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Abstract: This article considers the possibility of using the bioelectrography method to identify
the pathology of internal organs. It is shown that with the currently existing methods, there is no
possibility of the automatic detection of diseases or abnormalities in the functioning of a particular
organ, or of the definition of combined pathology. It has been revealed that the use of various
classifiers makes it possible to expand the field of pathology and choose the most optimal method
for determining a particular disease. Based on this, a method for detecting the pathology of internal
organs is developed, as well as a software package that allows the detection of diseases of the
internal organs based on the bioelectrography results. Machine-learning models such as logistic
regression, decision tree, random forest, xgboost, KNN, SVM and HyperTab are used for this purpose.
HyperTab, logistic regression and xgboost turn out to be the best among them for this task, achieving
a performance according to the f1-score metric in the order of 60–70%. The use of the developed
method will, in practice, allow us to switch to combining various machine-learning models for the
identification of certain diseases, as well as for the identification of combined pathology, which will
help solve the problem of detecting pathology during screening studies and lead to a reduction in the
burden on the staff of medical institutions.

Keywords: bioelectrography method; detecting pathology of internal organs; machine-learning model

1. Introduction

The increase in the growth of computing power of modern computer systems accom-
panied by the decrease in their element base leads to the integration of knowledge, both
in related subject areas and in the formation of multidisciplinary research, for example,
in medical practice. However, this approach has a contradiction. On the one hand, this
leads to an increase in the number of detected diseases. On the other hand, the processes
of automating diagnosis require reducing the number of medical personnel involved in
routing the patient. The requirements for highly specialized specialists who need to adapt
to a rapidly changing hardware and software environment are also increasing. Against
this background, there is a need to develop screening programs that allow you to quickly
identify a particular pathology.

The purpose of the study described in this article was to increase the effectiveness of
detecting the pathology of internal organs through data analysis using machine-learning
methods. As a result, a method for detecting the pathology of internal organs using
bioelectrography was developed. The method analyzes which datasets are needed to assess
violations, identifies the patterns and correlations existing in them on the basis of which
pathology is searched, and also identifies errors and data distortions that may affect the
results of the processing. A distinctive feature of the developed method is the possibility
of synthesizing new records, which allows you to solve the problem of data imbalance.
This made it possible to develop a software package for the practical implementation of the
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above method and to form an ensemble of machine-learning models that identify pathology
according to the description of GRV-grams.

The novelty of the proposed method consists of:

• the study of various machine-learning models for use in the detection of certain
diseases using gas discharge imaging;

• the development of a method for detecting the pathology of internal organs using
bioelectrography data, characterized by the use of machine-learning methods to
identify the pathology of internal organs, which allows the use of a combination of
different classifiers to determine combined pathology;

• the development of a model that allows you to obtain a dataset based on a sample of
diseases, as well as generate training, validation and test kits in semi-automatic mode.

Using the developed method in practice will allow us to move to combining various
machine-learning models to identify certain diseases, as well as to identify combined
pathology, which will help solve the problem of detecting pathology during screening
studies and reduce the workload of employees of medical institutions.

The remaining portions of this paper are organized as follows. Section 2 presents the
results of the analysis of related work. Section 3 discusses the method of detecting the
pathology of internal organs using bioelectrography, as well as the software package used
in this work. Section 4 presents the experimental results from a dataset with a sample of
170 patients. Section 5 presents a discussion of the results obtained.

2. Related Work

Such methods include studies that allow, on the basis of the X-ray images and machine-
learning methods used, us to identify the pathology of the respiratory organs [1–3]. The
methods based on the classification of untreated lung sounds and the detection of pneumo-
nia and chronic obstructive pulmonary diseases can be attributed [4–6]. A separate area
is the work on the detection of oncological diseases [7–9]. The use of machine-learning
methods also makes it possible to identify the pathology of the genitourinary system [1].
Image segmentation based on machine-learning models and neural networks makes it
possible to identify and classify diseases of the gastrointestinal tract [10–13]. In terms of
identification studies, possible heart diseases based on clinical data in different patients
were considered in [14], but their application in practice relies on the complexity of the data
and the presence of correlations between them. The listed methods have a high resource
intensity in terms of the applied software and hardware. Summarizing the results [1–14], it
is advisable to note that with almost all the methods, there is no possibility of automating
the detection of pathology or deviations in the functioning of a particular organ (Table 1).
In the table, a «+» sign indicates the presence of this property from the column header in
the method from the first column in this source, «−» its absence.

Table 1. Comparison of methods for determining human organ pathologies.

Method
The Possibility
of Detecting a

Combined Pathology

Assessment of
Correlation with

Other Pathologies
Resource Intensity

of the Method
Automation of

Pathology Detection

Machine-learning methods for
detecting respiratory pathology + [1]/− [2,3] + [1]/− [2,3] + [1–3] − [1–3]

Methods based on the classification of
pulmonary noises − [4–6] − [4–6] + [4–6] − [4–6]

Detection of oncological diseases + [8,9]/− [7] + [9]/− [7,8] + [7–9] − [7–9]

Machine-learning methods for
detecting pathology of the

genitourinary system
+ [1] + [1] + [1] − [1]

Diseases of the gastrointestinal tract − [10–13] + [11,12]/− [10,13] + [10–13] − [10–13]

Detection of cardiovascular diseases − [15] + [15] + [15] + [15]
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Existing methods are usually limited to considering the pathology of only one of
the body’s systems. As a rule, the methods for detecting combined pathology are not
considered in studies [1–24].

One of the methods with low resource consumption and the ability to quickly identify
diseases is the bioelectrography method based on gas discharge imaging (GDV) [15–24].

To identify relevant works, we, as well as the authors of [21], analyzed publications in
the Google Scholar, ResearchGate and Elibrary databases using the following keywords: vi-
sualization of gas discharge (GDV), Kirlian effect, bioelectrography. The study revealed
that during the period from 2000 to 2005, 9 works were published on the research topic;
from 2005 to 2010, 48 works; from 2010 to 2015, 72 works; from 2015 to 2020, 51 works; and
from 2020 to the present, 18 works. Thus, the peak of publications occurred in the period
from 2010 to 2015 (72 works). From the works presented for analysis over the past decade,
one can single out a study [17] aimed at establishing normative bioelectrography data
for the healthy population of India in order to increase the accuracy of its measurement
and interpretation, since according to the authors [17], the data for this population group
differ from Europeans. In [18], causal relationships have been established between the
parameters of gas discharge imaging and the main neuroendocrine adaptation factors,
indicating the informativeness of this method. Using other methods, the authors of [19]
reached a similar conclusion, in which it was shown that the method of gas-discharge
imaging using a Bio-Well device makes it possible to determine the effect of diagnostic
ultrasound on human homeostasis, which opens up prospects for using a Bio-Well device
to assess the effects of various medical technologies, both diagnostic and therapeutic, on
the human body.

In [20–23], a classification of the practical application of bioelectrography methods in
medicine is provided: analysis of the vegetative status of the body and individual functional
systems; monitoring of the body’s reactions to therapy; assessment of the likelihood of
organ pathology. However, all the studies have a number of disadvantages, in particular:

• the difficulty in ensuring the completeness of the volume and quality of the sample
of the studied data due to both obtaining the sample itself and decoding medical
diagnoses and data;

• the lack of methods for detecting the correlation of organ dysfunction in combined
pathology;

• the data transmitted from the bioelectrography device is stored in an unordered form
and requires further processing;

• the marking of bioelectrography zones does not always correctly reflect possible
pathologies of internal organs.

These problems require additional research to identify a particular pathology. The
use of various classifiers allows you to increase the space of diseases and choose the most
optimal method that identifies a particular pathology. To identify violations of internal
organs in this work, a software package is proposed that allows you to obtain a dataset
based on a sample of diseases, as well as to generate training, validation and test kits in
automatic mode.

3. Materials and Methods

Before starting to process the data, it is necessary to conduct an analysis to determine
which of the sets are necessary for the assessment of pathology, to derive patterns that
allow you to determine the correlation of their characteristics, and to form an algorithm of
actions to achieve the goal. This approach allows you to identify errors and data distortions
that may affect the results of the processing.

To accomplish this, two types of data are generated, the type of data of the character-
istics of the disease received from the patient and the type of data of the thresholds, the
excess of which characterizes the presence of the disease. Next, to form a dataset, data are
received from patients and their feature space is normalized with the removal of irrelevant
features and outliers. This allows you to create 3 samples with data: training, validation
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and test. In the process of model learning, the set of applied models is refined. This makes
it possible to leave only informative models from the formed complex, as well as to clarify
the vectors of the data type responsible for detecting pathology and the vector identifying
a particular pathology. Let us look at this method in more detail:

Step 1. The formation of a feature space of two types. The first type forms the
characteristic space of bioelectrography characteristics, while the second type of data
forms the characteristic space of pathology of internal organs. Comparing both types
with each other in the following steps makes it possible to identify the characteristics of
bioelectrography with a particular type of disease. Let us take a closer look at the formation
of 2 types of datasets:

Type 1: data suggesting pathology of internal organs. For example, type 1 sets may
represent data that can be easily obtained, but it is not possible to draw a conclusion based
on them. The feature space of data characteristics of type 1 are denoted as:

Bs = {b1, b2, . . . bi, . . . , bs} (1)

where bi, i =1, s—are the characteristics of the feature space. For example, for bioelectrog-
raphy, the element of the set b1 may correspond to the number of pixels of the image of
the GRV-gram of any zone of a certain finger, and b2 to the radius of the inner circle of the
GRV-gram zone, etc.

For a more visual representation, it is advisable to provide an example of a snapshot
of a gram (Figure 1).
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Figure 1. An example of a GRV-gram for a patient with kidney pathology.

The GRV-grams obtained were processed using computer vision algorithms. This
made it possible to form the Bs vector of the GRV-gram feature space. The vector contains
about a thousand elements. The main ones include the following:

• Ellipse dimensions—the dimensions of the inscribed ellipse in X and Y in pixels;
• Radius of the inner circle—the radius of the inscribed circle in pixels;
• Area—the number of pixels of the sector image;
• Area (K)—the ratio of the glow area of the finger to the glow area of the calibration

cylinder of the sector;
• Normalized area—the ratio of the area of the glow to the area of the inner oval of the sector;
• Intensity—the average intensity of all the pixels in the sector;
• Inner area—the total number of pixels in the inner oval of the sector;
• Internal noise—the number of noise pixels in the inner oval of the sector;
• Internal noise (%)—the ratio of the internal noise of the internal area of the sector as a

percentage;
• Energy—the glow energy in joules (×10−2) of the sector;
• Energy (K)—the energy adjusted for the angular size of the sector;
• Shape coefficient (CF)—the ratio of the square of the length of the outer contour to the

area of the image;
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• Entropy coefficient (KE)—the ratio of the length of the outer contour to the length of
the inner sector;

• Inner contour length—the length of the inner contour in pixels of the sector;
• Inner contour radius—the radius of the inner contour in pixels of the sector;
• Length of the outer contour—the length of the outer contour in pixels of the sector;
• Outer contour radius—the radius of the outer contour in pixels of the sector.

If the feature space is too large, it is possible to submit not all of them at once, but
some of them can be used, based on algorithms for reducing the feature space.

Type 2: data of the feature space, which can be used to uniquely identify pathology,
with the possibility of using them for machine-learning models. The second type of data
may contain elements of many patterns of pathology description. Such patterns will be
further designated as follows:

C =
{

c1, c2, . . . , cj, . . . , cr
}

(2)

where cj, j =1, R—are the characteristics of the feature space identifying the pathology.
To perform this, the target signs of the pathology for each patient are taken from the

conclusions of ultrasound diagnostics specialists (an example of the protocol is shown in
Figure 2).

For example, the element c1 may indicate that the patient has hepatomegaly, and c2,
diffuse changes in the structure of the thyroid gland.

In a particular case, it can be said that datasets from bioelectrography belong to type 1,
and data from ultrasound belong to type 2. It should be clarified that both types should be
collected based on data from the same patients, in quantity N.

Step 2. Identification of the patient’s characteristic space. This step is necessary to
compare the individual characteristics of the patient obtained from bioelectrography with
the target characteristics of his pathology. Then, for each patient, within the types selected
in step 1, we leave only those that characterize his individual characteristics:

2.1. Type 1 data obtained from a special device is decomposed into elements of the
feature space Bs for each patient. That is, each patient will be characterized by their own
characteristic space Bi

s, where i =1, N is the patient’s number. The order of the signs is the
same in all the patients, but the values are different. For example, a type 1 data feature
space for a patient i = 1 . . . N may look like this:

Bi
s =

{
bi

1, bi
2, . . . , bi

i, . . . , bi
s

}
(3)

2.2. For each patient, their own set of data feature spaces of type 2 is compiled:

Ci =
{

ci
2, ci

5, ci
8, . . . , ci

k

}
(4)

To clarify, the number i for the type 1 data and type 2 data should indicate the same
patient. If the patient has no pathology, then the element of the set is skipped, for example,
for a patient with Ci = {c2, c5, c8, . . . , ck}, k ≤ r, signs of hepatomegaly pathology, the
element is c2 missing from the set.

Step 3. Normalization of the data feature space for type 1. Since the data obtained for
type 1 are heterogeneous, it becomes necessary to bring them to a single scale and range of
values. To accomplish this, we introduce the operator Fnorm:

Fnorm: Bi
s → Bi

sN (5)

where Bi
sN is a set of normalized feature space for the i -th patient.

Normalization is necessary to convert the data into a single form, improve the conver-
gence of the optimization algorithm and level the weights of features when training models
in the future. The range of values during normalization and the normalization method
itself depend on the task.
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Figure 2. An example of an ultrasound protocol of the internal organs (liver, kidneys, spleen, adrenal
glands, pancreas, etc., in Russian).

Step 4. Reducing the dimension of the feature space to reduce the number of features
used to describe objects, while preserving the most important properties of the data. To
improve the training of models in the future and reduce the complexity of the data at this
step, depending on the task, the dimension of the type 1 feature data space is reduced. Let
us introduce the operator Fred:

Fred: BsN → B (6)

Let us denote the elements Bi for the i-th patient as follows:

Bi =
{

bi
1, bi

2, bi
3, . . . , bi

n

}
, i =1, N (7)

This step is necessary to simplify the data structure. Each gram is described by a large
number of features, many of which are probably insignificant. Such preprocessing will
simplify the process of learning classifiers.

After applying this operator, the number of elements in the set of attributes of type 1
data will decrease. Depending on the task, the operator Fred will be different. It is important
to take into account that the operator Fred decreases the same signs for each patient. The
operator can also change the basis of the feature space while reducing the feature space.
Let us denote the size of the set B after applying the operator Fred with a symbol n.

Step 5. The introduction of a set Pi describing the pathology of the patient number i.
This step is necessary to specify and unify the structure of each sample element. The values
for the presence or absence of pathology are set for each sample element. To achieve this,
we denote the elements Pi as follows:

Pi =
{

pi
1, pi

2, pi
3, . . . , pi

z , . . . , pi
m

}
(8)

where z =1, M.
For each element of the set Ci obtained in step 2.1, we compare the set Pi using the

operator Fp. The order of pathologies should be the same Pi for everyone:

Fp: C → P (9)

Let us denote the size of the set P after applying the operator Fp with the symbol m.
In a particular case, 1 is assigned to each element of the set Pi when a pathology is

detected, and 0 in its absence. For example, Pi= {0, 1, 0, 1}, means: absence of heart
pathology, presence of pathology of the left kidney, absence of liver pathology, presence of
pathology of the spleen. Separately, we can note the case in which the value of the elements
in the set can also be a symbol, meaning that there is no data on pathology (for example, if
there are no liver data for a patient number k, then the third element pk

3 of the set Pk will
be equal to this symbol. In the future, such a symbol will be designated as follows: “-”).
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The order of the elements in the set, their value and number, as well as the function itself,
depend on the task and the selected machine-learning (ML) models.

Step 6. Declaring a set of tuples to identify the pathology. To accomplish this, we
form the matrix Mj

B, in which a row is responsible for each feature space of the set of
characteristics obtained by bioelectrography in step 2.1, and the matrix Mj

P, in which the
column values are assigned the presence or absence of pathology obtained in step 5. This
allows you to proceed to the formation of datasets. Let us look at this step in more detail:

6.1. Defining a tuple
(

Mj
B, Mj

P

)
that consists of two elements:

(1) Matrices Mj
B of dimension (N, n). The row i of the matrix represents the elements pi

j ,

where Pi, i = 1 . . . N, j = 1 . . . m.
6.2. Formation of a set O consisting of tuples defined in step 6.1:

O =
{(

M1
B, M1

P

)
,
(

M2
B, M2

P

)
,
(

M3
B, M3

P

)
, . . . ,

(
Mm

B , Mm
P

)}
(10)

At the moment, all the matrices Mj
B are the same. That is, the following is performed:

∀j = 1 . . . m, ∀k = 1 . . . m Mj
B= Mk

B. An example of matrices Mj
B and Mj

P:

Mj
B =

b1
1 · · · b1

n
...

. . .
...

bN
1 · · · bN

n

, Mj
P =


p1

j
...

pN
j

 (11)

6.3. Formation of a set of operations on the matrices. For example, the operation M[i]
will mean taking the i-th row from the matrix Mj

B[i] =
(

bi
1, bi

2, bi
3, . . . , bi

n

)
. The entry

size(Mj
P) means an action that will output the number of rows in the matrix Mj

B.
Step 7. Delete irrelevant data and outliers. The initial data do not contain informa-

tion about all the pathologies for each patient. For example, one group of patients has
information about thyroid pathology, while the other does not. This step is necessary
to remove irrelevant pathology data from patients who do not have information about
the pathology in question. Each element pi

j where i = 1 . . . N, j = 1 . . . m can also have a
symbol corresponding to the fact that there are no data (“-”). In this case, such data must
be deleted. That is:

∀i = 1 . . . N, ∀j = 1 . . . m if pi
j= “ − ” then delete Mj

B[i], Mj
P[i]

It is also possible to delete explicit outliers or erroneous data.
Step 8. Refinement of the characteristic data space of type 1, taking into account data

of type 2.
The matrix Mj

P corresponds to a set of pathologies of the internal organs. At this step,
if necessary, you need to reduce the character space of the lines Mj

B but take into account
Mj

P. Let us introduce a set of operators: Frep

Frep =
{

F1
rep, F2

rep, F3
rep, . . . , Fm

rep

}
(12)

Each operator is responsible for its own tuple of the set O:

Fj
rep:

(
Mj

B[i], Mj
P[i]

)
→ Mj

B[i], i = 1 . . . N, j = 1 . . . m (13)

After applying the operator Fj
rep, the number of elements in the row Mj

B[i] will decrease.

It should be noted Fj
rep that it reduces the same elements for everyone i = 1 . . . N.

For example, M3
P may be “responsible” for liver pathology. Based on this, it is necessary

to reduce the feature space of the matrix rows M3
B, taking into account the fact that these

data will reveal liver pathology.
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Step 9. Forming data samples. At this step, for further training of the ML models,
it is necessary to form 3 samples with data: training, validation and test. To accomplish
this, for each Mj

P and Mj
P, j = 1 . . . m, three disjoint lists of numbers from 1 to size(Mj

P) are
formed in such a way that the number of elements in the list when they are combined is
equal size(Mj

P). These 3 sets will be denoted by:

– set –Zj
train—set indexes of the training sample, the number of elements is approxi-

mately 50–80% of size(Mj
P);

– set Zj
val—set indexes of the validation sample, the number of elements is approxi-

mately 10–25% of size(Mj
P);

– set Zj
test—set indexes of the test sample, the number of elements is approximately

10–25% of size(Mj
P).

The number of elements in the set varies depending on the number N.
Step 10. Creating a set of synthetic data. If there are little data (equivalent to the

fact that Zj
train indicates there are few elements), then the process of synthesizing new

records and augmentation is carried out. It is important to note that only the matrix strings
{Mj

B[i] | i ∈ Zj
train} can be synthesized and augmented. The choice of synthesis and

augmentation method depends on the field of work, data, and ML models.
To achieve this, we introduce an operator Fsyn that will form a new tuple along the

rows of the matrix:

Fsyn: {(M j
B[i], Mj

P[i] ) | i ∈ Zj
train} → (Mj

Bsyn, Mj
Psyn) (14)

We assign a new index equal to N + 1 to such a tuple and add it to the set Zj
train, and

then we increment it N. Then, we add a row Mj
Bsyn to the matrix Mj

B, and a row Mj
Psyn to

the matrix Mj
P.

The synthesis of new data can also help to cope with the problem of imbalance. There
are two ways to solve the problem here: to make the major and minor classes equal, or to
make the minor class major.

Step 11. Training of ML models based on the data obtained in steps 9–10. At this step,
a general list of ML models with different parameters is compiled. Each of these models
will be further trained and validated. At this step, you need to create many models of ML:

ML ={v1, v2, v3, . . . , vL } (15)

where vL- is the machine-learning model. The choice of the model depends on the subject
area and the data. At this stage, you also need to decide on the type of metrics (preci-
sion, recall, f1-score or another). After composing the set ML, it is advisable for each
element of the set O (10) to train each model from (15) on {(M j

B[i], Mj
P[i] ) | i ∈ Zj

train},
selecting hyperparameters on {(M j

B[i], Mj
P[i] ) | i ∈ Zj

test}, with accuracy checking on
{(M j

B[i], Mj
P[i] ) | i ∈ Zj

test}. Based on these results, it is advisable to choose the best
model for each element of the set O based on the selected metric.

Step 12. Refinement of the set of applied models. Here, from the entire set of models
obtained in the previous step, those that are the most informative for each type of pathology
are selected. This allows you to form an ensemble of models with the pathology necessary
for analysis. After choosing the best models, they must be combined into an ensemble V:

V ={v1, v2, v3, . . . , vm}

where each ML, vi model, j = 1 . . . m is responsible for a certain pathology.
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Now, when receiving new data of type 1, they can be transferred to the ensemble V,
which in turn forms a vector P:

P =
{

ppred
1 , ppred

2 , ppred
3 , . . . , ppred

m

}
(16)

where each element ppred
j , j = 1 . . . m, of the vector P describes the presence of pathology.

For example, if the vector ppred
3 is 1, then this may mean, for example, liver pathology.

4. Software Package for Detecting Pathology of Internal Organs

To identify the pathology of the internal organs, a software package was formed (Figure 3),
which includes a module with the implementation of gradient boosting: “xgboost”; libraries
for ML “scikit-learn”; “pandas” and “NumPy”; “imblearn”; and “pyplot”. The following
models were chosen to compose the ensemble: decision tree; KNN; logistic regression;
random forest.

Logistic regression is a machine-learning method used to predict the probability of an
observed object belonging to a certain class. The goal of logistic regression is to find the
optimal hyperplane that separates objects of two classes as accurately as possible based on
the values of their features. This hyperplane can be used to predict the probability of an
object belonging to one of the classes.

To train the logistic regression model, the maximum likelihood method is used, which
allows you to find such values of the model parameters at which the probability of the
observed data will be the maximum.

An important advantage of logistic regression is the ability to interpret the results.
The coefficients of the model, which determine the contribution of each feature to the
prediction of a class, can be used to determine which features are most important for
classifying objects.

A decision tree is a machine-learning method that is a tree in which each node repre-
sents a decision when choosing a specific feature to divide data into smaller groups.

The process of building a tree begins with the root node, which contains all the
available data. The tree is then divided into two or more branches based on the value of
the selected attribute to divide the data into smaller groups. Each of these new nodes can
also be divided into smaller groups using a different attribute, and so on until the specified
stopping criteria are reached. The result of the tree is rules describing how the data should
be divided into groups in order to obtain the best prediction result for the target variable.

The decision tree has the property of a simple interpretation of the received rules.
Random forest is a machine-learning algorithm used for tasks such as classification or

regression. It is an ensemble of decision trees, that is, it consists of several trees, each of
which solves a classification or regression problem for the input data.

When classifying data, a random forest uses majority voting—each tree “votes” for a
certain class, and the final result is chosen by majority vote.

Gradient boosting is a machine-learning method used to solve classification and
regression problems. It is based on the idea of combining several weak learning models,
such as decision trees, to create a stronger model.

Unlike a random forest, where each tree is created independently of the others, in
gradient boosting, each new tree is created by taking into account the errors of previous
trees. The gradient-boosting algorithm builds a new decision tree at each iteration, which
takes into account the errors of the previous model.

One of the most popular and effective implementations of the gradient-boosting
algorithm is XGBoost.

The support vector machine (SVM) method is a machine-learning method that is used
for both classification and regression tasks. It is based on the construction of an optimal
hyperplane that maximally separates the data of two classes in a multidimensional feature
space. That is, the separating hyperplane is located at the maximum distance from the
classes in the feature space.
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In addition, a SVM can work with non-linearly separable data by using cores that
project data into a higher-dimensional space.

HyperTab is a classifier for small datasets based on a hypernet. The smaller the dataset,
the greater the advantage of HyperTab over other algorithms. The principle of operation
of HyperTab is the generation of target networks by a hypernetwork, thus obtaining an
ensemble of networks. The learning parameters are the hypernet parameters. To form an
element of the ensemble, an augmentation mechanism is used for a subset of points in the
feature space, which allows you to actually expand the original dataset. Augmentation in
HyperTab terminology refers to the imposition of a mask on the features of an element.

The individual software modules included in the complex allow the following:

• Download module—download from the program where the GRV-grams and their
description for each patient are stored;

• A data parser with a description of the GRV-grams—convert data describing the
GRV-grams into a feature space (2);

• A script replacing the full name of patients with an ID—assign a unique ID to each
patient and organize a repository with records about it according to (3).

• A search script and a conclusion parser—search throughout the array of documents
with the conclusions of ultrasound diagnostics specialists are those that are necessary
for training ML models according to (4);

• Automatic filling script—add columns of pathologies for each organ to the table with
patient IDs and their conclusions. These columns have a Boolean value: “yes” or “no”.
“Yes” means that there is a pathology (8).

• The unifying script is to combine tables, forming all the data into one view, in which
the columns contain: patient IDs, descriptions of their GRV-grams and pathologies (11).
Machine-learning models can work with such a table in the future.

Diagnostics 2024, 14, x FOR PEER REVIEW 12 of 18 
 

 

Augmentation in HyperTab terminology refers to the imposition of a mask on the features 
of an element. 

The individual software modules included in the complex allow the following: 
• Download module—download from the program where the GRV-grams and their 

description for each patient are stored; 
• A data parser with a description of the GRV-grams—convert data describing the 

GRV-grams into a feature space (2); 
• A script replacing the full name of patients with an ID—assign a unique ID to each 

patient and organize a repository with records about it according to (3). 
• A search script and a conclusion parser—search throughout the array of documents 

with the conclusions of ultrasound diagnostics specialists are those that are necessary 
for training ML models according to (4); 

• Automatic filling script—add columns of pathologies for each organ to the table with 
patient IDs and their conclusions. These columns have a Boolean value: “yes” or 
“no”. “Yes” means that there is a pathology (8). 

• The unifying script is to combine tables, forming all the data into one view, in which 
the columns contain: patient IDs, descriptions of their GRV-grams and pathologies 
(11). Machine-learning models can work with such a table in the future. 

 
Figure 3. Software for detecting the pathology of internal organs. 

Figure 3 shows the result of the obtained vector (16), formed at step 12, defining the 
entire set of pathologies, where each pathology has its own place in the vector. Further-
more, the characteristic responsible for a certain pathology is extracted from this vector, 
and a decision is made on the presence or absence of it. 

The chosen scripts and modules of the software package provide automation and 
standardization of the data processing and analysis process, which simplifies the work of 
specialists and increases the efficiency of their activities. It also allows you to significantly 
reduce the time spent on data preparation and analysis, which is especially important in 
conditions of intensive medical practice. 

5. Experimental Results and Analysis 
The table obtained at the last step of the combining script (Figure 3) allows you to 

proceed to the selection of machine-learning models. To train machine-learning models, a 
dataset was compiled based on a sample of 170 patients’ diseases. The data were provided 
by the medical center, and the sample included 130 women and 40 men. The distribution 
of the pathologies of the internal organs is shown in Figure 4. 

Figure 3. Software for detecting the pathology of internal organs.

Figure 3 shows the result of the obtained vector (16), formed at step 12, defining the
entire set of pathologies, where each pathology has its own place in the vector. Furthermore,
the characteristic responsible for a certain pathology is extracted from this vector, and a
decision is made on the presence or absence of it.

The chosen scripts and modules of the software package provide automation and
standardization of the data processing and analysis process, which simplifies the work of
specialists and increases the efficiency of their activities. It also allows you to significantly
reduce the time spent on data preparation and analysis, which is especially important in
conditions of intensive medical practice.

5. Experimental Results and Analysis

The table obtained at the last step of the combining script (Figure 3) allows you to
proceed to the selection of machine-learning models. To train machine-learning models, a
dataset was compiled based on a sample of 170 patients’ diseases. The data were provided
by the medical center, and the sample included 130 women and 40 men. The distribution
of the pathologies of the internal organs is shown in Figure 4.
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Figure 4. Histogram of the distribution of the pathologies of the internal organs.

Several conclusions can be drawn from the histogram. The data are highly unbalanced.
There are more patients with pathology than healthy ones, and significantly so for the
following organs: liver, kidneys, thyroid gland, pancreas and gallbladder (Table 2 shows a
numerical description of the distribution of patients). Such an imbalance must be taken
into account when training ensemble models. The data describing the spleen is critically
unbalanced. Pathology is not observed in a large majority of patients (which is true). With
such a strong imbalance, it is impossible to train the model, and therefore, the spleen data
will not be taken into account in the future.

Table 2. Distribution of diseases (imbalance).

Liver Kidneys Thyroid Gland Pancreas The Gallbladder

Healthy 51 32 24 45 54

Pathology 90 109 113 96 87

Total relevant data 141 141 137 141 141

There is no data 29 29 33 29 29

Since each object in the feature space is characterized by over 1000 features, it is
obvious that there is a need to reduce the feature space. In general, data modification can
be divided into three directions: leave the dataset unchanged; reduce the feature space;
synthesize new data. We would like to note right away that with regard to the validation
and test datasets, there can be no question of synthesizing new objects in the feature
space. Therefore, the third direction was applied exclusively to the training dataset. The
dataset was processed using StandardScaler from scikit-learn 1.4.2 (https://scikit-learn.
org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html, accessed on
10 February 2024). To reduce the feature space, the methods of factor analysis and principal
component analysis were used. When synthesizing new data, the following strategies were
used: alignment of the major and minor classes; change of the minor class to the major one.
The second strategy is used in some cases, as presented in [20]. Weights were also used to
combat the unbalance when training models and selecting metrics. The distribution of data
in the training, validation and test datasets is shown in Table 3.

From the table, you can see that the imbalance of classes in the datasets for the
gallbladder and liver is minimal compared to the rest. This means that it will be easier
for machine-learning models to learn from them. It should be noted that with the thyroid,
the situation is the opposite—there is an imbalance of classes in the dataset, which is
why the machine-learning model can very quickly choose a strategy to always predict the
pathology class.

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
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Table 3. Distribution of survey results by dataset.

Dataset Pathology Liver Kidneys Thyroid Gland Pancreas The Gallbladder

Training (60%)
Healthy 31 19 14 27 32

Pathology 54 65 68 58 52

Validation (15%)
Healthy 8 5 4 7 8

Pathology 14 16 17 14 13

Test (25%)
Healthy 12 8 6 11 14

Pathology 22 28 28 24 22

The resulting dataset made it possible to train machine-learning models to identify
the pathology of internal organs, particularly the pathology of the gastrointestinal tract,
kidneys and thyroid gland and spleen. The following classifiers of machine-learning
methods were selected for the study: decision tree; KNN; logistic regression; random forest;
SVC; XGBoost; HyperTab. The learning outcomes are presented in Table 4.

At the training stage, the dataset was split randomly. Also, during the splitting,
preprocessing was performed, which included alignment, normalization, and reduction of
the feature space. This made it possible to create several different datasets. Cross-validation
performed with the parameter k = 5 was used, but it showed approximately the same
results as its absence. This made it possible to decide to leave the division into three
subsamples, in which the training and validation were changed, and the test was fixed.
The training was conducted in several rounds. It was not possible to identify a universal
model for all types of pathology.

Different models predict good results for each individual pathology. In the results were
selected models that identified each pathology, the data on which are summarized in Table 4.

Table 4. Learning outcomes of an ensemble of machine-learning models.

Model
Metrics

Organ Precision Recall F1-Score Type of Feature Confusion
Matrix

HyperTab Liver

0.53 0.67 0.59 Pathology is not revealed [[ 8 4]
[ 7 15]]

0.79 0.68 0.73 Pathology revealed
0.66 0.67 0.66 Average
0.70 0.68 0.68 Weighted

Logistic
Regression Kidneys

0.67 0.50 0.57 Pathology is not revealed [[ 4 4]
[ 2 26]]

0.87 0.93 0.90 Pathology revealed
0.77 0.71 0.73 Average
0.82 0.83 0.82 Weighted

HyperTab Thyroid gland

0.75 0.50 0.60 Pathology is not revealed [[ 3 3]
[ 1 27]]

0.90 0.96 0.93 Pathology revealed
0.82 0.73 0.77 Average
0.87 0.88 0.87 Weighted

XGB Classifier Gallbladder

0.64 0.64 0.64 Pathology is not revealed [[ 9 5]
[ 5 17]]

0.77 0.77 0.77 Pathology revealed
0.71 0.71 0.71 Average
0.72 0.72 0.72 Weighted

Decision Tree Pancreas

0.47 0.82 0.60 Pathology is not revealed [[ 9 2]
[10 14]]

0.88 0.58 0.70 Pathology revealed
0.67 0.70 0.65 Average
0.75 0.66 0.67 Weighted
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From Table 3, we can conclude that the presented models have good values for both
precision and recall. The best results are shown by models where the class imbalance is
the smallest. In the thyroid gland, where the class imbalance is high, the recall metric
is unsatisfactory.

The KNN classifier and SVM were used, but they were excluded from further analysis
because they did not show the best results in detecting pathology. Together with the fact
that the training of these models is performed over a sufficiently long time interval, it did
not make sense to use them in the future. The GDA and Naïve classifiers were also excluded
from consideration under the assumption that the features that describe the objects of the
dataset are related.

The effectiveness of the training was assessed using the constructed histograms of the
distribution of diseases and metrics: precision, recall, f1-score. In the process of predicting
the model, an error matrix (confusion matrix) was compiled, an example of which is shown
in Figure 5, where TP is the number of correctly predicted elements of class 0; TN is the
number of correctly predicted elements of class 1; and FP is the number of elements that the
model assigned to class 0, but this element actually belongs to Class 1. FN is the number of
elements that the model assigned to Class 1, but this element actually belongs to class 0.
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The error matrix expands if there are more than two classes. The effectiveness of
the training can be assessed using metrics: precision, recall, f1-score. The metrics were
calculated using the following formulas:

precision =
TP

TP + FP
,

recall =
TP

TP + FN
,

f1 =
2 · precision · recall
precision + recall

The effectiveness of the training was assessed using the constructed histograms of
the distribution of diseases and metrics: precision, recall, f1-score. The average value of
the metrics (the third row of values in Table 4) was considered as an arithmetic mean
and weighted as half of the sum of the metrics for individual classes multiplied by the
coefficients depending on the unbalance of classes.

6. Discussion

Analyzing the data obtained, we can say that the percentage of errors is lower in
those models where the distribution of the number of patients with pathology and healthy
patients approaches normal.

The use of the HyperTab classifier has shown the possibility of its application for small
tabular datasets based on a hypernet. To form an element of the HyperTab ensemble, the
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augmentation mechanism of a subset of the feature space points was used. Augmentation
in HyperTab terminology refers to the imposition of a mask on the attributes of an element.
This model has shown good results, which suggests the possibility of using neural networks
where the input data will be a GRV-gram image.

However, it must be borne in mind that learning and using machine learning and
neural network methods require large computational resources, and they also have weak
interpretability. In this regard, this method can only be used if there are enough datasets:
both the GRV-gram and the target attribute for each object in the sample. This requirement
applies to every pathology, since data preprocessing and machine-learning models are used
differently from case to case. For example, the analysis of the data in Table 2 showed the
possibility of using this method with restrictions on the ratio of the number of patients
with pathology of the internal organs and patients without such pathology. It can be seen
from the table that there is an imbalance in the data that is due to the fact that there are too
many patients with pathologies in the sample in relation to healthy ones. Models that were
trained on those datasets where there is an “imbalance” (kidneys and thyroid gland) poorly
identify a class of patients who do not have this pathology. Despite this, the application
of the method has shown the possibility of its use and extension to other classes of tasks
related to image processing.

The limitations of the method include non-specific limitations that are characteristic of
all machine-learning methods, such as the following:

1. Necessity of large computational resources, as machine-learning methods require a
significant amount of computational resources for training and data processing;

2. Poor interpretability of results when a new pathology arises that has not been previ-
ously described or is not available in the dataset.

3. The method also has specific limitations:
4. The requirement of a sufficient number of datasets of both GRV-grams and the target

trait for each subject in the sample. This requirement applies for each pathology because
different data preprocessing and machine-learning models are used for different types
of ensembles.

5. The requirement for the balance of patients with pathologies and healthy patients
in the dataset. Models that have been trained on those datasets where there is an
“imbalance” are poor at identifying the class of patients who do not have the pathology.

The use of the developed method will, in practice, allow us to switch to combining
various machine-learning models for the identification of certain diseases, as well as the for
identification of combined pathology.

Further areas of research should include the formation of multiple zones of patients’
GRV-grams, with the solution of the problem of their clustering for the possibility of
determining a particular pathology or their combinations based on machine-learning
models. This will allow us to move on to solving the problem of detecting pathology
during screening studies, which will lead to an increase in the detection of diseases and a
reduction in the burden on the staff of medical institutions.
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