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Abstract: Using X-ray diffraction (XRD) and a vibrating sample magnetometer (VSM), the effects
of Sm substitution, wheel speed, and annealing temperature on the phase formation and magnetic
properties of (Y1−xSmx)Co5 (x = 0.2, 0.3, 0.4, 0.5) melt-spun ribbons were investigated. The results
indicate the following: (1) With the increase in Sm substitution, it was found that (Y1−xSmx)Co5

ribbons are entirely composed of the (Y-Sm)Co5 phase with a CaCu5-type structure. Additionally, the
coercivity gradually increases, while the remanence and saturation magnetization gradually decrease.
(2) As the wheel speed increases, the (Y1−xSmx)Co5 ribbons exhibit an increasing proportion of
(Y-Sm)Co5 phase until reaching a speed of 40 m/s, where they are entirely composed of the (Y-Sm)Co5

phase. Magnetic measurements show that the coercivity (Hcj) and remanence (Br) of (Y0.5Sm0.5)Co5

ribbons increase gradually with increasing wheel speed, while saturation magnetization decreases.
The variation in magnetic properties is mainly attributed to the formation of nucleation centers
for reversed magnetic domain (2:7 and 2:17 phases); (3) (Y0.5Sm0.5)Co5 ribbons are composed of
the (Y-Sm)Co5 phase and a small amount of the Sm2Co7 phase after annealing at 550 ◦C, 600 ◦C,
and 650 ◦C. Temperature elevation promotes crystallization of the amorphous phase, resulting in a
gradual decrease in coercivity, while the remanence and saturation magnetization exhibit an overall
increasing trend. Through continuous optimization of the process, favorable magnetic properties
were achieved under the conditions of a 0.5 Sm substitution level, a wheel speed of 40 m/s, and
an annealing temperature of 550 ◦C, with a coercivity of 7.98 kOe, remanence of 444 kA/m, and
saturation magnetization of 508 kA/m.

Keywords: SmCo5 ribbons; coercivity; remanent magnetization; heat treatment

1. Introduction

Nd-Fe-B permanent magnets are widely recognized for their exceptional magnetic
properties at room temperature, making them indispensable in various modern industrial
applications such as wind power generation and electric vehicles [1–4]. However, their
utility is limited for high temperature applications due to their relatively low Curie temper-
ature [5–8]. In contrast, SmCo5 permanent magnets, as one of the most representative types
among RECo5 (where RE represents rare-earth elements) magnets, exhibit high thermal
stability, meeting the stringent requirements of industrial applications. With a maximum
operating temperature reaching up to 250 ◦C [9–12], SmCo5 magnets ensure reliable perfor-
mance even under elevated temperature conditions. Presently, various methods such as
mechanical alloying, magnetron sputtering, and melt spinning are commonly employed for
the preparation of SmCo5-based alloys [13–15]. For instance, Li et al. [13] utilized the melt
spinning technique to successfully fabricate anisotropic nanocrystalline SmCo4.8Cr0.14C0.08.
They observed a transition in grain structure from randomly oriented equiaxed grains
to dendritic morphology with increasing quenching speed. Remarkably, at a quenching
speed of 50 m/s, the coercivity of the alloy reached 40.3 kOe, exhibiting excellent magnetic
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properties. In other research, Su et al. [14] employed high-energy ball milling to prepare
SmCo5/α-Fe nanocomposite permanent magnetic materials. By subjecting the materials to
heat treatment below 700 ◦C in a magnetic field, they successfully obtained nanocomposite
magnets exhibiting strong soft–hard phase interactions, characterized by a single-phase
hysteresis loop. Such distinctive microstructure and performance characteristics offer new
insights and possibilities for the design and application of permanent magnetic materi-
als. Recently, Gabay et al. [15] used another method to produce high-coercivity YCo5
and SmCo5 powders by employing a mechanosynthesis approach based on conventional
powder grinding. They employed mechanical activation using a mixture of rare earth
oxides with Co, Ga, and CaO, followed by short-term annealing and washing/separation
processes to produce high-coercivity YCo5 and SmCo5 powders. They found out that the
hard magnetic properties of YCo5 powders synthesized via mechanosynthesis are compa-
rable to those of conventionally prepared SmCo5 powders, offering a novel avenue for the
controllable synthesis of permanent magnetic materials.

The elements lanthanum (La), cerium (Ce), and yttrium (Y), which are found abun-
dantly in rare-earth resources, are capable of forming a 1:5 phase with the transition metal
cobalt (Co). Compounds such as LaCo5, CeCo5, and YCo5, as well as SmCo5, all crystal-
lize into the hexagonal CaCu5-type crystal structure, characterized by a space group of
P6/mmm. However, it is noteworthy that only YCo5 exhibits intrinsic magnetic properties
that are on par with or even surpass those of SmCo5 [16–19]. Specifically, both SmCo5 and
YCo5 exhibit high magnetic anisotropy, owing to the interaction between the 4f electrons of
samarium (Sm) atoms and the hexagonal crystal field, as well as the spin–orbit coupling
of the 3d electrons of cobalt (Co) atoms [20]. This interplay of electronic configurations
contributes significantly to the magnetocrystalline anisotropy observed in these materials.
Considering Y as a high-abundance rare-earth element, it is believed that adding the ele-
ment Y is a promising and cost-effective way to enhance the magnetic properties of 1:5-type
permanent magnets [21–23].

Research on SmCo5 and YCo5 in the past has mainly focused on investigating the incor-
poration of various elements into their structures. These elements are the transition metals,
like Fe, Cu, Ti, Zr, Ni, and Mn [24–30], non-metallic elements, such as C, H, and Si [31–33],
and rare-earth elements, like La, Ce, Pr, Nd, Dy, and Tm [34–38]. The aim has been to
fine-tune the phase composition and magnetic characteristics of permanent magnets. For
instance, Larson et al. [25] investigated the impact of Fe doping on the magnetic anisotropy
of SmCo5 and YCo5, employing both experimental and computational techniques. They
observed that when the doping level of Fe was approximately 3–4% in SmCo5−xFex and
6–7% in YCo5−xFex, the magneto-crystalline anisotropy energy (MAE) increased by about
1 meV/f.u. However, with further increases in Fe doping, the magnetic anisotropy rapidly
declined. This phenomenon was also observed in other RECo5−xFex magnets. Chen
et al. [34], on the other hand, systematically investigated the phase structures and mag-
netic properties of Sm1−xLaxCo5 and Sm1−xCexCo5 alloys tuning La and Ce doping levels
and annealing conditions. Their findings indicated a superior magnetic performance in
La-doped SmCo5 compared to Ce-doped counterparts. Additionally, Banerjee et al. [37]
investigated the structural and magnetization characteristics of Dy1−xYxCo5 compounds,
finding an enhancement in the axial magneto-crystalline anisotropy energy (MAE) with
increasing Y content. Despite these efforts, research on the phase evolution, microstructural
intricacies, and magnetic behaviors of (Y1−xSmx)Co5 alloys still needs research. Passos
et al. [20] conducted an investigation on the effect of substituting Y with Sm on the magnetic
properties of (Y1−xSmx)Co5 (x = 0.0, 0.1, 0.2, 0.3, and 0.4) alloys. Furthermore, Gonzalez
et al. [39] reported a coercivity of 12 kOe for Y0.5Sm0.5Co5 melt-spun ribbon at a wheel
speed of 40 m/s. In order to deeply study the relationship between the composition, phase
formation, preparation conditions, and magnetic properties of rare-earth element Sm and
YCo5 alloys, (Y1−xSmx)Co5 alloys were prepared using melt spinning technology. The
phase formation and magnetic properties of these alloys were analyzed. The effects of Sm
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substitution, wheel speeds, and annealing temperatures under different conditions on the
magnetic properties of (Y1−xSmx)Co5 ribbons were investigated.

2. Experiment

The (Y1−xSmx)Co5 (x = 0.2, 0.3, 0.4, 0.5) alloys were synthesized with the arc-melting
method, using high-purity bulk metals Y, Sm, and Co (99.99% purity) as raw materials.
Due to the high volatility of the rare-earth elements Y and Sm at high temperatures, an
additional 5% of Y and Sm was added during weighing to compensate for evaporation. To
ensure compositional homogeneity, the alloys underwent four re-melting cycles during the
arc-melting process. Subsequently, the alloys were crushed into small pieces (approximately
2.5 g) and loaded into a quartz tube with an orifice (diameter approximately 0.9 mm). They
were then spun onto a copper wheel in an argon atmosphere at various wheel speeds
(20–40 m/s) to produce melt-spun ribbons. Subsequently, the melt-spun ribbons were
placed in quartz tubes filled with argon, annealed at different temperatures (500–650 ◦C)
for 30 min, and then quenched in ice water. The width of the melt-spun ribbons ranged
from about 8 to 13 mm, and the thickness was approximately 2 to 3 mm.

The (Y1−xSmx)Co5 melt-spun ribbons (about 0.5 g) were placed in an agate mortar
filled with anhydrous ethanol to prevent oxidation and then were manually grinded into
powders, which was sieved to achieve a particle size of 250 mesh. XRD measurements
of powders were performed on a PLXcel 3D X-ray diffractometer (Tokyo, Japan) in the
range 20–70◦ at 45 kV and 25 mA using a Co K radiation source. The crystal structure
of the (Y1−xSmx)Co5 ribbons was determined by analyzing XRD patterns. The magnetic
properties of the melt-spun ribbons were measured at room temperature using a vibrating
sample magnetometer (VSM, Lakeshore Model 7400 740H, Carson, CA, USA). The demag-
netization correction of the melt-spun ribbons was neglected because the applied external
field is parallel to the plane of the ribbons during the magnetic measurements.

3. Results and Discussion
3.1. Structure and Magnetic Properties of (Y1−xSmx)Co5 Ribbons

Figure 1 shows the XRD spectra of the (Y1−xSmx)Co5 (x = 0.2, 0.3, 0.4, 0.5) melt-spun
ribbons at a wheel speed of 40 m/s. In Figure 1a, it is observed that the (Y1−xSmx)Co5
ribbons contain a continuous solid solution phase (Y-Sm)Co5, exhibiting a CaCu5-type
structure with a space group of P63/mmc, as identified by comparison with standard PDF
cards. Figure 1b presents the local XRD spectra of these ribbons in the 40◦ to 45◦ range,
revealing a leftward shift of the diffraction peaks of the (Y-Sm)Co5 phase with increasing
Sm atomic substitution. This shift is attributed to the larger atomic radius of Sm compared
to Y, leading to a decrease in diffraction angle according to the Bragg equation. Figure 2
displays the variations in lattice parameters and unit cell volumes of the (Y-Sm)Co5 phase as
the Sm atomic substitution increases. Specific numerical values are provided in Table 1. It is
observed from Figure 2 that the lattice parameter ‘a’ and cell volume of the (Y-Sm)Co5 phase
slightly increase with increasing Sm substitution, while the lattice parameter ‘c’ gradually
decreases. This trend may be attributed to the lattice constants of SmCo5 phase, where
‘a’ = 4.998 (Å) is greater than that of YCo5 phase with ‘a’ = 4.928 (Å), while ‘c’ = 3.976 (Å)
for SmCo5 is smaller than ‘c’ = 3.992 (Å) for YCo5 [40,41].

Figure 3 depicts the initial magnetization curves and hysteresis loops (M-H curves)
of the (Y1−xSmx)Co5 (x = 0.2, 0.3, 0.4, 0.5) melt-spun ribbons prepared at a wheel speed of
40 m/s. Figure 4 illustrates the variations in remanence (Br), coercivity (Hcj), and saturation
magnetization (Ms) of the (Y1−xSmx)Co5 (x = 0.2, 0.3, 0.4, 0.5) melt-spun ribbons with the
substitution of Sm. The corresponding magnetic parameters are listed in Table 1. From
Figure 3a, it can be observed that the initial magnetization curve of the (Y1−xSmx)Co5
melt-spun ribbons shows a rapid increase in magnetization intensity at low magnetic fields.
As the magnetic field intensity increases, the magnetization intensity tends to saturate,
indicating that the magnetization mechanism is regulated by the nucleation field [42]. From
Table 1 and Figure 4, it is evident that the saturation magnetization of the (Y1−xSmx)Co5
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melt-spun ribbons decreases from 726 kA/m to 488 kA/m with increasing Sm substitution.
Due to the higher saturation magnetization of YCo5 compared to SmCo5, the increase
in Sm content promotes the formation of SmCo5 in the continuous solid solution phase
(Y-Sm)Co5, reducing the YCo5 content and consequently leading to a decrease in the
saturation magnetization of the ribbon [43,44]. Figure 3b shows the hysteresis loops of
the (Y1−xSmx)Co5 melt-spun ribbons, indicating that the coercivity increases from 0.79 to
7.98 kOe with the increasing substitution of Sm. This significant enhancement is attributed
to the introduction of Sm, which also leads to an increase in the proportion of SmCo5
in the continuous solid solution phase (Y-Sm)Co5. Compared to YCo5, SmCo5 exhibits
higher coercivity, thus the coercivity of the ribbon increases with increasing Sm content.
Meanwhile, the remanence decreases from 479 kA/m to 406 kA/m, exhibiting a trend
similar to the decrease in saturation magnetization, both attributed to the increase in the
volume fraction of SmCo5 in the continuous solid solution phase (Y-Sm)Co5.
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Table 1. Lattice parameters and cell volumes of (Y-Sm)Co5 phase and magnetic properties in
(Y1−xSmx)Co5 melt-spun ribbons.

(Y1−xSmx)Co5
Ribbons

Lattice Parameters Cell
Volumes (Å3)

Magnetic Properties

a (Å) c (Å) c/a Hcj (kOe) Br (kA/m) Ms (kA/m)

x = 0.2 4.9361(1) 3.9924(6) 0.8088 84.24(5) 0.79 ± 0.04 479 ± 3 726 ± 4
x = 0.3 4.9457(1) 3.9922(6) 0.8072 84.57(6) 2.98 ± 0.02 431 ± 4 524 ± 2
x = 0.4 4.9578(1) 3.9866(6) 0.8041 84.70(6) 4.28 ± 0.06 422 ± 5 518 ± 7
x = 0.5 4.9650(1) 3.9790(6) 0.8014 85.11(7) 7.98 ± 0.02 406 ± 2 488 ± 4
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In this section, an investigation was conducted into the phase structure, phase compo-
sition, and magnetic properties of (Y1−xSmx)Co5 (x = 0.2, 0.3, 0.4, 0.5) melt-spun ribbons at
a wheel speed of 40 m/s. It was confirmed that the (Y1−xSmx)Co5 ribbons exhibit a CaCu5-
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type structure, with the XRD diffraction peaks shifting to the left as the substitution amount
of Sm increases. The lattice parameter ‘a’ and the unit cell volume of the (Y-Sm)Co5 phase
showed a slight increase, while the lattice parameter ‘c’ gradually decreased. Magnetic
measurement results indicated that the magnetization mechanism is regulated by the nucle-
ation field. With an increase in the substitution amount of Sm, the saturation magnetization
of the (Y1−xSmx)Co5 ribbons decreased from 726 kA/m to 488 kA/m, coercivity increased
from 0.79 kOe to 7.98 kOe, and remanence decreased from 479 kA/m to 406 kA/m. These
changes were attributed to the increase in the proportion of SmCo5 in the continuous solid
solution phase (Y-Sm)Co5.

3.2. Structural and Magnetic Properties of (Y0.5Sm0.5)Co5 Ribbons at Different Wheel Speeds

In the previous section, an investigation on the structure and magnetic properties of
(Y1−xSmx)Co5 (x = 0.2, 0.3, 0.4, 0.5) melt-spun ribbons prepared at a wheel speed of 40 m/s
revealed that at a Sm substitution level of 0.5, i.e., x = 0.5, the ribbons exhibited a higher
coercivity of 7.98 kOe. In order to further investigate the structural and magnetic property
variations in (Y1−xSmx)Co5 melt-spun ribbons under different conditions, we kept x = 0.5
constant and varied the wheel speed. (Y0.5Sm0.5)Co5 melt-spun ribbons were prepared at
different wheel speeds (20 m/s, 30 m/s, 40 m/s) to examine their structural and magnetic
property changes.

Figure 5 shows the X-ray diffraction (XRD) patterns of the (Y0.5Sm0.5)Co5 melt-spun
ribbons prepared at different wheel speeds (20 m/s, 30 m/s, 40 m/s). It can be observed
from Figure 5 that at a wheel speed of 20 m/s, the melt-spun ribbon consists entirely of
the (Y-Sm)2Co17 phase; at 30 m/s, the ribbon comprises small amounts of the Sm2Co7
and (Y-Sm)Co5 phases, while at 40 m/s, the ribbon consists entirely of the (Y-Sm)Co5
phase. During the preparation of the melt-spun ribbons, slower wheel speeds lead to the
accumulation of molten metal on the surface of the copper roller, resulting in thicker ribbon
layers and slower cooling rates. According to the Y-Co [45] and Sm-Co [46] binary phase
diagrams, the 1:5 phase decomposes into 2:7 and 2:17 phases at low temperatures. Thus, at
a wheel speed of 20 m/s, the decomposition of (Y-Sm)Co5 phase forms the (Y-Sm)2Co17
phase, while at 30 m/s, partial decomposition of (Y-Sm)Co5 phase forms Sm2Co7 phase.
However, at a wheel speed of 40 m/s, the resulting ribbon has a thinner layer and faster
cooling rate, preventing the (Y-Sm)Co5 phase from undergoing a phase transformation.
When the speed is 40 m/s, there is an unclear diffraction peak between 20◦ and 25◦ in the
diffraction pattern, indicating the presence of an amorphous phase in the (Y0.5Sm0.5)Co5
melt-spun ribbon at this speed. To further confirm the existence of the amorphous phase,
we calculated the crystallinities at wheel speeds of 20 m/s, 30 m/s, and 40 m/s, which
were found to be 60.4%, 53.2%, and 45.7%, respectively. The formation of the amorphous
phase is attributed to the higher wheel speed accelerating the cooling rate, resulting in
partial solidification of the alloy melt before crystallization.

Figure 6 depicts the initial magnetization curves and hysteresis loops (M-H curves) of
(Y0.5Sm0.5)Co5 melt-spun ribbons at different wheel speeds. Figure 7 shows the variations
in remanence (Br), coercivity (Hcj), and saturation magnetization (Ms) with Sm substitution
for the (Y0.5Sm0.5)Co5 melt-spun ribbons, with corresponding magnetic parameters pre-
sented in Table 2. In Figure 6a, it can be observed that the initial magnetization intensity of
the (Y0.5Sm0.5)Co5 melt-spun ribbon increases with the increasing applied magnetic field,
gradually approaching saturation, with the magnetization mechanism being regulated by
the nucleation field. From Table 2 and Figure 7, it can be seen that with increasing wheel
speed, the saturation magnetization of the (Y0.5Sm0.5)Co5 melt-spun ribbon decreases from
870 kA/m to 488 kA/m. Consistent with previous research findings, the reduction in
saturation magnetization intensity is attributed to the gradual decrease in crystallinity as
the wheel speed increases in the (Y0.5Sm0.5)Co5 melt-spun ribbon, indicating an increasing
proportion of the amorphous phase. Materials with non-crystalline structure exhibit higher
magnetic hysteresis losses, resulting in increased energy dissipation during magnetization
and consequently lowering the saturation magnetization. Additionally, amorphous struc-
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tures typically lack distinct magnetic domain structures, resulting in higher domain wall
energies, thus increasing the energy cost for magnetic moment reversal and decreasing
the magnetization intensity. Figure 6b presents the hysteresis loop of the (Y0.5Sm0.5)Co5
melt-spun ribbons. From Figures 6b and 7, it can be seen that with increasing wheel speed,
the coercivity of the (Y1−xSmx)Co5 melt-spun ribbon increases from 0.4 to 7.98 kOe. This is
attributed to the gradual increase in the proportion of the 1:5 phase with high coercivity as
the speed increases. Additionally, when the wheel speed is 20 m/s, the ribbon is composed
entirely of the (Y-Sm)2Co17 phase, which is a soft magnetic phase with lower coercivity.
However, as the wheel speed increases to 30 m/s, the ribbon consists of Sm2Co7 and
(Y-Sm)Co5, with the 2:7 phase becoming the nucleation center for demagnetization within
the ribbon, resulting in lower coercivity compared to when the speed is 40 m/s. At a wheel
speed of 40 m/s, both coercivity and remanence significantly increase, indicating a notable
enhancement in remanence effect, primarily attributed to the reduction in the 2:7 and 2:17
phases, which reduces the nucleation centers for demagnetization.
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Table 2. Magnetic properties of (Y0.5Sm0.5)Co5 ribbons prepared at different wheel speeds and
annealed at different temperatures for 30 min.

Wheel Speed
(m/s)

Annealed
Temperature (◦C) Hcj (kOe) Br (kA/m) Ms (kA/m)

20
no annealed

0.40 ± 0.03 282 ± 5 870 ± 4
30 4.61 ± 0.05 398 ± 7 525 ± 4
40 7.98 ± 0.02 406 ± 4 488 ± 2

40
550 7.98 ± 0.05 444 ± 3 502 ± 3
600 6.96 ± 0.07 376 ± 3 479 ± 6
650 5.17 ± 0.02 463 ± 5 548 ± 5

In this section, we investigated the phase structure, phase composition, and mag-
netic properties of (Y0.5Sm0.5)Co5 melt-spun ribbons prepared at different wheel speeds
(20 m/s, 30 m/s, 40 m/s). It was found that at a wheel speed of 20 m/s, the ribbons were
composed of the (Y-Sm)2Co17 phase; at 30 m/s, they contained small amounts of Sm2Co7
and (Y-Sm)Co5, while at 40 m/s, the ribbons were entirely composed of the (Y-Sm)Co5
phase. Magnetic measurement results revealed that with increasing wheel speed, the satu-
ration magnetization of the (Y0.5Sm0.5)Co5 melt-spun ribbons decreased from 870 kA/m
to 488 kA/m. This decrease in saturation magnetization was attributed to the increase in
the amorphous phase. Meanwhile, the remanence and coercivity increased with increasing
speed, primarily due to the reduction in the 2:7 and 2:17 phases, thereby lowering the
demagnetization nucleation centers.

3.3. Structure and Magnetic Properties of (Y0.5Sm0.5)Co5 Ribbons Annealed at
Different Temperatures

In the previous sections, investigations were carried out on the structure and mag-
netic properties of (Y1−xSmx)Co5 (x = 0.2, 0.3, 0.4, 0.5) melt-spun ribbons prepared with
different Sm substitutions and wheel speeds. It was found that when the Sm substitution
is 0.5 and the wheel speed is 40 m/s, the melt-spun ribbon exhibits optimal magnetic
properties. In order to further explore the structural and magnetic property changes of
the (Y0.5Sm0.5)Co5 melt-spun ribbons under different conditions, in this section, ribbons
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prepared at a wheel speed of 40 m/s will be subjected to heat treatment at different tem-
peratures (550 ◦C, 600 ◦C, and 650 ◦C). This aims to further investigate the variations in
structure and magnetic properties.

Figure 8 displays the X-ray diffraction (XRD) patterns of (Y0.5Sm0.5)Co5 ribbons an-
nealed at various temperatures for 30 min, prepared with a wheel speed of 40 m/s. It can
be observed from Figure 8 that the (Y0.5Sm0.5)Co5 ribbon is predominantly composed of
(Y-Sm)Co5 with a minor amount of Sm2Co7. The presence of the minor 2:7 phase could
be attributed to the segregation of the 1:5 phase during the annealing process. As the
annealing temperature increases, the main diffraction peaks gradually sharpen. According
to the previous discussion, when the wheel speed is 40 m/s, the ribbon exhibits partial
amorphous phase. According to the calculations, after heat treatment at 550 ◦C, 600 ◦C,
and 650 ◦C, the crystallinity of the ribbon is 59.1%, 67.8%, and 76.5%, respectively. This
indicates that with increasing temperature, the amorphous phase gradually transforms into
a crystalline phase.
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Figure 9 shows the initial magnetization curves and hysteresis loops (M-H curves)
of (Y0.5Sm0.5)Co5 melt-spun ribbons annealed at different temperatures for 30 min, pre-
pared with a wheel speed of 40 m/s. Figure 10 illustrates the variations in remanence
(Br), coercivity (Hcj), and saturation magnetization (Ms) of the annealed (Y0.5Sm0.5)Co5
ribbons with annealing temperature. Corresponding magnetic parameters are provided
in Table 2. From Figure 9a, it can be observed that the initial magnetization curve of
the (Y0.5Sm0.5)Co5 melt-spun ribbon exhibits distinct ferromagnetic characteristics. The
initial magnetization intensity of the ribbon rapidly increases with the applied magnetic
field, reaching saturation, with the magnetization mechanism regulated by nucleation field.
Figure 9b presents the hysteresis loop of the annealed (Y0.5Sm0.5)Co5 melt-spun ribbon. In
the second quadrant, the demagnetization curve of the ribbon exhibits a relatively smooth
profile, indicative of typical single-phase hard magnetic behavior. This observation sug-
gests well-crystallized microstructure within the ribbon. However, there are evident twists
in the demagnetization curve, indicating the possible formation of soft magnetic phases
(such as Sm2Co7) during annealing. The exchange coupling effect between the (Y-Sm)Co5
hard magnetic phase and soft magnetic phase leads to the twists in the demagnetization



Metals 2024, 14, 562 10 of 13

curve of the ribbon. From Figure 10 and Table 2, it is revealed that after annealing at
550 ◦C, both saturation magnetization and remanence of the ribbon increase, showing a
certain remanence enhancement effect. The crystallization of the amorphous phase in the
ribbon after annealing is the main reason for the improvement in magnetic properties. With
increasing annealing temperature, coercivity decreases from 7.98 kOe at 550 ◦C to 5.17 kOe
at 650 ◦C. This decrease may be attributed to the growth of grain size in the ribbon with
increasing annealing temperature, reducing the interaction between grains in the ribbon.
Additionally, the increase in annealing temperature promotes the decomposition of the
1:5 phase into 2:7 and 2:17 phases, and the formation of these secondary phases can easily
become nucleation centers for antiferromagnetic domains within the 1:5 ribbon, leading to
a decrease in coercivity.
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In this section, we investigated the phase structure, phase composition, and magnetic
properties of (Y0.5Sm0.5)Co5 melt-spun ribbons annealed at different temperatures (550 ◦C,
600 ◦C, 650 ◦C) for 30 min. The results reveal that all ribbons were predominantly composed
of (Y-Sm)Co5 with small amounts of Sm2Co7. Magnetic measurement results indicated
a trend of increasing saturation magnetization and remanence with rising temperature,
primarily attributed to the crystallization of the amorphous phase post-annealing. However,
the coercivity decreases from 7.98 kOe to 5.17 kOe, attributed to the increase in grain size
in the ribbon as annealing temperature rises, reducing the interaction between grains.
Additionally, the elevated annealing temperature promotes the decomposition of the 1:5
phase into the 2:7 phase, with the formation of the 2:7 phase serving as easy nucleation sites
for antiferromagnetic domains within the 1:5 phase, consequently leading to a decrease
in coercivity.

4. Conclusions

This experimental investigation focused on the effects of Sm substitution, wheel speed,
and annealing temperature on the phase structure and magnetic properties of (Y1−xSmx)Co5
melt-spun ribbons, yielding the following conclusions:

(1) With increasing Sm substitution, X-ray diffraction (XRD) analysis reveals that
(Y1−xSmx)Co5 (x = 0.2, 0.3, 0.4, 0.5) ribbons are composed of (Y-Sm)Co5 with a CaCu5-type
structure and space group P63/mmc. Magnetic measurements indicate that the magneti-
zation mechanism is regulated by the nucleation field. As the Sm substitution increases,
the proportion of tSmCo5 increases, leading to a decrease in saturation magnetization from
726 kA/m to 488 kA/m and remanence from 479 kA/m to 406 kA/m, while coercivity
increased from 0.79 to 7.98 kOe.

(2) Based on the XRD results, the (Y0.5Sm0.5)Co5 ribbon prepared at wheel speeds
of 20 m/s and 40 m/s are composed of (Y-Sm)2Co17, while the ribbon at a wheel speed
of 30 m/s is composed of (Y-Sm)Co5 and Sm2Co7. The magnetic measurements show
that the coercivity (Hcj), the remanence (Br), and the saturation magnetization (Ms) of the
(Y0.5Sm0.5)Co5 ribbon increase gradually with the increase in wheel speed. The variation
in magnetic properties is primarily attributed to the formation of nucleation centers for
reversed magnetic domain (2:7 and 2:17 phases). At a wheel speed of 40 m/s, the ribbon is
primarily composed of a single-phase (Y-Sm)Co5, exhibiting excellent magnetic properties
under optimal conditions (coercivity of 7.98 kOe, remanence of 406 kA/m, saturation
magnetization of 488 kA/m).

(3) The (Y0.5Sm0.5)Co5 ribbon prepared at a wheel speed of 40 m/s consists of (Y-
Sm)Co5 and a small amount of Sm2Co7 according to the XRD results after annealing at
550 ◦C, 600 ◦C, and 650 ◦C for 30 min. The optimization of the annealing process promotes
the crystallization of the amorphous phase. The best magnetic performance was achieved
at an annealing temperature of 550 ◦C, resulting in a coercivity of 7.98 kOe, remanence of
444 kA/m, and saturation magnetization intensity of 508 kA/m.
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