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Abstract: (1) Background: Computed tomography (CT) plays a paramount role in the characterization
and follow-up of COVID-19. Several score systems have been implemented to properly assess the lung
parenchyma involved in patients suffering from SARS-CoV-2 infection, such as the visual quantitative
assessment score (VQAS) and software-based quantitative assessment score (SBQAS) to help in managing
patients with SARS-CoV-2 infection. This study aims to investigate and compare the diagnostic accuracy of
the VQAS and SBQAS with two different types of software based on artificial intelligence (AI) in patients
affected by SARS-CoV-2. (2) Methods: This is a retrospective study; a total of 90 patients were enrolled with
the following criteria: patients’ age more than 18 years old, positive test for COVID-19 and unenhanced
chest CT scan obtained between March and June 2021. The VQAS was independently assessed, and the
SBQAS was performed with two different artificial intelligence-driven software programs (Icolung and
CT-COPD). The Intraclass Correlation Coefficient (ICC) statistical index and Bland–Altman Plot were
employed. (3) Results: The agreement scores between radiologists (R1 and R2) for the VQAS of the lung
parenchyma involved in the CT images were good (ICC = 0.871). The agreement score between the two
software types for the SBQAS was moderate (ICC = 0.584). The accordance between Icolung and the
median of the visual evaluations (Median R1–R2) was good (ICC = 0.885). The correspondence between
CT-COPD and the median of the VQAS (Median R1–R2) was moderate (ICC = 0.622). (4) Conclusions: This
study showed moderate and good agreement upon the VQAS and the SBQAS; enhancing this approach
as a valuable tool to manage COVID-19 patients and the combination of AI tools with physician expertise
can lead to the most accurate diagnosis and treatment plans for patients.
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1. Introduction

Radiological imaging had a crucial part during the coronavirus disease 2019 (COVID-19)
pandemic. Computed tomography (CT) played a paramount role in the characterization and
follow-up of the illness, and its importance is broadly accepted [1,2].

In the early stages of the pandemic, when reliable and readily available tests like PCR
tests were limited, CT scans provided valuable insights into lung involvement caused
by COVID-19, and they were also used to monitor a patient’s response to treatment by
tracking changes in lung abnormalities over time.

Typical manifestations of COVID-19 pneumonia on chest CT images have been re-
ported in various studies [3,4] such as ground-glass opacity (GGO), which is a non-specific
term defined by the Fleischner Society as the presence on high-resolution computed to-
mography (HRCT) of a hazy increase in lung density, not associated with an obscuration
of the underlying vessels or bronchial walls; when vessels are obscured, the proper term
used is “consolidation” [5]. The hallmark of GGO is that the underlying blood vessels and
bronchial walls remain visible, despite the increased lung density. Consolidation refers
to a complete filling of the air spaces in the lungs with fluid or inflammatory cells. In
this scenario, the underlying blood vessels and bronchial walls are obscured on CT scans
due to the complete airspace filling. In addition, GGO generally suggests earlier stages
of lung involvement, while consolidation might indicate more advanced inflammation or
fluid accumulation. Crazy-paving pattern (CPP) is a term to use to describe a non-specific
radiological sign that is characterized by the presence of diffuse ground-glass attenuation
associated with interlobular septal thickening and intralobular lines.

Various studies investigated the possibility of drafting a tailored low-dose chest CT
protocol for infected patients, such as Homayounieh F et al. [6] who discussed this matter
through a survey issued by the International Atomic Energy Agency (IAEA) from May to July
2020. The questionnaire collected data regarding scan parameters, dose-related information,
having a dedicated CT protocol for COVID-19 patients, how many CT scanners were available
in the facility and which type of CT protocol was the most used for this type of patient. The
authors analyzed CT acquisition protocols across all the vendors. It resulted that a limit of
CTDIvol (Volume CT Dose Index) less than 3 mGy (Gray) is acceptable when the evaluation
is limited to lung parenchyma. Additionally, they encouraged to use iterative reconstruction
properly to achieve a lower dose for infected patients. A systematic review conducted by
Suliman, I.I. et al. [7] collected different low-dose chest CT protocols for COVID-19 through
varied scientific databases. The authors gathered the scanning parameters from the main
papers comparing the standard protocol (STD) versus the ultra-low-dose one (ULD). It has
been enhanced as the following: lower kV, pitch higher than 1, using iterative reconstruction
(IR), tube current modulation and fixed mAs were implemented to achieve the ULD protocol.

During the different waves of the pandemic, the use of artificial intelligence (AI)
emerged as a valuable tool to analyze chest CT scans and assess the illness severity. The
main goals of this implementation were to quantify the lung parenchyma involvement more
accurately, reduce the workload for radiologists and improve the efficiency of diagnosis and
treatment decisions. Thus, several types of software were developed during the pandemic
to help radiologists in the diagnosis of COVID-19, especially when lung CT was the most
requested exam.

This software has shown its utility to face an increased workload and to accelerate
the process of diagnosis connected to this software [8]; several score systems had been
implemented to properly assess the lung parenchyma involved in patients suffering from
SARS-CoV-2 infection. They have been mainly divided into two methods: the visual
quantitative assessment score (VQAS) and software-based quantitative assessment score
(SBQAS). The first one relies on the amount of lung abnormalities visually recognized
by experienced radiologists, while the second one is built upon software based on AI to
automatically or semi-automatically detect lesions giving a report about the quantification
of the lung parenchyma involved.
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Therefore, this study aims to compare the diagnostic accuracy between the visual
quantitative and software-based assessment obtained from two different software types
regarding the quantification of the lung parenchyma affected by SARS-CoV-2 infection to
investigate the differences and the strong points within them, to establish their reliability.

2. Materials and Methods
2.1. Study Population

Approval for this study was granted by the local ethics committee (approval number
NP5928). The institutional review board waived the requirement to obtain written informed
consent for this retrospective case series, since all analyses were performed on de-identified
data, therefore there was no potential risk to patients.

A total of 90 patients were included with the following criteria: patients’ age more
than 18 years old, real-time polymerase chain reaction (RT-PCR) test positive for COVID-19
and an unenhanced chest CT scan obtained between March and June 2021 at the Spedali
Civili Hospital of Brescia, Italy. All patients that did not meet the following criteria were
not included in the study: age, gender, weight, height, BMI (Body Mass Index) and clinical
indication for chest CT were recorded at the time of the examination.

2.2. CT Protocol

The entire population of this study underwent a chest CT scan without the injection of a
contrast agent on a 64-detector scanner (Philips Brilliance 64; Amsterdam, The Netherlands).

The scanning range was from the apex to the base of the lungs with the images
obtained at full inspiration in the supine position. The chest CT parameters were as
follows: kV range 100–140 kV, 80–350 effective mAs, using both z-axis and angular tube
current modulation, fixed mAs 30–80 for a few patients (n = 11) (7), 0.4 s rotation time
and pitch 0.8 to 1.2 (Table 1). All data were reconstructed using a sharp reconstruction
kernel for parenchyma evaluation and the constructor’s iterative reconstruction iDose4

with a strength of 4 to 7. In the literature, a comparison between the application of different
levels of strength of iDose4 showed a non-significant difference in the image quality and in
their interpretation [9,10]. The window center and window width were set at −600 and
−1600. There were no dedicated COVID-19 parameters for chest CT scans, resulting in
using different strategies to achieve proper dose and image quality, such as fixed mAs and
a higher level of IR (7).

Table 1. This table shows the technical parameters used to acquire the chest CT scans.

Technical Parameters Values

kV 100–120–140
effective mAs 80–350
fixed mAs 30–80
rotation time 0.4
pitch 0.8–1.2
individual detector size 0.625 mm
detector configuration 64 × 0.625 mm
thickness 2 mm
increment 2 mm

Radiation doses were expressed in the Computed Tomography Dose Index (CTDI) and
Dose-Length Product (DLP). The mean and median CTDI were, respectively, 8.23 ± 4.20
and 7.13, while the mean and median DLP were, respectively, 383.3 ± 208.88 and 342.

2.3. Visual Quantitative Assessment Score

The VQAS for each patient of this study was performed independently by two radiol-
ogists (S.P and M.L) with more than 10 years of experience.
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CT images were independently reviewed and analyzed according to the Fleischner
Society Glossary of terms for Thoracic Imaging [5]. The reviewers were also blinded from
the clinical data, such as fever, cough, dyspnea and oxygen saturation, to reduce bias and
ensure the internal validity of this study. Finally, the reviewers categorized CT findings as
highlighted by Sverzellati et al. [11].

The VQAS was formulated according to some previous studies [12–14]. In particular,
the two readers gave a percentage because of the lung parenchyma involved by COVID-19
following the criteria of the total severity score proposed by Li K. et al. [15]. This scoring
system analyzes the affected parenchyma in each of the five lung lobes. Each lobe is
assessed for the percentage of its volume affected by the disease and assigned a score based
on the following scale: none (0% involvement) score 0, minimal (1–25% involvement) score
1, mild (26–50% involvement) score 2, moderate (51–75% involvement) score 3 and severe
(76–100% involvement).

This approach was taken to minimize potential biases, such as inter-observer vari-
ability, and the efforts to minimize it were adapting a standardization of detailed scoring
guidelines and a blinded scoring between the two readers.

2.4. Software-Based Quantitative Assessment Score

The software-based assessment score (SBQAS) was performed with two different types
of AI-based software.

The first one, “Icolung” (Icometrix, Leuven, Belgium), is a cloud-based software that
automatically contours the lungs. Moreover, it returns a report with the percentage of the
lung parenchyma involved [16]. This software is based on deep learning (DL) models that
sequentially carry out fully automated lung segmentation and lung abnormalities, such as
ground-glass opacity (GGO), crazy-paving pattern (CPP) and consolidation. Deep learning
algorithms are a type of machine learning inspired by the structure and function of the
human brain. They achieve complex tasks by mimicking the way neurons connect and
transmit information in artificial neural networks (ANNs). These are interconnected layers
of processing units (artificial neurons) that loosely resemble biological neurons.

Each layer receives input from the previous layer, performs a mathematical operation
and sends its output to the next layer. DL excels at finding patterns in large amounts of data.
During training, the algorithm is fed a massive dataset of labeled examples. Each example
consists of an input and a corresponding output. Convolutional Neuronal Networks
(CNNs) are a type of DL that is able to process image inputs, and they use convolutional
layers to extract features from the input data. Its architecture reflects the connectivity
pattern of neurons in the human brain. CNNs are trained on massive datasets of medical
images that have been annotated with ground truth labels. These labels might indicate the
presence or absence of specific abnormalities, the location of lesions or even specific disease
types. The concept of “ground truth” refers to the confirmed and established diagnosis of a
medical condition based on all available clinical information. In radiology, this typically
involves the combined expertise of experienced radiologists, and it serves as benchmark
for evaluating the accuracy of CNN predictions. High-quality ground truth annotations
are essential for training effective CNNs in radiology.

The Icolung report shows the abnormalities visualized in the 2D axial and coronal
view and a table with the total lung involvement percentages, divided for each lobe, and
the corresponding severity scores (0–5 score per each lobe) based on Pan. F et al. [17]. The
flowchart of Icolung’s framework is illustrated in Figure 1.

The second software used in this study is called Philips IntelliSpace Portal clinical
application CT-COPD (Philips, Eindihoven, The Netherlands) computer tool. It is a semi-
automatic software for lung segmentation; it was mainly used to measure the extent of the
pulmonary emphysema in patients with chronic obstructive pulmonary disease (COPD). It
enables us to set up a threshold of Hounsfield unit (HU) to quantify the lung parenchyma
accordingly to the needs of the operator. In this study, the HU threshold chosen to establish
the lung parenchyma affected by SARS-CoV-2 infection was set at -750, as proposed in
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other studies [8,18,19]. The SBQAS for this tool was performed by two blinded and trained
radiographers (A.M, M.N), and the result was obtained by considering the percentage of
the total lung parenchyma amount minus the extent of the percentage of aerated residual
lung volume.
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2.5. Statistical Analysis

The statistical analysis was conducted using IBM SPSS (Statistical Package for the
Social Sciences) version 29.0.1.0 (171) and Prism GraphPad version 9.5.1 to ensure compre-
hensive data analysis and accurate interpretation. Categorical variables were presented as
counts and percentages, while continuous variables were expressed as medians.

To assess agreement among the two radiologists regarding the VQAS for lung parenchyma
involvement on the CT images, as well as between the software quantification, the Intraclass
Correlation Coefficient (ICC) statistical index was employed. The ICC score ranges from −1 to
1, and for interpreting its values, the following criteria were utilized: values less than 0.50 were
indicative of poor reliability, values ranging from 0.50 to 0.75 indicated moderate reliability,
values ranging from 0.75 to 0.90 indicated good reliability and values greater than 0.90 indicated
excellent reliability. This interpretation framework helped assess the level of agreement and
reliability achieved in both the radiologists’ visual quantitative assessment score for disease
extension and the software-based assessment score of the lung parenchyma involved.

This index was also used to analyze the SBQAS with the involvement of two distinct
operators, whose assessments were blinded to the group allocations. This procedural
refinement sought to mitigate the influence of individual operator biases. Notably, the ICC,
a widely employed metric for assessing inter-rater reliability, was computed to quantify
the degree of agreement between the independently derived scores.

By utilizing the ICC, it was possible to be able to quantitatively evaluate the degree
of agreement and reliability among the raters or assessments, providing valuable insights
into the consistency and concordance of their evaluations.

3. Results
3.1. Patient Characteristics

A total of 79 patients were considered, with a mean age of 69 ± 12 years, ranging from
a minimum of 37 to a maximum of 95. The interquartile range (IQR, 25◦ and 75◦) was, re-
spectively, 59 and 78 years. A total of 11 patients were excluded from the statistical analysis
due to severe motion and respiratory artifacts, which could mimic lung abnormalities. This
could lead the SBQAS to a miscalculation of lung parenchyma.

3.2. Inter-Reader Agreement of Visual and Software-Based CT Assessment

The agreement between radiologists (R1 and R2) for the visual quantitative assessment
score of the lung parenchyma involved in the CT images was good (ICC = 0.871). The
agreement between the two software programs (Icolung and CT-COPD) for the SBQAS
was moderate (ICC = 0.584). The descriptive statistics and the boxplot of the two software
programs and the radiologists are summarized, respectively, in Table 2 and Figure 4.

Table 2. A summary of the descriptive statistics of the two software types (Icolung and CT-COPD)
and the two radiologists (R1 and R2).

25th Percentile Median 75th Percentile

Icolung 8 18 29.5
CT-COPD 30 42.7 62.5
R1 10 30 50
R2 5 15 35

The agreement regarding the SBQAS showed a calculated ICC value of 0.95, which
signifies a high level of concordance between the assessments provided by the two oper-
ators. This observation underscores the consistency and reliability of the SBQAS scores
across different raters.

The agreement between Icolung and the median of the visual evaluations (median
R1–R2) is good (ICC = 0.885). The agreement between CT-COPD and the median of the
visual evaluations (Median R1–R2) is moderate (ICC = 0.622).
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Interestingly, the second software, CT-COPD, has an overestimation of the results, as
indicated by the higher median, first and third percentiles. Also, the first radiologist (R1)
presents higher values (median, first and third percentiles) as compared to the second one
(R2) (Figure 5).
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Figure 4. A boxplot scheme of the two software types (Icolung and COPD), the two radiologists (R1
and R2) and the median of R1–R2.

In Figure 5, the first graph represents the assessment between the two software types
Icolung and COPD; the results lie in a range between −47.73 and −2.78 with an SD of
±1.96. The second represents the comparison between the visual descriptions between
radiologists (R1 and R2); the results lie in a range between −16.59 and 32.44 with an SD
of ±1.96. The third graph shows the first software (Icolung) vs. the median of the visual
estimations; the results lie in a range between −31.75 and 19.59 with an SD of ±1.96. The
fourth graph shows the second software (COPD) vs. the median of the visual estimations;
the results lie in a range between −18.41 and 56.75 with an SD of ±1.96.
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Figure 5. Bland–Altman graphics show the trend of the values assessed.

4. Discussion

Managing COVID-19 patients by assessing the extent of the lung parenchyma involved
was cardinal during the COVID-19 pandemic. Hence, AI resulted in a valid and helpful
tool to assist physicians in this process as a decision-making aid and not a replacement for
the expertise of medical professionals.

This study has shown good agreement (ICC = 0.871) between the two blinded radi-
ologists (R1 and R2) for the visual quantitative assessment score of the lung parenchyma
involved in the CT images. This indicates a univocal method of lung parenchyma abnor-
mality detection. Therefore, the ICC score suggests a consistent and univocal method for
detecting lung parenchyma abnormalities.

Additionally, the agreement between the two software types (Icolung and CT-COPD)
for the SBQAS is moderate (ICC = 0.584). This result could be explained by analyzing the
nature of these two different software types. Icolung is an automatic DL software trained
during the pandemic, while CT-COPD is a software designed to quantify chronic obstruc-
tive pulmonary disease and adapted to evaluate the extension of the lung parenchyma
affected by SARS-CoV-2. Moreover, the key point of this outcome might rely on the focused
training of Icolung, which, being a DL software trained specifically during the COVID-19
pandemic, had likely been trained for a focused target such as identifying the lung abnor-
malities in patients affected by SARS-CoV-2. This process could lead to a more accurate
report. Alongside this aspect, CT-COPD, originally designed for chronic obstructive pul-
monary disease (COPD) as stated before, might have been adapted to assess COVID-19
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lung involvement resulting in being not as fine-tuned as Icolung to recognize and detect
specific patterns of SARS-CoV-2 infection. Finally, the difference in HU threshold selection
might reflect the strength of DL for medical image analysis.

In addition to this, it was found that the agreement between Icolung and the median
of the visual evaluations (median R1-R2) is good (ICC = 0.885). This score suggests that
Icolung’s measurements closely align with what experienced radiologists were seeing on
the chest CT images. The agreement between CT-COPD and the median of the visual
evaluations (median R1–R2) is moderate (ICC = 0.622), showing a less consistent agreement
with human experts. This aspect outlines the validation of the AI-based software as a
data-driven approach.

Overall, it is worth mentioning that CT-COPD presents an overestimation of the
results, as indicated by the higher median, first and third percentiles. This may rely on the
possibility of editing the lung parenchyma contouring proposed by the software.

These findings highlight a few points regarding AI-based software validation, such as
the task-specific training matter, since Icolung’s strong agreement likely stems from being
specifically trained to identify COVID-19 lung patterns. This targeted training allows it to
perform well on the SBQAS task, and the DL advantage as the ability of its models to learn
from vast amounts of datasets to identify subtle patterns in medical imaging that might be
difficult for traditional programming methods to capture.

The topic of this article has been investigated by several authors, each one of those
with different peculiarities. Granata V. et al. [18] used the clinical application CT-COPD
(Philips, Eindihoven, The Netherlands) to evaluate the critical lung involvement in patients
vaccinated or unvaccinated affected by different variants of SARS-CoV-2, finding this tool
suitable for pathological abnormalities, mainly regarding the assessment of consolidation.
They calculated the disease severity by considering the percentage of aerated residual lung
volume, and therefore, patients with lower aerated residual lung volume were considered
more compromised. Good statistically significant correlations among volumes extracted
by an automatic tool for each lung lobe and the overall radiological severity score were
obtained (ICC range 0.71–0.86). Another study conducted by Durhan G. et al. [19] retro-
spectively assessed COVID-19 patients who underwent chest CT. The authors compared
the VQAS with the normal lung parenchyma percentage made by a DL software, and
they suggested that this parameter could give valuable and objective information about
pneumonia due to the infiltrative nature of lung involvement.

DL software implemented in radiology to evaluate patients affected by SARS-CoV-2
has been used since the COVID-19 outbreak. Saba L. et al. [20] compared six different
AI paradigms, and the authors demonstrated that AI can automatically extract tissue
features and characterize the disease, distinguishing between non-COVID-19 pneumonia
and COVID-19 pneumonia. A clinical example of this model can be found in other studies,
such as Suri J.S et al. [21] and Gujot J. et al. [22], in which the earlier cited software
offered a valid tool to detect and classify affected patients. Nevertheless, Jungmann
F. et al. [23] stated their concern regarding the actual AI solutions, such as Icolung, as
tools to assess positive predictive value (PPV). The aim of this study was to evaluate the
performance of commercial AI solutions in differentiating COVID-19 pneumonia from
other lung conditions. The authors retrospectively collected 50 chest CT scans from two
different tertiary care hospitals with proven SARS-CoV-2 infection. The visual assessment
of the disease extent was performed according to CO-RADS (COVID-19 Reporting and Data
System) [24], and the SBQAS was carried out by using four different companies, and Icolung
was one of them. This article emphasized a low and variable specificity and low positive
predictive value of AI solutions investigated in detecting COVID-19 pneumonia in chest
CT. Finally, the authors suggested carefulness in using such tools to avoid false positive
patients. This current study overcame what was suggested by the earlier article by enrolling
patients with a positive RT-PCR for COVID-19 disease. One of the main advantages of
automatic or semi-automatic involved parenchyma quantification is to help in stratifying
patients when it comes to admission into the hospital, as it could result in lowering the cost
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of unnecessary hospitalizations to free up hospital beds for more critical cases. By having a
more objective and quantitative measure of lung involvement since AI algorithms are less
prone to subjectivity, physicians can better stratify patients for hospitalization. Patients with
minimal lung involvement might be suitable for home monitoring with close follow-up, and
those with more extensive involvement might require hospitalization for closer observation
and potentially more intensive treatment. For example, Caruso D. et al. [14] suggested
using quantitative chest CT integrated with clinical parameters to help in the accurate
triaging of COVID-19 patients. The authors assessed the lung severity score by dividing the
lungs into 20 regions, and each one of them was assigned a score of 0 (no lung involvement),
a score of 1 (less than 50% of lung involvement) or a score of 2 (more than 50% of lung
involvement). The quantitative scoring was performed with a dedicated semi-automatic
tool, and the selection of a well-aerated lung was assessed in a range between −950 and
−700 HU density. Additionally, Esposito G. et al. [16] proposed the Icolung tool (Icometrix,
Leuven, Belgium) as a practical tool to flag high-risk patients and lower healthcare costs.
The authors created a decision tree analytical model, in which they compared a routine
pathway with the one using Icolung as screening tool. For example, a patient undergoes a
chest CT scan and the Icolung report shows positive findings. Accordingly, the PCR test
is used to confirm the illness positivity, and both devices are used to establish a decision
either to send the patient home or to set different types of in-hospital care.

Moreover, the author analyzed the transmission of SARS-CoV-2 infection, expressed
as the cost per avoided infection, and the in-hospital length of stay of COVID-19 patients,
expressed as the cost per avoided hospital days, creating a framework that may allow
physicians to make decisions on hospital policy and resource allocation.

Therefore, as far as our knowledge extends, this is the first study that compares an
automatic AI-driven lung segmentation tool and a semi-automatic one, with the visual
quantitative assessment score made by radiologists.

It is paramount to state how the combination of AI and human expertise in radiology
offers a powerful approach to better assess lung parenchyma involvement. The benefits of
this compound might result in improved accuracy, enhanced efficiency and earlier detection:
by leveraging the strengths of both AI and human radiologists, the overall accuracy of lung
parenchyma assessment can be significantly improved. AI can highlight areas of interest,
while human expertise can ensure a nuanced and complete interpretation of the findings.
To obtain this, clear communication between medical experts and AI developers is crucial
to ensure that AI tools are designed to meet the specific needs of clinical practice.

After all, this article presents a few limitations: Firstly, the retrospective nature of
the study, since this article relies on existing medical records, which might not have been
collected with the specific research question in mind. Secondly, the number of patients
enrolled (n = 90) could lead to a selection bias of non-representativeness of the entire
target population. Studies with a larger sample size might be needed to obtain more solid
evidence in this field. Thirdly, the engagement of just one operator to perform the SBQAS
with the semi-automatic software could intrinsically lead to measurement bias. Lastly, the
HU threshold set for Icolung to detect lung abnormalities is different from the variable
ones used by CT-COPD due to the nature of the deep learning process versus traditional
programming, which depends on predefined rules.

5. Conclusions

This study showed moderate and good agreement upon the VQAS and the SBQAS
between the two software programs and the two radiologists and the consistency and
reliability of the SBQAS scores across different raters. Therefore, AI should be used as a
decision-making aid, not a replacement for the expertise of medical professionals.

Finally, it is important to remember that using a combination of AI tools and physician
expertise can lead to the most accurate diagnosis and treatment plans for patients.
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2.0-CXAI: Cloud-Based Explainable Deep Learning System for COVID-19 Lesion Localization in Computed Tomography Scans.
Diagnostics 2022, 12, 1482. [CrossRef] [PubMed]

22. Guiot, J.; Vaidyanathan, A.; Deprez, L.; Zerka, F.; Danthine, D.; Frix, A.-N.; Thys, M.; Henket, M.; Canivet, G.; Mathieu, S.;
et al. Development and Validation of an Automated Radiomic CT Signature for Detecting COVID-19. Diagnostics 2020, 11, 41.
[CrossRef] [PubMed]

23. Jungmann, F.; Müller, L.; Hahn, F.; Weustenfeld, M.; Dapper, A.-K.; Mähringer-Kunz, A.; Graafen, D.; Düber, C.; Schafigh, D.;
Pinto dos Santos, D.; et al. Commercial AI Solutions in Detecting COVID-19 Pneumonia in Chest CT: Not yet Ready for Clinical
Implementation? Eur. Radiol. 2022, 32, 3152–3160. [CrossRef] [PubMed]

24. Prokop, M.; van Everdingen, W.; van Rees Vellinga, T.; Quarles van Ufford, H.; Stöger, L.; Beenen, L.; Geurts, B.; Gietema,
H.; Krdzalic, J.; Schaefer-Prokop, C.; et al. CO-RADS: A Categorical CT Assessment Scheme for Patients Suspected of Having
COVID-19—Definition and Evaluation. Radiology 2020, 296, E97–E104. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s00330-020-06817-6
https://www.ncbi.nlm.nih.gov/pubmed/32215691
https://doi.org/10.3390/diagnostics12071608
https://www.ncbi.nlm.nih.gov/pubmed/35885513
https://doi.org/10.1148/radiol.2020200370
https://www.ncbi.nlm.nih.gov/pubmed/32053470
https://doi.org/10.3390/jpm12060955
https://www.ncbi.nlm.nih.gov/pubmed/35743740
https://doi.org/10.5152/dir.2020.20407
https://doi.org/10.1007/s11548-021-02317-0
https://www.ncbi.nlm.nih.gov/pubmed/33532975
https://doi.org/10.3390/diagnostics12061482
https://www.ncbi.nlm.nih.gov/pubmed/35741292
https://doi.org/10.3390/diagnostics11010041
https://www.ncbi.nlm.nih.gov/pubmed/33396587
https://doi.org/10.1007/s00330-021-08409-4
https://www.ncbi.nlm.nih.gov/pubmed/34950973
https://doi.org/10.1148/radiol.2020201473
https://www.ncbi.nlm.nih.gov/pubmed/32339082

	Introduction 
	Materials and Methods 
	Study Population 
	CT Protocol 
	Visual Quantitative Assessment Score 
	Software-Based Quantitative Assessment Score 
	Statistical Analysis 

	Results 
	Patient Characteristics 
	Inter-Reader Agreement of Visual and Software-Based CT Assessment 

	Discussion 
	Conclusions 
	References

