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Abstract: The effect of tetrasodium of 1-hydroxy ethylidene-1, 1-diphosphonic acid (HEDP·4Na)
on the microstructure and phase characterization of alkali-activated fly ash–slag (AAFS) materials
is not clear or well documented. In this study, XRD, DTG, TAM-air, and SEM analyses of AAFS
were used to identify the microstructural changes in AAFS made with HEDP·4Na. Meanwhile, the
workability and compressive strength of AAFS were evaluated. The results demonstrated that the
early-age alkaline-activated reactions were retarded due to the addition of HEDP·4Na in the AAFS
mixture. However, the degree of gel formation was relatively increased at a later age in the AAFS
made with HEDP·4Na compared to the plain AAFS mixture. Additionally, in comparison to the
control group, the incorporation of HEDP·4Na in AAFS specimens resulted in improved flowability,
with increments of 5%, 15%, and 24% for concentrations of 0.1%, 0.2%, and 0.3%, respectively. The
initial and final setting times were prolonged by 5% to 50%, indicating a beneficial impact on the
rheological properties of the AAFS fresh mixture. Furthermore, the addition of HEDP·4Na led to
an improvement in compressive strength in the AAFS mixtures, with enhancements ranging from
13% to 16% at 28 days compared to the control group. With the presence of HEDP·4Na, the increase
in the degree of reactions shifted to the formation of gel phases, like C-S-H, through the combined
measurement of TGA, XRD, and SEM, resulting in a denser microstructure in the AAFS matrix.
This study presents novel insights into the intricate compatibility between the properties of AAFS
mixtures and HEDP·4Na, facilitating a more profound comprehension of the potential improvements
in the sustainable development of AAFS systems.

Keywords: AAFS; microstructure; workability; compressive strength; HEDP·4Na

1. Introduction

Alkali-activated materials (AAMs), which utilize industrial by-products such as fly
ash (FA), slag, or metakaolin, are recognized as a sustainable low-carbon alternative to
traditional Portland cementitious materials (PCMs). These alternatives are noted for the
reduction in carbon dioxide emission and energy consumption, as well as minimal ex-
ploitation of natural resources [1–5]. For example, the life cycle assessment (LCA) of
alkali-activated mortars conducted by Gopalakrishna and Dinakar [6] revealed significantly
lower Embodied Energy (EE) and Global Warming Potential (GWP) values compared to
mortar made with PCMs. The reductions in EE and GWP were as much as 94% and 97%,
respectively. Although numerous investigations regarding AAMs are well documented,
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significant challenges need to be addressed to enhance their application within the industry.
For example, alkali-activated slag (AAS) shows poor workability because of the large
viscosity of the fresh mixes and quick setting [2,7,8], while alkali-activated fly ash (AAF)
often struggles to achieve the required strength at an early age owing to the low chemical
activity of FA [9–11].

To address the previously mentioned challenge, recent investigations into alkali-
activated materials (AAMs) have increasingly concentrated on the hybrid of AAF and
AAS, known as AAFS. This hybrid system comprises components of crystalline and amor-
phous phases at the microstructural level, including N-A-S-H, N-C-A-S-H, and C-A-S-
H gels within the AAFS system (CaO-SiO2-Al2O3), each with varying degrees of cross-
linking [12,13]. The formation of these hydration products plays a crucial role in the
microstructure evolution within the AAFS matrix, potentially involving the development
of AAFS mechanical performances. Furthermore, more than 90% of the binder weight is
taken up by these three types of reaction products in the AAFS paste [14]. Leveraging the
complementary synergistic properties of AAF and AAS, AAFS has shown improvements in
engineering performance, such as shrinkage, freezing and thawing resistance, compressive
strength, and flexural strength [2,15–17]. For instance, Vigneshkumar et al. [18] investigated
the effects of FA- and GGBS-based Self-Compacting Geopolymer Concrete (SCGC) with
sodium silicate and sodium hydroxide solutions as activators on fresh and mechanical
properties. Their research revealed that incorporating a combination of 50% GGBS and
50% FA by weight resulted in significant enhancements in compressive strength (32.95%
and 32.68%), flexural strength (38.92% and 61.81%), and split tensile strength (18.40%
and 49.53%) at 28 days, compared to SCGC formulations based solely on FA or GGBS. Li
et al. [19] utilized phosphoric acid as an activator with high-magnesium nickel slag (HMNS)
and FA to prepare geopolymers, resulting in the production of HMNS-FA-phosphate-based
geopolymers with superior mechanical properties. Bayraktar et al. [20] explored the use
of different recycled sands in the production of a sustainable one-part alkali-activated
slurry-infiltrated fiber concrete or composite made with slag and FA. The authors identi-
fied the ideal AAFS mixtures that resulted in higher compressive strengths, freeze–thaw
resistance, flexural toughness, and high-temperature resistance. The study highlighted the
potential of these materials for construction applications, especially in times of natural sand
shortages [19–22]. In summary, compared to AAS or AAF, the micro- and macroscopic
performance improvement of AAFS depends on the dissolution of FA and slag particles
and the subsequent formation of binding gels (N-A-S-H, N-C-A-S-H, and C-A-S-H gels), as
indicated in [2,23]. Therefore, the dissolution behavior of FA and slag particles in AAFS is
critical to forming a durable and integral matrix [24,25].

While AAFS demonstrates superior engineering performance over AAF or AAS, its
fresh performance requires further enhancement before widespread industry adoption,
facilitating transportation, pumping, and integration into the construction process [26].
Chemical admixtures play a vital role in modern high-performance concrete mix proportion
design. Extensive research has focused on the influence of different chemical admixtures
on the properties of AAFS. Superplasticizers (SPs) based on naphthalene and polycar-
boxylate ether are recognized as effective performance enhancers, improving workability
for AAFS when activated with SH and SS solutions [27–29]. However, such SPs can in-
fluence the dissolution behavior of FA and slag, potentially impacting the strength of
AAMs [27,30,31]. Another essential admixture is retarders, such as organic phosphonates
(C10H12N2Na4O8·4H2O, EDTA-4Na) [32]. These phosphonates exhibit biodegradability
and compatibility with the environment, and conform to regulatory guidelines by forming
stable complexes with metal ions [33,34]. However, the cost and efficiency of delaying
setting depend on the type of retarder [32].

Tetrasodium salt of 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP·4Na) serves
as a widely used metal corrosion inhibitor in various industrial applications, including
chemical and metallurgical water treatments [35]. It has the capability to dissolve different
metal oxides and form stable complexes. The use of HEDP·4Na in Portland, magnesium
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oxysulfate, and oil well cement has been verified as an effective retarder, and exhibits good
efficiency in delaying the setting time of PCMs [5,36–38]. For instance, Ramachandran
et al. [5] demonstrated that the addition of HEDP·4Na to Portland cement extended the
induction period from about 3 h to over 72 h, indicating its superiority over other concrete
additives. The study conducted in [37] also suggested that using HEDP influenced the
hydration kinetics and setting behavior of Portland cement pastes. Furthermore, Lupu
et al. [38] elucidated the reaction mechanism between CaCO3 and hydration-retarding
phosphonate inhibitor agents in a cement matrix by using vertical scanning interferometry
(VSI) and X-ray photoelectron spectroscopy (XPS) techniques. For instance, the hydration
process and setting time of cement pastes were extended due to these kinds of phosphonates,
like ATMP, HEDP, HEDP·4Na, and DTPMP [32,34]. This is because these compounds
possess strong chelating or complexing capability, which can potentially poison CH and
C-S-H nucleation. As a result, the formation of a metastable C-S-H film on the surface of
cementitious material grains delays the progress of the hydration reaction. Additionally,
these organic phosphonates also help to retard the setting time in the AAS system [39,40].
Wei et al. [22] reported that the addition of 0.3% and 0.6% HEDP·4Na to fiber-reinforced
alkali-activated slag composites (FR-AASC) prolonged the initial and final setting times by
33% and 60%, and 54% and 31%, respectively, compared to the control group. This study
showed that the presence of HEDP·4Na significantly delayed the setting time of FR-AASC.
However, there are limited studies regarding the effect of HEDP·4Na on the performance
of AAFS, especially regarding changes in microstructure and phase characteristics, as these
are essential to understand the mechanism of the retarding effect in the AAFS system.

Based on the aforementioned review, this study aims to explore the impact of HEDP·4Na
on the fresh performance and setting behavior of AAFS. While HEDP·4Na has been ex-
tensively studied for its retardation effect in various cementitious systems, its influence
on AAFS remains relatively unexplored. To comprehensively understand the effect of
HEDP·4Na on the properties of AAFS, both workability and compressive strength were
evaluated. Moreover, the microstructure and phase characteristic changes in AAFS paste
with HEDP·4Na were also analyzed using TAM-air, scanning electron microscopy (SEM),
thermogram analysis, and X-ray diffraction (XRD) techniques. By analyzing changes in
microstructure and phase characteristics induced by HEDP·4Na, this research seeks to
elucidate the mechanism underlying its retarding effect in the AAFS system. Such insights
will contribute to optimizing the fresh properties of AAFS, advancing its practical utility in
construction applications.

2. Experimental Program
2.1. Raw Materials

In this study, ground granulated blast-furnace slag (GGBS) and FA (Fly ash-I level)
were used as precursors. The chemical compositions and particle size distribution of
both materials are shown in Table 1 and Figure 1, respectively. In addition, the mineral
composition of GGBS and FA was determined by X-ray diffraction (XRD), with the result
presented in Figure 2. The alkaline activator commonly encompassed a combination of the
sodium silicate liquid and sodium hydroxide solution (SHS). The modulus n was calculated
as 3.34 based on the molar ratio of [SiO2]/[Na2O] of sodium silicate liquid, consisting of
28.8 wt%SiO2, 8.9 wt%Na2O, and 62.3 wt%H2O. This sodium silicate liquid is a commercial
sodium water glass with a density of 1.384 g/cm3 (CAS 1344-09-8). The prepared SHS
was obtained by mixing sodium hydroxide (SH) solid powder (17.35 wt%, >96% purity)
with de-ionized water, and the glass modulus of n was adjusted accordingly. It is worth
noting that the SHS should be allowed to stand still for at least one day before being used
to prepare AAFS paste.
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Table 1. Chemical composition of GGBS and FA with X-ray fluorescence (%).

CaO SiO2 Al2O3 MgO SO3 K2O Na2O Fe2O3 TiO2 P2O5 LOI *

GGBS (%) 39.81 31.86 16.53 6.89 0.04 0.54 0.33 0.43 1.23 - 0.21

FA (%) 6.66 42.34 25.84 1.17 0.95 1.05 1.13 5.46 1.07 0.38 3.79

* Loss of ignition (1000 ◦C).
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Figure 2. Mineral composition of GGBS and FA.

Green and low-cost HEDP·4Na solid powder served as an admixture in this study.
The chemical structure of HEDP·4Na is depicted in Figure 3. Before mixing with other ma-
terials, the solid HEDP·4Na powder was dissolved in de-ionized water to ensure uniform
distribution throughout the fresh paste. This process effectively enhances the proper-
ties of the alkaline activator liquid (AAL), aiming to meet standard performance crite-
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ria, including workability, setting time, and compressive strength, as outlined in the BSI
Standards [41–43].
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2.2. Mixture Proportion and Specimen Preparation

In this study, AAFS paste mixtures were proportioned to evaluate the influence of
varying HEDP·4Na content on microstructure and microcosmic mechanisms. The influence
of different mass ratios of GGBS and FA in alkali-activated material paste was examined.
Previous studies have shown that the microstructure and shrinkage behaviors of alkali-
activated paste are not significantly affected by mixtures that do not have a 50%-to-50%
ratio of GGBS to FA [2,44–46]. Therefore, AAMs with a mass ratio of 1:1 for GGBS and
FA in alkali-activated binders were selected for this investigation. The equivalent sodium
oxide (Na2O) content in the mixed activators used was 6% by mass of the binders. The
water-to-binders ratio in all the prepared samples was 0.5, while the water-to-solid ratio
was approximately 0.454, when considering the Na2O and SiO2 from the activators as parts
of the solid. Additionally, the masses of HEDP·4Na added were 0.1%, 0.2%, and 0.3% of
those of the binder materials, respectively. The mixture proportions of the AAFS paste are
shown in Table 2.

Table 2. Mixture proportions of AAFS paste.

Mixture GGBS
(kg/m3)

FA
(kg/m3)

NaOH
(kg/m3)

Na2SiO3
(kg/m3)

Water
(kg/m3)

HEDP·4Na
(Mass%)

P-0.0% HEDP·4Na 500 500 214.94 53.73 500 0
P-0.1% HEDP·4Na 500 500 214.94 53.73 500 0.1
P-0.2% HEDP·4Na 500 500 214.94 53.73 500 0.2
P-0.3% HEDP·4Na 500 500 214.94 53.73 500 0.3

To ensure the homogeneity of the HEDP·4Na solution, it was pre-mixed with AAL
before being added to the solid precursors. The mixing process for the AAFS paste com-
menced with the dry mixing of the solid materials for 2 min, followed by the addition of the
pre-mixed solution and further mixing for 3 min. Subsequently, the fresh paste was poured
into cube steel molds of 20 × 20 × 20 mm3 [47–49]. The molds were then vibrated on a
vibrating table for 1 min and sealed with plastic sheets on the surface of all specimens for
24 h at room temperature. Finally, all specimens were demolded and placed in a standard
curing room (20 ± 2 ◦C, 95% RH) until they reached the required curing testing ages.

2.3. Testing Methods
2.3.1. Setting Time and Workability

The initial and final setting times were determined using Vicat needle apparatus
according to ASTM C191-18 [50], keeping the experimental atmosphere at 23 ± 3 ◦C. The
initial setting time was defined as the duration between the initial contact of AAFS (or
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cement) and AAL (or water) and the penetration of 25 mm. Similarly, the Vicat final time of
setting was determined as the elapsed time between the initial contact of AAFS and AAL
and the endpoint determination, which did not leave a complete circular impression on the
specimen surface. The workability of paste specimens was assessed using a mini-slump
cone [51], with dimensions of 20 mm for the top diameter, 40 mm for the bottom diameter,
and 54 mm in height. To measure the flow spread of the fresh mixtures, the mini-slump
cone was filled, and the flow spread was observed for 30 s in two perpendicular directions.
The average value of these two measurements was recorded as the slump flow.

2.3.2. Mechanical Properties

Investigating the impact of varying HEDP·4Na concentrations on the mechani-
cal performance of alkali-activated pastes, the compressive strength of the specimens
(20 mm× 20 mm × 20 mm) was measured at specific curing ages under compression, with
a loading rate of 0.42 kN/s. The compressive strength values were averaged from the
three specimens.

2.3.3. Test Procedure

After the compressive strength test, all paste samples from each curing age were sec-
tioned into several blocks and ground into powder. These blocks and powders were then
dried in a vacuum oven at 60 ◦C for 24 h. Subsequently, microstructure and chemical analy-
ses were conducted on all alkali-activated paste specimens using material characterization
techniques, as described below:

• X-ray diffraction (XRD) analysis was conducted using a D8 Advance X-ray diffrac-
tometer (Bruker, Germany) with Cu Ka radiation (k = 1.5406 Å). The instrument was
operated at a voltage of 40 KV and a current of 40 mA. Scans were performed in the
2θ range of 5◦ to 70◦ with a step of 0.02◦ to analyze the amorphous phase of AAFS
paste powders.

• Isothermal calorimetry was performed on AAFS pastes using a TAM Air calorimeter
(TA Instruments Co., New Castle, DE, USA) to assess the impact of HEDP·4Na on
paste hydration. Paste samples were prepared using the external mixing method at a
water-to-binder (w/b) ratio of 0.5. The solid mixtures of AAFS and the mixing liquid
(AAL and water) were uniformly mixed with varying amounts (0%, 0.1%, 0.2%, and
0.3%) of HEDP·4Na in advance at a temperature of 20 ◦C.

• Differential thermal analysis (DTA) was performed using an STA8000 instrument
(PerkinElmer Diamond, Waltham, MA, USA) to analyze the samples. Approximately
20 mg of dried powder from each prepared sample was placed into an alumina crucible,
and the temperature was ramped from 30 ◦C to nearly 1000 ◦C at a heating rate of
10 ◦C/min. Fourier transform infrared spectroscopy (FTIR) was conducted using a
Spectrum 100 instrument (PerkinElmer, Waltham, MA, USA) to identify hydration
products via the KBr pellet technique. The spectra were obtained in the range of 4000
to 400 cm−1 at a resolution of 4 cm−1.

• Microstructural morphological changes in the AAFS samples were analyzed using
a scanning electron microscope (SEM, FEI, Quanta 250 FEG) equipped with energy-
dispersive X-ray (EDX) analyzer. The samples were coated with gold using a K550X
vacuum coater before testing.

3. Results and Discussion
3.1. TAM-Air

The calorimetric heat release curves of the alkali-activated pastes are illustrated in
Figure 4. All alkali-activated pastes exhibited two characteristic peaks in the heat flow
curves. The initial peak was observed within the first few minutes of the reaction, corre-
sponding to the wetting and partial dissolution of solid materials, including FA, GGBS,
and HEDP·4Na powder. The second peak, observed between 4.5 h and 14 h, indicates
the formation of reaction products, potentially including the formation of calcium–HEDP
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precipitates. This finding was also reported in [52]. The chelating properties of HEDP·4Na
may affect the dissolution, precipitation, or stabilization of alkali-activated paste phases.
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To explore the influences of HEDP·4Na content on the reaction kinetics of alkali-
activated mixtures, six indexes associated with hydration kinetics, including tA, (dQ/dt)A,
QA, KA-B, (dQ/dt)C, and QA-C, were calculated based on the literature [53]. The calculated
results of the six indexes are shown in Table 3. Compared to the AAFS mixture made
without HEDP·4Na, the time required for tA was delayed by 49%, 28%, and 400% when
the AAFS mixtures contained 0.1%, 0.2%, and 0.3% of HEDP·4Na, respectively. Corre-
spondingly, the rate of heat production during the dormant phase was reduced by 28%,
13%, and 76%, respectively. However, the cumulative heat flow at the beginning of the
acceleration phase increased by 4% for the paste with 0.3% HEDP·4Na compared to the
control group (P-0.0% HEDP·4Na). The chelating reaction of HEDP·4Na with metal ions
from the alkali-activated paste mixtures may impact the kinetics of the alkaline activation
process, which could potentially affect the development of compressive strength. The
chemical reactions of AAFS paste were affected by this alkaline environment. Although
HEDP·4Na can interact with different metal ions, such as calcium, magnesium, and iron, its
ability to form complexes with aluminum ions may be limited due to the specific conditions
of the alkaline-activated system. Under high-pH conditions, aluminum tended to form
complex hydroxide species. In addition, research conducted by Gong et al. [54] suggested
that the adsorption of HEDP·4Na was stronger on the surface of calcite than on the surface
of brucite. At the same time, the calcium ion concentration was higher than that of other
metal ions in this system (see Table 3). The possible chemical reactions of HEDP·4Na with
metal ions in the system are shown as follows:

Ca2+ + HEDP4− ⇌ CaHEDP2− + 2OH− (1)

Fe2+ + HEDP4− ⇌ FeHEDP2− + 2OH− (2)

Fe3+ + HEDP4− ⇌ FeHEDP− + OH− (3)

Mg2+ + HEDP4− ⇌ MgHEDP− + 2OH− (4)
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Table 3. Parameters of AAFS hydration extracted from the calorimetry curves of blank AAFS paste
and the AAFS paste containing HEDP·4Na.

Items tA
(h)

(dQ/dt)A
(W/g)

QA
(J/g)

KA-B
(W/(g·h))

(dQ/dt)C
(W/g)

QA-C
(J/g)

P-0.0% HEDP·4Na 2.0772 0.0013 33.9857 0.0010 0.0038 17.8139
P-0.1% HEDP·4Na 2.5659 0.0010 30.2868 0.0011 0.0037 18.6591
P-0.2% HEDP·4Na 2.3535 0.0011 32.5221 0.0006 0.0036 18.5391
P-0.3% HEDP·4Na 6.1659 0.0003 35.4217 0.0002 0.0020 21.9351

Note: tA: the endpoint of the dormant phase; (dQ/dt)A: the heat generation rate during the dormant phase; QA:
the cumulative heat flow at the onset of the acceleration phase; KA-B: the secant slope on the heat evolution curve
between a and b; (dQ/dt)C: the peak hydration rate observed in the acceleration; QA-C: the cumulative heat flow
throughout the acceleration phase.

It should be noted that under specific conditions and concentrations, the stoichiometry
and equilibrium constants of these reactions may vary, especially for the calcium-based
phosphonate complex. For instance, two productions between calcium and HEDP could
possibly be formed, including soluble HEDP-Ca complexes or Ca/HEDP precipitate [36].
Similarly, reactions might occur between calcium and HEDP·4Na.

During the acceleration period, the maximum hydration rates for the pastes with
HEDP·4Na were lower than that of the paste without HEDP·4Na. This indicates a slowing
down of alkaline-activated reaction rates due to the addition of HEDP·4Na. However,
the amount of cumulative heat (QA-C) generated by the AAFS paste increased with the
increase in HEDP·4Na content. This suggests the formation of a significant amount of
C-(A)-S-H gel hydrates and chelating products of HEDP with metal ions in the system [55],
which influence the strength development of alkali-activated pastes. This conclusion
implies that the reactions with HEDP·4Na generated more heat than those without it. The
increase in heat production may have resulted from chemical interactions or the influence
of HEDP·4Na on reaction kinetics. Further investigation and analysis may be required to
fully comprehend the role of HEDP·4Na in heat production during these reactions.

3.2. Workability and Setting Time of AAFS Mixture

Due to the chelation of the HEDP·4Na molecule with two phosphate groups and the
calcium cation from the solution, the rate of dissolution of solid particles in the solution
was prolonged, as evidenced by the extension of the induction period in Figure 4. As a
result, the rate of the hydration reaction was decelerated, leading to an increase in both the
workability and setting time for the AAFS paste containing HEDP·4Na.

The results of the mini-slump spread diameter of the AAFS mixtures are illustrated
in Figure 5. The mini-slump flow increased with the increase in HEDP·4Na content. For
instance, the mini slump of the AAFS mixture made with HEDP·4Na improved by 24%
compared to the plain AAFS mixture. Due to the introduction of HEDP·4Na, there was
a rise in the requirement for calcium cations in the alkali-activated paste to attain the
same level of performance as the control sample without HEDP·4Na. While the liquid-
to-binder ratio and FA-to-GGBS ratio were fixed in this study, competition for calcium
ion demand between the HEDP·4Na molecule and alkaline activator was formed in an
alkaline environment. Consequently, the spread diameter decreased for the paste without
HEDP·4Na due to the deceleration in the rate of the reaction.

Figure 6 shows the initial and final setting times of the alkali-activated pastes made
with various HEDP·4Na contents. The hardening process, which occurred without the
significant development of compressive strength, lasted from 60 to 88 min. The setting
time of the alkali-activated pastes was noticeably affected by the HEDP·4Na content. The
increase in HEDP·4Na content from 0.0% to 0.3% led to both the initial and final setting
time being delayed. However, the final setting times of all AAFS mixtures were less than
90 min.
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3.3. Compressive Strength of AAFS

Figure 7 demonstrates the influence of HEDP·4Na content on the 7-, 14-, and 28-day
compressive strength of the AAFS samples. The compressive strength was improved with
the increase in HEDP·4Na content regardless of curing age. Compared to pastes without
the addition in HEDP·4Na, those containing 0.1%, 0.2%, and 0.3% of HEDP·4Na exhibited
7-day compressive strength increases of 9.1%, 13.6%, and 15.9%, respectively. After 28 days
of curing, pastes with corresponding HEDP·4Na contents showed incremental increases in
compressive strength of 13.5%, 14.9%, and 16.2%, respectively, exceeding 40MPa. These
findings suggest that the incorporation of HEDP·4Na effectively enhances the hydration
degree of alkaline activator reactions, leading to the formation of C-S-H, C-A-S-H, and
N-A-S-H, and/or a better spatial distribution of these hydration products [39]. During the
induction period, the dissolution of calcium (Ca2+), silica (Si4+), and alumina (Al3+) phases
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in the alkaline environment was significantly influenced by the addition of HEDP·4Na.
Subsequently, the formation of hydrated products contributed to the improved compressive
strength of the alkaline-activated mixture.
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3.4. XRD Analysis

The results of the XRD analysis of the in situ binders (FA and GGBS) is shown in
Figure 8. The main diffractograms of FA revealed quartz (Q) and mullite (M). A broad
feature, often referred to as an ‘amorphous hump’, was observed between 20 and 35◦ (2θ),
and it was associated with the glassy component present in the FA [56]. The diffraction
patterns of the raw GGBS showed small detectable quantities of crystalline calcite and gyp-
sum, alongside a predominantly amorphous material. The crystalline phase of trisodium
phosphonoformate hexahydrate was detected in the raw HEDP·4Na material.
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Mineralogical phases from unreacted FA, such as quartz and mullite, were observed
in the diffraction curves of all alkaline-activated pastes at different curing ages, as shown in
Figure 8. The reaction between FA/GGBS and the alkaline activator led to the formation of
partially crystalline phases from amorphous phases. The main hydrated phases detected by
XRD included a poorly crystalline C-(A)-S-H phase and a low-intensity peak of hydrotalcite
(HT), formed through the alkaline activation of slags [57,58]. Calcite was detectable in the
testing samples as well. With the incorporation of HEDP·4Na content, slight variations in
the hydration products at different stages of the curing process were observed. The retard-
ing formation of crystallinity was significantly influenced by the addition of HEDP·4Na,
which was also verified by a calorimetry test. Similar phenomena have been reported in the
literature [59,60]. Amorphous phases constitute the majority of AAFS reaction products,
making it difficult to quantify C-A-S-H and N-A-S-(H) content individually. However, their
content and distribution in the AAFS system were related to the properties of AAFS.

3.5. Thermogravimetric Analysis (TGA)

Figure 9 displays the TGA results for AAFS paste at 28 days. The mass loss during the
measurement period was evaluated within the temperature range of 30–1000 ◦C, varying
between 22% and 24%. The AAFS mixture made with 0.3% HEDP·4Na in total weight loss
showed the highest mass loss compared to the other AAFS mixtures. A significant amount
of weight loss can be observed at temperatures up to 300 ◦C due to the evaporation of
water. Specifically, the mass loss percentages for the AAFS pastes, containing HEDP·4Na in
concentrations ranging from 0.0% to 0.3%, were 13.5%, 13%, 12.5%, and 14.5%, respectively.
This was because the water molecule is weakly bonded and escapes from the sample during
this initial phase (between 30 and 100 ◦C). The material structure started to deteriorate
due to the shrinkage of AAFS paste beyond this temperature, and mass loss was caused
by the non-structurally bonded water in C-S-H or (C-A-S-H) in the second phase (from
100–300 ◦C) [55,61]. It can be observed that the mass loss of AAFS pastes with the addition
of HEDP·4Na was slightly higher than that of the paste without HEDP·4Na, corresponding
to the greater formation of hydration products. A precipitated Ca-phosphonate nanoparticle
seeding effect and a more homogeneous hydration process may be also responsible for
this [39]. When temperatures rose above 300 ◦C, the hydroxy groups began to dihydroxylate
slowly. Relative dimensional stability was apparent in the material after removing most of
the water. After being heated to 1000 ◦C, the mass loss corresponded to the decarbonization



Buildings 2024, 14, 1383 12 of 16

of the carbonate phase. In the future, the use of HEDP·4Na may have a beneficial influence
on the properties of AAFS paste.
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3.6. SEM Analysis

The morphological characteristics of four AAFS paste specimens were examined using
SEM operating at a voltage of 20 kV and a magnification of 8000×. The specimens, cured
for 3 days, underwent vacuum drying for 12 h at 50 ◦C before testing.

At the early stage, the dissolution reaction mechanism occurs when the AAL dissolves
some of the outer shells of the FA and GGBS particles in the process. This process leads to
the leaching of Si-O-Al materials, which then form a cross-linked polyhedral polymer [62].
As observed in Figure 10, this polymer establishes a stable and three-dimensional structure.
The unreacted and partially reacted FA particles can be seen in Figure 10. The reason was
that smaller FA particles are more activated than larger ones. Activation and consumption
were easier for finer particles than for coarser particles, which may be due to their easier
absorption and more efficient conversion [63]. In contrast to FA, GGBS particles were
solubilized during the alkaline activation, which was attributed to their higher vitreous
phase content [63,64]. When the solubilization of FA and GGBS particles is poor, it might
cause an insufficient amount of gel formation. Furthermore, it hinders the development
of the compressive strength of AAFS paste [65]. Figure 10 demonstrates that the addition
of HEDP·4Na leads to a denser microstructure in the AAFS matrix compared to samples
without its addition. This may be attributed to its retardation effect and the influence of
phosphonate on the degree of crystallinity. The use of HEDP·4Na was also elucidated to
enhance the compressive strength of AAFS paste.
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4. Conclusions

This study investigated the effects of HEDP.4Na on the performance of the AAFS
system. The development of the microstructural and phase characteristics of AAFS made
with different HEDP·4Na contents was investigated, and the workability and compressive
strength were also evaluated. The following conclusions can be drawn.

• The use of HEDP·4Na in the AAFS system exhibited a potential retardation effect
on the rate of alkaline-activated reactions. This effect was advantageous for the
dissolution of FA and GGBS particles in the early stage, facilitating the exposure of the
glassy phase from precursor materials to the alkaline environment. The AAFS paste
made with 0.3% HEDP·4Na content experienced an extension of almost 6 h during the
induction period. Consequently, this process led to more hydration products being
formed at the later stage.

• In contrast to the AAFS mixture without HEDP·4Na, the flowability of the AAFS
mixture containing 0.1%, 0.2%, and 0.3% of HEDP·4Na showed increments of 5%,
15%, and 24%, respectively. Similarly, the initial setting time was prolonged by 5%,
19%, and 37%, respectively. The final setting time was also delayed by 8%, 23%, and
50%, respectively. This observation potentially demonstrates the favorable influence
of HEDP·4Na on the rheological characteristics of the AAFS fresh mixture.

• An improvement in compressive strength was achieved due to the addition of HEDP·4Na
to the AAFS specimens. Compared to the specimen without HEDP·4Na, the compres-
sive strength of AAFS specimens incorporating 0.1%, 0.2%, and 0.3% of HEDP·4Na at
28 d was enhanced by 13.5%, 14.9%, and 16.2%, respectively.

• Compared to the plain AAFS, the use of HEDP·4Na in AAFS can result in the im-
provement of gel phases formation, such as C-S-H, as shown in TGA, XRD, and SEM
analysis. This resulted in a denser microstructure and higher compressive strength in
the AAFS made with HEDP.4Na.

While this study provides valuable insights into the influence of HEDP·4Na content on
the properties of AAFS, there are certain limitations to consider. Firstly, this investigation
exclusively explored the influence of HEDP·4Na on AAFS without considering potential
interactions with other additives or variations in the AAFS system. This aspect should be
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investigated in depth to understand the comprehensive effects of HEDP·4Na in various
formulations. Secondly, while short-term effects were evaluated, long-term durability and
performance should be studied. Assessing long-term durability, including resistance to
chemical attacks and freeze–thaw cycles, is crucial to ascertain the effectiveness and robust-
ness of the HEDP·4Na-modified AAFS mixture. This will enhance our understanding of
the underlying mechanisms and optimize the application of HEDP·4Na in alkali-activated
materials for various engineering applications.
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