimmune
diseases; however, high-quality evidence is still lacking, and there is still no clear indication
for the use of vitamin D in any of the abovementioned diseases [190–193]. Even for the most
well-established indications, such as the treatment of osteoporosis and fracture patients,
evidence is uncertain and the consensus is lacking [194–197].

Furthermore, several randomized control trials failed to demonstrate a significant
benefit from vitamin D supplementation [198–202], deflating the enthusiasm for its use in
routinary clinical context.
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Vitamin D Toxicity

Despite being often perceived as innocuous, inappropriate vitamin D assumption can
lead to potential harm. As an example, massive amounts of vitamin D are currently used
as rodenticide in pest control [203]. The great availability of over-the-counter supplements
and unthoughtful prescription by some physicians are causing an increase in vitamin D
intoxications [204].

The classical clinical presentation of vitamin D toxicity includes some characteristics
signs, such as soft tissue calcification, hypercalcemia, and hypercalciuria, and it is usually
related to a chronic oral assumption of more than 250 µg of vitamin D [205]. Symptoms
may vary, ranging from polyuria and thirst to more severe and potentially life-threatening
neurological manifestations such as confusion, seizures, and coma. Other frequently
associated symptoms include abdominal pain, polydipsia, pancreatitis, bradyarrhythmias,
vascular calcifications, nephrocalcinosis, and acute kidney injury (AKI) [206–209]. In the
most severe cases, patients with vitamin D toxicity can even require dialysis, both for the
treatment of incident AKI, for chronic kidney disease due to nephrocalcinosis, or to lower
serum calcium levels [206].

Furthermore, in kidney stone formers, a relatively mild hypercalcemia and hyper-
calciuria increase stone formation, and vitamin D use should be avoided if not otherwise
deemed necessary [210,211].

In conclusion, the use of vitamin D in pharmacological therapy cannot be routinary
and must be carefully evaluated, due to both a lack of evidence of potential benefits and to
the presence of potential harmful effects.

6. Conclusions

Over the decades, since the discovery of its deficiency disease by Casimir Funk [212],
vitamin D has captured the attention of scientists from all around the world. This led
to the acknowledgement of its various pleiotropic effects, ranging from anti-infective
effects, reduction in metabolic complications, to cancer prevention, and, as extensively
described, in kidney and cardiovascular health. However, recent findings from random-
ized clinical trials and meta-analyses have tempered the enthusiasm surrounding the
purported “pleiotropic” effects of vitamin D [213]. This is because there is a lack of clear
evidence demonstrating the beneficial effects of vitamin D supplementation across var-
ious clinical scenarios [129,198–201,214,215]. On the other hand, inappropriate vitamin
D supplementation can lead to serious, although rare, health issues, mainly linked to
hypercalcemia [208,209,216].

In conclusion, while the pleiotropic effects of vitamin D on kidney and cardiovascular
health have been extensively explored, it is essential to acknowledge that conclusive
evidence regarding its clinical efficacy is still lacking. Despite numerous studies, the
intricate interplay between vitamin D and these health outcomes requires many more
years of intensive research for a comprehensive understanding. Some of the limitations
of available studies on vitamin D can explain the confusion generated by different and
sometimes contrasting findings. These limitations often include a poor selection of the
subjects enrolled, lack of a clear and universally shared definition for vitamin D deficiency
itself, the many different laboratory essays used in both forms of vitamin D assessment, and
a still incomplete comprehension of the pathophysiology balancing calcidiol and calcitriol
serum levels. Thus, there is great need in understanding and clarifying these topics, in
order to obtain a more solid ground of knowledge that can be used to design more effective
clinical studies.

Furthermore, there is evidence indicating that vitamin D levels serve as a reflec-
tion of a generally healthy lifestyle, more than being an etiologic factor for various dis-
eases. It has been observed that inadequate or deficient levels of vitamin D often correlate
with unhealthy and sedentary lifestyles, thereby posing a risk for negative health conse-
quences [217]. This important consideration can probably change the way we are currently
investigating vitamin D’s role in health and diseases.
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The journey towards unraveling the true impact of vitamin D on kidney and cardio-
vascular health remains a complex and evolving path, emphasizing the need for continued
scientific exploration in this field.
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