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Abstract: Wire arc additive manufacturing (WAAM) has attracted increasing interest in industry
and academia due to its capability to produce large and complex metallic components at a high
deposition rate. One of the basic tasks in WAAM is to determine appropriate process parameters,
which will directly affect the morphology and quality of the weld bead. However, the selection
of process parameters relies heavily on empirical data from trial-and-error experiments, which
results in significant time and cost expenditures. This paper employed different machine learning
models, including SVR, BPNN, and XGBoost, to predict process parameters for WAAM. Furthermore,
the SVR model was optimized by the Genetic Algorithm (GA) and Particle Swarm Optimization
(PSO) algorithms. A 3D laser scanner was employed to obtain the weld bead’s point cloud, and the
weld bead size was extracted using the point cloud processing algorithm as the training data. The
K-fold cross-validation strategy was applied to train and validate machine learning models. The
comparison results showed that PSO–SVR predicted process parameters with the highest precision,
with the RMSE, R2, and MAE being 1.1670, 0.9879, and 0.8310, respectively. Based on the process
parameters produced by PSO–SVR, an optimal process parameter combination was chosen by
taking into comprehensive consideration the impacts of power consumption and efficiency. The
effectiveness of the process parameter optimization method was proved through three groups of
validation experiments, with the energy consumption of the first two groups decreasing by 10.68%
and 11.47%, respectively.

Keywords: WAAM; process parameters; machine learning; point cloud; SVR

1. Introduction

Additive manufacturing (AM) technology has gained significant attention in recent
years owing to its notable advantages, including a short lead time, reduced material
waste, and the capacity to produce intricate structures. Metal additive manufacturing
technology can be categorized into laser additive manufacturing (LAM), electron beam
additive manufacturing (EBAM), and WAAM based on the heat sources used. Compared
with LAM and EBAM, WAAM can manufacture large, complex parts at higher deposition
rates and lower costs [1–3].

WAAM employs an arc as a heat source to systematically construct three-dimensional
components by depositing metal material layer by layer. The entire component is generally
comprised of numerous weld beads. The weld bead morphology of each layer and each
pass affects the subsequent deposition and the final shape and quality of the component.
In general, the weld bead morphology of each layer is mainly determined by process
parameters [4]. Dinovitzer et al. [5] used the Taguchi method and analysis of variance
(ANOVA) to determine the effects of welding speed (WS), wire feed speed (WFS), welding
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current, and argon flow rate on weld bead shape and size, and they discovered that WFS is
the most significant factor. The quality of the weld bead is mainly determined by process
parameters, including the welding current, welding voltage, and welding time, while the
welding time is mainly related to the welding speed [6]. If the process parameters are
not appropriately chosen, excessive heat input can result in deformation, high residual
stresses [7], poor surface quality, and splatter phenomena [8]. Karlina et al. [9] emphasized
the potential for optimizing process parameters to improve material characteristics. Thus,
choosing the appropriate process parameter based on the deposition trajectory yielded by
the slicing process is a critical step in the WAAM process.

Many researchers have been devoted to quantifying the association between process
parameters and the response variables that characterize the morphology of the weld bead
and optimizing process parameters using different mathematical methodologies, such as
multiple regression analysis (MRA), finite element modelling (FEM), and machine learning.
Sarathchandra et al. [10] evaluated the effects of the WS, welding current, and standoff
distance on weld bead characteristics by response surface method in conjunction with
ANOVA; they used MRA to establish a model between process parameters and weld bead
quality. Le et al. [11] used Grey-Relational Analysis (GRA) and Techniques for Order-
Preferences by Similarity-to Ideal Solution (TOPSIS) methods to determine the optimal
process parameters. FEM-based modelling can investigate how process parameters affect
the dimensional accuracy of the component and optimize process parameters [12,13]. Hanif
et al. [14] employed FEM to study the temperature and thermal stress field in the TIG
welding process and applied the GRA method to obtain the optimal weld bead geometry
by comprehensively considering various factors such as welding current, shielding gas
flow rate, and standoff distance on the weld bead.

Machine learning does not require any physics-based equations and only needs to
use past experimental data to establish the relationship between input variables and
output targets, which can quickly predict output targets. Sharma et al. [15] used three
machine-learning algorithms to investigate the influence of WS, welding current, and
the number of layers on weld bead morphology. Among them, random forest had the
highest prediction accuracy for bead height and width, with 94% and 99% accuracy rates,
respectively. Barrionuevo et al. [16] compared the performance of GPR, XGBR, and MLP
algorithms in predicting melting efficiency by inputting the wire diameter, nominal power,
WFS, and WS variables, finding that GPR had the highest prediction accuracy with an R2

of 0.9190. Yaseer et al. [17] used random forest and multilayer perceptron algorithms to
predict the layer surface roughness in WAAM. Both algorithms could effectively model
and predict layer roughness for the same data sets. Still, the random forest was superior to
the multilayer perceptron algorithm in terms of accuracy and computational efficiency. Xia
et al. [18] compared the performance of different machine learning algorithms in predicting
the surface roughness of weld beads. The results showed that GA–ANFIS had the optimal
prediction performance, with RMSE, R2, MAE, and MAPE values of 0.0694, 0.93516, 0.0574,
and 14.15%, respectively. Wang et al. [19] established an artificial neural network (ANN)
with interlayer temperature, WFS, and WS as input variables to predict the bead width,
height, and contact angle in cold metal transfer welding. The average error rate of the model
was less than 5.1%. Lee [20] used the Gaussian process regression method to model the
process parameters, which improved the productivity of WAAM and the shape and quality
of the deposits. Yadav et al. [21] used MRA, FEM, and Back Propagation Neural Network
(BPNN) to establish models with WFS, WS, welding voltage, and contact tip-to-substrate
distance as input variables. The response surface method guided the experimental design
and generates three geometric response variables. The results showed that BPNN had
higher accuracy than the MAR and FEM methods. Evidently, the data-driven machine
learning model predicted the results much closer to the experimental values than the
physics-driven modelling method.

From the above literature review, it can be seen that the study of weld bead geometry
has generated a great deal of interest in the WAAM field. However, only some researchers
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have undertaken the inverse forecast of process parameters from the desired weld bead
geometry. In the past, the operator had to choose the proper process parameter settings
based on their experience and repeated tests. If the desired weld bead geometry can
directly predict the process parameters in advance, not only can the energy consumption of
the welder be reduced, but the weld bead quality can also be improved [22,23]. Venkata
et al. [24] developed a method with ANN, FEM, and Taguchi-based graph theory to
optimize the process parameters for ensuring dimensional accuracy in AM. Karmuhilan
et al. [25] established an ANN with bead height and width as inputs and welding voltage,
WFS, and WS as outputs. However, the number of response variables exceeds the number
of input variables, which can easily lead to unstable prediction results, and the bead width
and height are not enough to represent the geometric properties of the entire weld bead.
This method of predicting process parameters by reverse modelling is ambiguous because
different process parameters may result in the same weld bead geometry [26].

In order to address the issue of ambiguity in predicting process parameters through
reverse modelling, this paper employed different machine learning algorithms to predict
process parameters for WAAM and determined the optimal process parameters. Initially,
a comparative analysis was conducted to evaluate the performance of different machine
learning models in predicting process parameters. Then, the model with the highest level
of prediction accuracy was utilized to optimize the process parameter. Considering the
influence of power consumption and efficiency, the optimal process parameters were
selected from the predicted values generated by the optimal machine learning model.
Several groups of experiments were conducted utilizing the predicted process parameters
to validate the accuracy of the predicted results and the effectiveness of the optimal param-
eters. This method avoids trial-and-error experiments, greatly shortens the time and cost
expenditure, and has a certain guiding significance for selecting process parameters.

2. Methodology
2.1. Experimental Setup

The experiments were conducted on a WAAM system, as illustrated in Figure 1. It
consists of a six-axis welding robot (ABB IRB1600, ABB, Zurich, Switzerland), a controller
cabinet (ABB IRC5, ABB, Zurich, Switzerland), a MIG welder (SAF-FRODIGIPULS III 420,
SHAF Electric, Shanghai, China), a 3D laser scanner (SR7400, SSZN, Shenzhen, China), and
a control computer. The specifications for the 3D laser scanner are detailed in Table 1. The
depositions were carried out on Q235 substrates with a thickness of 10 mm. Low-carbon
steel materials are commonly used in WAAM due to their affordability and consistent
mechanical properties. For this reason, the steel CHW-50C6 (Hantai Welding Technology,
Changsha, China) with a diameter of 1.2 mm was selected as the filling material, and Q235
steel was used as the substrate. The main components of the welding wire and substrate
are shown in Table 2. The shielding gas was a mixture of 20% CO2 and 80% Ar with a flow
rate of 18 L/min. The elongation of the welding wire was 12–15 mm. The welding voltage
was set to be 22 V, while the welding current changed with the preset WFS.

Table 1. 3D laser scanner parameters.

Model Scan Height Scan X Length Z-Axis Accuracy X-Axis Accuracy Single Line Points

SR7400 200 mm 240 mm 5 µm 90 µm 3200

Table 2. Composition of the used welding wire and substrate (wt. %).

Material
Composition (wt. %)

C Mn Si S P Cu

CHW-50C6 0.08 1.52 0.92 0.015 0.020 0.20
Q235 ≤0.17 ≤1.4 ≤0.35 ≤0.035 ≤0.035 -
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Figure 1. Schematic diagram of the experimental setup.

2.2. Experiment Design

Suitable process parameters ensure the geometric accuracy and performance of the
weld. As shown in Figure 2, when the WFS/WS ratio is high, excessive metal materials
are filled into the weld in a short period of time, making the molten pool larger and more
susceptible to collapse. When the WFS/WS ratio is low, the amount of metal materials
filled per unit time is insufficient, resulting in a spheroidization effect that makes the weld
bead discontinuous, and a relatively high welding speed may result in a humped weld
bead [27]. Only when the WFS/WS is in the proper range can the normal morphology of
the weld bead be obtained. The main factor controlling the morphology of the weld bead is
WFS/WS [28]. Hence, all possible combinations of 14 different WFS and 6 different WS
were used in the experiments, as shown in Table 3. In other words, 84 weld beads were
obtained by single-layer single-pass depositions if the process parameter combinations
were reasonable. These weld beads were scanned to provide data sets for machine learning
and subsequent process parameter optimization.
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Figure 2. The effect of different WFS/WS on the weld morphology.

Table 3. Experiment design.

Parameters Value

WFS (m/min) 3, 4, 5, 6, 7, 8
WS (mm/s) 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16

2.3. Data Sets Collection for Machine Learning Models

To provide data sets for predicting WFS/WS, the 3D laser scanner was used to extract
the cross-section profiles of the weld bead, and then the cross-section profiles were modeled
based on the mathematical function curve fitting method, which can obtain the dimensions
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of the weld bead. Bead width (BW) and bead height (BH) are the geometrical variables
used most frequently. However, measuring the BW and BH alone is insufficient to fully
characterize its morphological properties. It is necessary to introduce bead cross-section
area (BCSA) as the third geometric response variable. As a result, all machine learning
models used the BH, BW, and BCSA data as their input set and the corresponding process
parameter WFS/WS value as their output set. Additionally, K-fold cross-validation is used
to reduce the overfitting of all machine learning models.

A total of 84 welds were deposited in accordance with the experimental design.
Figure 3 shows the process of acquiring data sets for machine learning. After each deposi-
tion, the point cloud of the weld bead was obtained with the 3D laser scanner. Then, point
cloud processing and curve fitting were used to obtain the cross-section profiles and the
values of BH, BW, and BCSA. However, certain parameter combinations resulted in unsuc-
cessful deposition with defects such as humps and pits. Those inapplicable combinations
were ruled out, and only 64 weld beads were scanned to provide data sets. The detailed
procedure for extracting the cross-section profiles and curve fitting will be discussed below.
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2.3.1. Extracting the Cross-Section Profiles of Weld Bead

As shown in Figure 4, the 3D laser scanner emitted laser stripes oriented perpendic-
ularly to the deposition direction, and it employed the triangulation principle to obtain
the coordinate information of the surface points, enabling the reconstruction of the three-
dimensional morphology by the point cloud. The obtained point cloud data were processed
using functions in the open-source Point Cloud Library (PCL) to extract the cross-section
profiles of the weld bead. Firstly, the pass-through filter was used to segment the part of the
weld to be detected. Secondly, the RANSAC algorithm was used to segment the weld bead
from the substrate. Thirdly, sparse points near the weld bead were removed by applying
the statistical filter to get a clean point cloud of the weld bead. Finally, 100 cross-section
profiles were obtained by slicing the weld bead at 100 locations along the length direction.
Generally, if the welding parameter stays constant, the cross-section profiles at different
locations are similar. However, the slicing location should not be in the start and end areas
of the weld bead because the ignition and quenching of the arc lead to unstable weld bead
morphology. Even if not in the start and end areas, the profiles are still likely to vary slightly
due to a variety of factors. Obtaining 100 cross-section profiles can significantly decrease
accidental errors.
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2.3.2. Curve Fitting of Weld Bead Profiles

The cross-section profiles are generally arc-like curves. In many previous studies, the
profiles were modeled using mathematical functions or geometrical parameters [29–31]. In
this paper, the cross-section profiles of weld beads were modeled based on the methods
of semi-ellipse, arc, and cosine function curve fitting, as shown in Table 4. Based on the
acquired cross-section profiles, the process of curve fitting was carried out using three
different mathematical models. Figure 5a shows that the semi-ellipse model accurately
matched the actual profile on both sides but exhibited a downward tilt at the top, and the
cosine model overshot the actual profile at the top, while the arc model best matched the
actual profile at both the sides and the top.

Table 4. Mathematical model of weld bead profile.

Profile Model Functional Model Bead Cross-Section Area (BCSA)

Cosine y = acos(bx)
∫ w

2
−w

2
acos(bx)dx

Arc y =
√

b2 − x2 − a
∫ w

2
−w

2
(
√

b2 − x2 − a)dx

Semi-ellipse y =
√

b2 − b2x2

a2

∫ w
2
−w

2

√
b2 − b2x2

a2 dx
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As mentioned in Section 2.3.1, 100 cross-sectional profiles with a length of 200 mm
were collected and used for curve fitting to avoid accidental errors. Figure 6 shows the
Root Mean Square Errors (RMSE) of the fitting curves for each profile. The arc model
had the RMSE closest to 0, indicating the highest accuracy in the fitting. The semi-ellipse
model showed the most significant error, particularly at the 22nd profile, where the RMSE
exceeded 0.7. The cosine model’s error was between the arc and semi-elliptical models.
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Thus, the arc function model was chosen as the final curve fitting model to determine the
BH, BW, and BCSA, as shown in Figure 5b. Since 100 cross-section profiles were extracted
for each weld bead, 100 groups of values for BH, BW, and BCSA could be obtained. The
average values of them were used for data sets. As mentioned above, only 64 weld beads
were scanned, and the collected whole data sets are shown in Table 5. When the WS value
remained constant, the BH, BW, and BCSA increased as the WFS increased. Similarly, when
the WFS value remained unchanged, the BH, BW, and BCSA decreased with the increase in
WS, consistent with the experimental findings reported in [6,32,33].
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Table 5. Data sets from experiments for each design.

No. WFS
(m/min)

WS
(mm/s) WFS/WS BW

(mm)
BH

(mm)
BCSA
(mm2) No. WFS

(m/min)
WS

(mm/s) WFS/WS BW
(mm)

BH
(mm)

BCSA
(mm2)

1 3 3 16.67 7.46 2.63 14.33 33 6 8 12.50 5.82 2.45 10.76
2 4 3 22.22 9.33 2.76 18.35 34 7 8 14.58 6.54 2.78 13.71
3 5 3 27.78 10.08 3.26 23.64 35 8 8 16.67 6.89 2.95 15.36
4 6 3 33.33 11.08 3.43 27.18 36 4 9 7.41 4.04 1.91 5.99
5 7 3 38.89 12.49 3.81 34.01 37 5 9 9.26 4.65 2.21 7.96
6 8 3 44.44 13.56 3.67 35.09 38 6 9 11.11 4.85 2.44 9.30
7 3 4 12.50 6.07 2.42 10.92 39 7 9 12.96 6.09 2.65 12.23
8 4 4 16.67 8.34 2.63 15.76 40 8 9 14.81 6.38 2.81 13.63
9 5 4 20.83 8.84 2.86 18.16 41 4 10 6.67 3.77 1.94 5.77
10 6 4 25.00 9.38 3.13 21.24 42 5 10 8.33 4.68 2.12 7.59
11 7 4 29.17 10.87 3.57 27.93 43 6 10 10.00 4.73 2.19 7.96
12 8 4 33.33 11.40 3.62 29.62 44 7 10 11.67 5.80 2.59 11.46
13 3 5 10.00 4.87 2.30 8.68 45 8 10 13.33 5.98 2.70 12.38
14 4 5 13.33 6.37 2.44 11.49 46 4 11 6.06 3.65 1.93 5.60
15 5 5 16.67 7.45 2.86 15.78 47 8 11 12.12 5.55 2.76 11.99
16 6 5 20.00 7.90 2.77 15.94 48 4 12 5.56 3.34 1.87 5.06
17 7 5 23.33 9.22 3.25 21.87 49 5 12 6.94 3.78 1.98 5.94
18 8 5 26.67 10.09 3.35 24.41 50 6 12 8.33 4.00 1.99 6.25
19 3 6 8.33 4.24 2.17 7.27 51 7 12 9.72 4.95 2.15 8.06
20 4 6 11.11 5.24 2.14 8.38 52 8 12 11.11 5.21 2.49 10.09
21 5 6 13.89 6.48 2.72 13.24 53 5 13 6.41 3.66 1.93 5.63
22 6 6 16.67 7.10 2.75 14.47 54 6 13 7.69 5.42 2.04 8.13
23 7 6 19.44 7.93 3.06 17.99 55 7 13 8.97 4.54 2.14 7.50
24 8 6 22.22 8.97 3.22 21.11 56 8 13 10.26 5.11 2.38 9.37
25 3 7 7.14 3.95 2.05 6.40 57 5 14 5.95 3.37 1.93 5.32
26 4 7 9.52 4.87 2.21 8.26 58 6 14 7.14 4.68 1.89 6.59
27 5 7 11.90 5.69 2.48 10.74 59 7 14 8.33 4.27 2.05 6.80
28 6 7 14.29 6.31 2.57 12.12 60 8 14 9.52 4.76 2.34 8.69
29 7 7 16.67 7.22 2.95 15.92 61 7 15 7.78 4.25 2.07 6.87
30 3 8 6.25 3.57 1.92 5.50 62 8 15 8.89 4.71 2.33 8.60
31 4 8 8.33 4.50 2.10 7.27 63 7 16 7.29 3.86 1.97 6.01
32 5 8 10.42 5.37 2.34 9.52 64 8 16 8.33 4.38 2.25 10.76
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2.4. Process Parameters Optimization Procedure

The procedure for process parameter optimization is illustrated in Figure 7. Three
steps are included as follows:

(1) Prediction of WFS/WS: Firstly, the BH and BW were set up to create the desired
surface morphology, and the BSCA value was then calculated according to the arc
mathematical function. Subsequently, the trained machine learning model was used
to predict WFS/WS. The primary reason for choosing WFS/WS was to ensure the
deposition quality. As discussed in Section 2.2, the morphology and success of the
deposition were highly related to WFS/WS.

(2) Calculation of candidate process parameters: Referring to the welding-feasible region
diagram obtained from the previous experiment (Figure 8), multiple sets of process
parameter combinations were generated by cyclic iteration and taken as candidate
process parameters. Figure 8 demonstrates that even when the WFS/WS value is
identical, the formation quality of the weld bead will have significant variations if the
WFS or WS value is not chosen correctly. Hence, it was crucial to compute the WFS
and WS values based on the summarized range of the welding-feasible area.

(3) Choosing optimal process parameters among candidates: A machine learning model
was established with process parameters as input to forward predict the BW and BH.
The difference between the predicted and preset values was analyzed. If the error
exceeded 5%, the corresponding combination would be removed. Finally, the optimal
parameter combination was selected by maximizing the effective deposition volume
per power (EDVP).
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It is worth mentioning that multiple ML algorithms were used for process parameter
planning. The performances of those algorithms are compared, as presented in Section 4.1.
The optimal algorithm was then chosen to perform the process parameter planning for the
experiments, as shown in Section 4.3.

EDVP is an index regarding the influence of power consumption and efficiency. The
value of EDVP can be calculated based on the following Equations (1)–(5).

Veffective = S × L = BCSA × L (1)

where Veffective, S, and L represent the effective deposition volume of the deposited sample,
the effective area, and the sample effective length, respectively. The effective area is BSCA,
which the arc mathematical function calculates.

Vtotal = WFS × T × π × r2 = WFS × L
WS

× π × r2 (2)

where Vtotal, WFS, and T represent the total deposited volume, the wire feeding speed, and
the duration of each welding cycle, determined by the total length and welding speed. And
r indicates the wire radius, which is 0.6 mm in the experiments. The formula for computing
the effective deposition rate (EDR) is as follows:

EDR(%) =
Veffective

Vtotal
× 100% (3)

The calculation of the effective deposition rate per power (EDRP) is performed using
the following formula:

EDRP(%/W) = EDR/P (4)

where P represents the power of the welding supply. The formula for computing the
effective deposition volume per power (EDVP) is as follows:

EDVP(mm3/W) = EDRP × Veffective (5)

3. Machine Learning Algorithms
3.1. Support Vector Regression

Support vector regression (SVR) is a powerful machine learning algorithm widely
used in regression analysis. Its principle is to use the kernel function to map input data
to high-dimensional space to solve the optimal hyperplane and transform the nonlinear
relationship between input and output variables into a linear relationship for prediction [34].
The expression of the SVR model is as follows:

f (x) =
m

∑
i=1

(αi − α∗i )K(xi, xj) + b (6)

where αi and α∗i are Lagrange multipliers; b denotes intercept; K
(
xi, xj

)
is the kernel

function. In order to improve the nonlinear processing ability of the SVR model, the
Gaussian radial basis function (RBF) is usually used as the kernel function. The RBF
function is as follows:

K(xi, xj) = exp

(
−
∥ xi − xj ∥2

g2

)
(7)

In the SVR model, the penalty factor C and RBF function parameter g directly de-
termine the prediction performance of the model. The generalization of the model is
influenced by the parameter C, while the training speed of the model is influenced by the
parameter g. Therefore, it is important to reasonably select appropriate values for these two
parameters. This study employs search ranges of (0.1, 200) for the C and (0.001, 1) for the g.
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3.2. XGBoost

XGBoost reduces the error of the previous prediction by continuously generating new
regression trees, gradually narrows the gap between the true value and the predicted value,
and ultimately improves the model’s prediction accuracy [35]. The prediction function of
XGBoost is as follows:

ŷi =
K

∑
k=1

fk(xi), fk ∈ Γ (8)

where ŷi the predicted output value of the ith sample; K is the total number of regression
trees; fk is the predicted value of the kth model in the ith sample; Γ is the space of the
regression tree. The objective function is as follows:

Obj =
n

∑
i=1

l(yi, ŷi) +
K

∑
k=1

Ω
(

f .
k

)
(9)

where Obj is the objective function;
n
∑

i=1
l(yi, ŷi) is the loss function, indicating the fitting

degree of the model; Ω
(

f .
k

)
is a penalty function to reduce the risk of overfitting. The

number of decision trees, the maximum depth of the tree, and the learning rate are the
three key hyperparameters of XGBoost. In this paper, the search range of the number of
decision trees, the maximum depth of the tree, and the learning rate are [50, 100, 200, 400,
500], [3, 4, 5, 6, 7, 8, 9, 10], and [0.01, 0.05, 0.1, 0.15, 0.2], respectively.

3.3. Back Propagation Neural Network

BPNN is a multi-layer feedforward neural network with error back-propagation.
Through the back-propagation of errors, the weights and thresholds of the network are
constantly adjusted to minimize the mean square error of the network [36]. As shown
in Figure 9, the structure of the BP neural network model consists of an input layer, a
hidden layer, and an output layer. In this experiment, the input layer nodes are BW,
BH, and BCSA, respectively, and the output layer nodes are WFS and WS. When there is
information input, the input information is sent to the input node, and after the hidden
layer is processed by the function, it is sent to the output node. When the neural network
has no activation function, the final output result is linear, and nonlinear data prediction
cannot be performed [37]. Thus, it is necessary to add activation functions to the neural
network model. This paper used the sigmoid function, the tanh function, and the ReLU
function as the activation functions of the hidden layer. The neuron nodes of the hidden
layer were in the range of 10–40, and different optimization algorithm solvers (SGD, LBFGS,
Adam) were used to find the optimal weight to minimize the loss function. The number of
iterations was 500.
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Figure 9. Back Propagation Neural Network architecture.

3.4. Machine Learning Tools

This paper mainly uses PyCharm software (Community Edition 2022.2.2) to write
machine learning code based on Python. Python is an open-source programming language
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widely used to develop machine learning algorithms. PyCharm software provides powerful
code analysis tools to help developers improve development efficiency and code quality.
The essential libraries, including NumPy, Pandas, Scikit-learn, XGboost, and Matplotlib,
were imported into PyCharm before the machine learning codes and data visualization
were executed.

3.5. Evaluation of Machine Learning Algorithms

To better evaluate the established machine learning model, this paper employs metrics
such as Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and the Coefficient
of Determination (R2) for evaluation and comparative analysis. The MAE is usually used
to weigh the absolute error between the actual and predicted values of the model. The
disadvantage of MAE is that it only considers the average of absolute errors and is not
sensitive to outliers. The RMSE is used to weigh the deviation between predicted and
actual values. The R2 evaluates the prediction accuracy of different models. Among them,
the smaller the MAE and RMSE values, the closer the model predicted value is to the actual
value, the closer the R2 value is to 1, and the better the model fitting performance. The
expression of the three metrics is as follows:

MAE =
1
n∑n

i=1 | yi − ŷi | (10)

RMSE =

√
1
n∑i=1

n (yi −
__
y i)

2 (11)

R2 = 1 − ∑n
i=1 (yi − ŷi)

2

∑n
i=1 (yi − y)2 (12)

where yi, ŷi, y, and n represent the actual value, the predicted value, the average of actual
values, and the total of input data, respectively.

4. Results and Discussion
4.1. Comparing Different Machine Learning Models Prediction Results

Multiple algorithms, including SVR, XGBoost, and BPNN, were employed to predict
the process parameters of WAAM. The K-fold cross-validation method was used to train
and validate the model using the data sets obtained from the experiments. K-fold cross-
validation is a resampling procedure employed to evaluate the precision of models when
dealing with limited data sets [38]. This method randomly divides the original data sets
into K discrete subsets. One of the subsets is designated as the validation data set, while
the remaining K−1 subsets are dedicated to training. This process is repeated K times, and
each subset takes turns as the validation set. In this study, the value of K was selected as 5,
and 80% of the data sets were used for training, while the remaining 20% were reserved
for model regression testing. The prediction results of different machine learning models
were compared, and the model with the highest prediction accuracy was selected to plan
process parameters.

The grid search is used to find the hyperparameters of the above machine learning,
and the results are shown in Table 6. As shown in Figure 10, the predicted value of SVR
was in good agreement with the actual value, while XGBoost had the lowest prediction
accuracy. BPNN displayed signs of overfitting during the training process, resulting in
unstable prediction outcomes. Although most points predicted by BPNN were consistent,
the individual point deviation was relatively substantial, making the overall prediction
accuracy not ideal. As shown in Table 7, the R2 value of the BPNN test set was 0.9170,
while the R2 value of the training set was 0.9961. The R2 value of the test set was lower
than the R2 value of the training set, and there was a potential overfitting phenomenon.
The RMSE values of SVR, XGBoost, and BPNN were 1.8087, 2.0739, and 3.0545, respec-
tively. The SVR achieved a higher prediction accuracy, but it still fell short of meeting the
accuracy requirements for welding process parameter planning. Consequently, there was a
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decision to optimize SVR through hyper-parameter tuning to enhance prediction accuracy
and stability.

Table 6. Optimal hyper-parameters in different machine learning algorithms.

Machine Learning Model Parameter Value Parameter Value Parameter Value

SVR kernel RBF C 100 Gamma 0.0001
XGBoost max_depth 6 learning_rate 0.05 n_estimators 400

BPNN activation tanh Hidden layer sizes 10 solver lbfgs
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Table 7. Performance comparison of training sets and test sets in different machine learning algorithms.

Training Testing

RMSE MAE R2 RMSE MAE R2

SVR 1.5165 0.8077 0.9663 1.8087 1.2413 0.9709
XGBoost 2.6030 1.2569 0.9196 2.0739 1.3916 0.9617

BPNN 0.6478 0.4667 0.9961 3.0545 1.5200 0.9170

4.2. Comparing the Effect of GA and PSO on SVR

The traditional hyper-parameter tuning methods mainly use manual tuning, grid
searching, and random searching [39]. For example, the above three machine learning
models derive their hyperparameters through grid search. However, this method has
corresponding defects, such as a long calculation time, an inability to deal with continuous
parameters, ignoring the correlation between parameters, etc. Grid search is unsuitable
for non-convex optimization problems and may also produce overfitting. Random search
offers higher computational efficiency and broader coverage of the search space than grid
search. However, it still exhibits instability with fewer data samples and cannot ensure a
globally optimal solution exists. As a result, this study employs PSO and GA to optimize
SVR parameters in the training scheme for complicated issues to improve the global search
capabilities of the model and circumvent the local optimum, as shown in Figure 11.
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The primary parameters of the PSO algorithm include the number of particle swarms,
the maximum number of iterations, the acceleration constants C1 and C2, and the weight
coefficient. The main parameters of the GA algorithm include population size, the maxi-
mum number of iterations, crossover rate, mutation rate, and DNA size. Population size
significantly impacts the performance and effectiveness of GA and PSO. Therefore, this
study observed the performance of PSO–SVR and GA–SVR under different population
sizes using the trial-and-error method, as shown in Table 8.

Table 8. Performance of the model for various population sizes.

Population
Size

PSO–SVR Result GA–SVR Results

RMSE R2 RMSE R2

20 2.0522 0.9614 3.3094 0.9025
30 2.0830 0.9690 3.1986 0.9090
40 1.8269 0.9703 3.0348 0.9180
50 1.8464 0.9697 2.7042 0.9349
60 1.1670 0.9879 2.6308 0.9384
70 1.2653 0.9858 2.5409 0.9425
80 1.5696 0.9781 2.1823 0.9576
90 1.5841 0.9777 2.6461 0.9377

In the PSO–SVR algorithm, it can be observed that the increase in population size
from 20 to 60 corresponded to the decrease in RMSE value. However, when the population
increased from 60 to 90, the RMSE value increased. Therefore, PSO–SVR performed the
best prediction when the population size was 60. In the GA–SVR algorithm, the RMSE
gradually reduced as the population size rose from 20 to 80. When the population was 80,
the RMSE value reached its lowest value. As a result, the ultimate population sizes for
PSO and GA were determined to be 60 and 50, respectively. In addition, other parameters
were also determined by the trial-and-error method, as shown in Table 9. The performance
of PSO–SVR and GA–SVR is shown in Figures 12 and 13, respectively. Among them,
PSO–SVR achieved the highest predictive accuracy, with RMSE values of 1.1670. The RMSE
value of GA–SVR was 2.1823. Compared with the normal SVR in Figure 10, PSO–SVR can
obtain better prediction performance. On the contrary, GA–SVR’s prediction accuracy was
lower than the normal SVR’s, which did not play an optimization role.
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Table 9. Model parameters of GA–SVR and PSO–SVR.

PSO GA

Number of particle swarm 60 Population size 80
Maximum number of iterations 220 Maximum number of iterations 700
Cognitive acceleration C1 1.5 Crossover rate 0.85
Social acceleration C2 3 Mutation rate 0.097
Initial inertia weight W1 0.85 DNA size 25
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In order to facilitate a more comprehensive comparison of the results, it was necessary
to calculate the R2 of the prediction model using Equation (12). As shown in Figure 14,
the correlation between the actual WFS/WS and the predicted WFS/WS values generated
using different machine learning models is intuitively depicted. The distance between the
surrounding scattered data points and the fitted line (representing the actual WFS/WS)
shows the degree of correlation between the model-predicted value and the observed value.
During the training and testing of the predictive models using K-fold cross-validation, the
R2 values of SVR, XGBoost, BPNN, PSO–SVR, and GA–SVR were 0.9709, 0.9617, 0.9170,
0.9879, and 0.9576, respectively. The results show that the correlation coefficient R2 value
of PSO–SVR was closer to 1 than that of GA–SVR, SVR, XGBoost, and BPNN. It can be
inferred that among all the applied machine learning models, the PSO–SVR performed
better in predicting the welding process parameters (WFS/WS) in WAAM. In addition, the
PSO–SVR was also used to forward predict the bead height and width.
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4.3. Validation Experiment

To assess the efficacy of the process parameter optimization method, this study con-
ducted three sets of verification experiments. The first group consisted of single-layer
single-pass experiments, while the second group involved multi-layer single-pass curve
experiments, and the third group is multi-layer multi-pass experiments. The process param-
eter optimization was performed based on the predicted results of the PSO–SVR algorithm,
which demonstrated the highest prediction performance, as discussed in Section 4.2. In
the experimental verification section, we used the power analyzer to measure the energy
consumption of all candidate processes in the actual deposition process. The percentage of
maximum energy savings can be calculated by comparing the energy consumption of the
optimized process parameters with other parameters. The formula is as follows:

η =
Emax − Eo

Emax
× 100% (13)

where Eo is the actual energy consumption of the optimized process parameters, and Emax
is the largest energy consumption value among other process parameters.

4.3.1. Single-Layer Single-Pass Deposition

Single-layer single-pass experiments used a sample weld with bead dimensions of
11.4 mm in width, 3.6 mm in height, and 180 mm in length to verify the effectiveness of
the process parameter optimization method. The BCSA can be determined as 29.43 mm2

using the arc mathematical function. Firstly, the trained PSO–SVR machine learning
model was utilized to input the BH (3.6 mm), BW (11.4 mm), and BCSA (29.43 mm2)
to obtain a WFS/WS value of 33.008. Secondly, 12 sets of candidate process parameters
can be determined by cyclic iteration based on the welding-feasible region diagram in
Figure 8. Thirdly, these candidate process parameters were input to forward predict the
bead width and height based on the PSO–SVR model and compare the error between the
predicted size and the preset value. If the comprehensive error of the height and width
of the weld bead exceeded 5%, the parameter was removed from the candidate process
parameters. As shown in Figure 15c, the total error of the first set of process parameters
was 7.03%, which did not meet the requirements of the error range. Lastly, considering
the relationship between EDVP and welder energy consumption, the optimal process
parameters were selected from the candidate process parameters by maximizing EDVP. The
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calculation of EDVP can be determined by Equations (1)–(5). As shown in Table 10, it can be
observed that the group labelled No. 7 exhibited the highest value for the EDVP, indicating
that it represents the optimal combination of process parameters. Conversely, the group
identified as No. 2 displayed the lowest value for the EDVP, indicating that it represents
the worst combination of process parameters. Subsequently, experiments were conducted
on individual candidate process parameters, and the welding energy consumption during
the deposition process was measured with a power analyzer to verify the accuracy of the
optimal process parameters.
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Table 10. Single-layer single-pass experimental design and results.

No.
WFS WS BW BH BCSA EDRP EDVP E

(m/min) (mm/s) (mm) (mm) (mm2) (%W) (mm3/W) (Wh)

1 3 1.5 10.81 3.28 - - - -
2 3.5 1.75 11.16 3.32 26.17 0.005184 24.4178 76.2173
3 4 2 11.09 3.43 27.21 0.005237 25.6443 74.4883
4 4.5 2.25 11.24 3.52 28.34 0.005270 26.8870 72.2443
5 5 2.5 11.58 3.45 28.44 0.005120 26.2076 72.4333
6 5.5 2.75 11.65 3.72 31.13 0.005264 29.4933 70.9679
7 6 3 11.53 3.65 30.19 0.005564 30.2357 68.1638
8 6.5 3.25 11.73 3.52 29.42 0.004829 25.5683 75.4061
9 7 3.5 11.78 3.68 31.04 0.004950 27.6606 71.8503

10 7.5 3.75 11.82 3.77 32.00 0.004961 28.5747 71.3896
11 8 4 11.77 3.75 31.69 0.004654 26.5502 72.3520
12 8.5 4.25 11.58 3.69 30.68 0.004667 25.7723 73.1400

The results of the weld bead deposition utilizing the candidate process parameters
are shown in Figure 16. It can be seen that the actual weld morphology and quality under
different process parameter combinations were similar, aligning with the expected setting.
As shown in Figure 15a,b, the actual measured bead width and height value fluctuated
roughly around the preset value, and the predicted value was mostly close to the actual
value. The power analyzer record indicates that the minimum energy consumption of
the No. 7 group was 68.1638 Wh, while the maximum energy consumption of the No. 2
group was recorded at 76.2173 Wh. The process parameter combination of the minimum
energy consumption index was consistent with the previously planned process parameter
combination. Under the equivalent welding quality and morphology conditions, the
optimized process parameters can save up to 10.68% of energy (Equation (13)).
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4.3.2. Multi-Layer Single-Pass Curve Deposition

Multi-layer single-pass curve deposition was conducted to assess the effectiveness
of the process parameter planning method for complex-shaped components. Firstly, the
preset width of the weld bead was 7 mm, the height of the weld bead was 3 mm, the
length of the curve weld bead was 800 mm, and the number of bead layers was 10. The
BCSA can be calculated to be 15.88 mm2 by the arc mathematical function. The WFS/WS
predicted by the trained PSO–SVR model was 16.42. Secondly, 10 sets of candidate process
parameters can be obtained by cyclic iteration, as shown in Table 11. Thirdly, the optimal
process parameters obtained by the process parameter optimization method were in the
No. 4 group. Then, experimental validation was conducted, whereby distinct candidate
process parameter combinations were utilized for each layer of multi-layer single-pass curve
deposition. The outcomes of the deposition are shown in Figure 17. The measurement
results of the power analyzer show that the lowest energy consumption of No. 4 was
145.73 Wh, which is consistent with the planned combination of process parameters. In this
multi-layer single-pass verification experiment, the process parameter planning method
can save up to 11.95% of energy by Equation (13), which once again verifies the effectiveness
of the process parameter optimization method.

Table 11. Multi-layer single-pass experimental design and results.

No.
WFS WS BW BH BCSA EDRP EDVP E

(m/min) (mm/s) (mm) (mm) (mm2) (%W) (mm3/W) (Wh)

1 3 3 6.64 2.80 13.98 0.005952 66.5557 149.17
2 4 4 7.59 2.57 14.13 0.005833 65.9297 154.56
3 4.5 4.5 7.62 2.60 14.37 0.005871 67.4775 147.13
4 5 5 7.58 2.73 15.14 0.005674 68.7044 145.73
5 5.5 5.5 7.40 2.78 15.16 0.005383 65.2717 155.69
6 6 6 7.36 2.84 15.48 0.004871 60.3053 158.91
7 6.5 6.5 7.25 2.92 15.80 0.004399 55.6153 161.51
8 7 7 7.12 2.90 15.45 0.003946 48.7675 162.53
9 7.5 7.5 7.06 2.97 15.79 0.003848 48.6187 164.14

10 8 8 7.02 3.04 16.18 0.003635 47.0386 165.50
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4.3.3. Multi-Layer Multi-Pass Deposition

To further verify the actual effect of the process parameter optimization method
in this paper, multi-layer multi-pass verification experiments were carried out. Three
100 × 60 × 8 mm3 cuboid components were deposited in the multi-layer multi-pass ex-
periment, and the process parameters #4, #7, and #12 in Table 10 from the single-layer
single-pass experiment were respectively used for the experiment. The process parameters
in #7 are the optimal combination of process parameters after optimization. The process
parameters of the three groups of experiments were predicted by the same size of weld
bead shape. It can be seen that the bead width and height of the actual deposited single
bead were basically the same as the preset value in Section 4.3.1, and the bead height and
width were 3.6 mm and 11.40 mm, respectively. According to the size of the single bead,
to realize the formation of 100 × 60 × 8 mm3 cuboid components, each layer needed to
deposit five welds, the overlap rate between adjacent welds was 60%, and the Z-shaped
reciprocating deposition had three layers, as shown in Figure 18a. During the deposition
process, the power analyzer was used to record the energy consumption and time of each
group of experiments, and each layer was cooled for 3–5 min after the end of the deposition
to avoid excessive heat accumulation. The 3D laser scanner can also be utilized to measure
the geometric size of each layer of weld bead in the cooling period, as shown in Figure 18b.
As shown in Figure 19, it can be found that the surface shape and quality of the weld bead
after deposition of the process parameters of #7 were better than those of the other two
sets of parameters. For example, the surface of the weld bead in Figure 19a was uneven,
and even pores appeared, indicating that the selection of reasonable process parameters
can even play a role in inhibiting defects. As shown in Table 12, the size of the deposited
components of #7 process parameters was closest to the expected size, and the time and
energy consumption of the process were significantly lower than those of the other two
groups of experiments. In terms of energy consumption, #7 was 8.45% and 7.48% lower
than #4 and #12, respectively. It was proved again that the process parameter optimization
method in this paper can save energy consumption, reduce production costs, and achieve
green manufacturing.
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Figure 19. Multi-layer multi-pass deposition results. (a) #4 process parameter deposition results;
(b) #7 process parameter deposition results; (c) #12 process parameter deposition results.

Table 12. Multi-layer multi-pass experimental results.

Group WFS
(m/min)

WS
(mm/s) Length (mm) Width (mm) Heigh

(mm)
Processing
Time (min)

E
(Wh)

#4 4.50 2.25 96.96 58.83 8.54 10.53 549.38
#7 6.00 3.00 97.85 63.31 7.52 5.75 502.94

#12 8.50 4.25 100.24 61.37 8.16 5.00 543.62

5. Conclusions

This paper presents a method of process parameter optimization for WAAM based
on machine learning. Different machine learning algorithms were utilized and compared
in terms of performance. With machine learning models, the WFS/WS ratio was first
predicted, and then the optimal process parameters were chosen by taking into account the
impacts on power consumption and efficiency. The following conclusions can be drawn
from this study:

(1) Not only bead width (BW) and bead height (BH) but also Bead Cross-Section Area
(BCSA) were used as geometric response variables in machine learning models. To
calculate BCAS quickly, three mathematical functions were utilized to describe the
profile of weld beads. Among them, the arc mathematical function was the closest to
the actual cross-sectional profile, and the fitting accuracy was the highest, followed by
the semi-elliptic and cosine functions.

(2) K-fold cross-validation was used to assess the prediction performance of the machine
learning models to maximize the use of training data. The results revealed that the
SVR model had the highest prediction accuracy, with an RMSE of 1.8087 and an R2 of
0.9709. Conversely, XGBoost demonstrated the lowest accuracy. Notably, BPNN tends
to overfit when working with small sample data sets, resulting in lower prediction
accuracy for the test set than the training set.

(3) To enhance the performance of the SVR, GA and PSO were applied to optimize the
parameters of the SVR. The results showed that PSO–SVR has the highest prediction
performance among the developed models, with an RMSE of 1.1670 and an R2 of
0.9879. Compared with SVR, the prediction accuracy is greatly improved.

(4) The selection of the optimal process parameter considering the effective deposition
volume per power can reduce the welding energy consumption to some extent. The
optimized process parameters in the first single-layer single-pass experiment can
save up to 10.68% energy. In the multi-layer single-bead validation experiment, the
optimized parameters realized energy savings of up to 11.47%. The third set of
verification experiments further verified the effectiveness of the process parameter
optimization method.

In the future, more machine learning algorithms can be introduced and trained with
larger amounts of data to improve the accuracy and robustness of predicting. By combining
the slicing program with this parameter planning, a fully automatic WAAM system can be
developed to achieve higher efficiency and lower energy consumption.
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