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Abstract: (1) Background: The effective selection of hyperspectral feature bands is pivotal in monitor-
ing the nutritional status of intricate alpine grasslands on the Qinghai–Tibet Plateau. The traditional
methods often employ hierarchical screening of multiple feature indicators, but their universal appli-
cability suffers due to the use of a consistent methodology across diverse environmental contexts.
To remedy this, a backward feature elimination (BFE) selection method has been proposed to assess
indicator importance and stability. (2) Methods: As research indicators, the crude protein (CP) and
chlorophyll (Chl) contents in degraded grasslands on the Qinghai–Tibet Plateau were selected. The
BFE method was integrated with partial least squares regression (PLS), random forest (RF) regression,
and tree-based regression (TBR) to develop CP and Chl inversion models. The study delved into
the significance and consistency of the forage quality indicator bands. Subsequently, a path analysis
framework (PLS-PM) was constructed to analyze the influence of grassland community indicators
on SpecChl and SpecCP. (3) Results: The implementation of the BFE method notably enhanced the
prediction accuracy, with ∆R2

RF-Chl = 56% and ∆R2
RF-CP = 57%. Notably, spectral bands at 535 nm

and 2091 nm emerged as pivotal for CP prediction, while vegetation indices like the PRI and mNDVI
were critical for Chl estimation. The goodness of fit for the PLS-PM stood at 0.70, indicating the
positive impact of environmental factors such as grassland cover on SpecChl and SpecCP predic-
tion (rChl = 0.73, rCP = 0.39). SpecChl reflected information pertaining to photosynthetic nitrogen
associated with photosynthesis (r = 0.80). (4) Disscusion: Among the applied model methods, the
BFE+RF method is excellent in periodically discarding variables with the smallest absolute coefficient
values. This variable screening method not only significantly reduces data dimensionality, but also
gives the best balance between model accuracy and variables, making it possible to significantly
improve model prediction accuracy. In the PLS-PM analysis, it was shown that different coverage and
different community structures and functions affect the estimation of SpecCP and SpecChl. In addition,
SpecChl has a positive effect on the estimation of SpecCP (r = 0.80), indicating that chlorophyll does
reflect photosynthetic nitrogen information related to photosynthesis, but it is still difficult to obtain
non-photosynthetic and compound nitrogen information. (5) Conclusions: The application of the
BFE + RF method to monitoring the nutritional status of complex alpine grasslands demonstrates
feasibility. The BFE filtration process, focusing on importance and stability, bolsters the system’s
generalizability, resilience, and versatility. A key research avenue for enhancing the precision of CP
monitoring lies in extracting non-photosynthetic nitrogen information.

Keywords: hyperspectral reflectance; feature elimination method; nutrient; alpine grassland; model

1. Introduction

Grasslands are an important part of our natural resources and the foundation of
modern agricultural development, as they have a vast spatial scope, quantifiable and
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measurable characteristics, production potential, and a key role in maintaining ecological
balance [1,2]. However, in recent years, due to climate change and human pressure [3,4],
our region of interest has suffered severe grassland degradation, which has brought signifi-
cant challenges to the sustainable development of the local economy (livestock production,
grass product production) and the environmental (biodiversity, climate regulation, soil
conservation, water conservation, and other ecological services) framework [5–7]. In view
of these challenges, it is increasingly important to systematically obtain accurate data
on grassland conditions [8]. The traditional methods for monitoring grassland resources
mainly rely on laboratory testing based on chemical detection methods, which require a
large amount of manpower and material resources to collect plant samples for testing and
therefore have the disadvantages of being time-consuming and laborious [9]. Hyperspectral
remote sensing has become a transformative tool that allows for extensive and effective
monitoring of grassland dynamics and conservation status [10]. Its application further
promotes the economic and environmental aspects of grassland management and supports
sustainable development. Despite this progress, the method for quantifying feed is rela-
tively uncontroversial in terms of its simplicity; qualitative analysis through hyperspectral
remote sensing is a considerable obstacle, requiring our methods to be innovative and
technically accurate. It is crucial to improve and advance the methods used. Combining
advanced analytical techniques and algorithms with field data can improve the accuracy
and robustness of the spectral features related to grassland forage quality. The continuous
development and validation of these remote sensing methods will not only overcome the
limitations of the current assessments but also ensure a sustainable future for grassland
ecosystems and the communities that depend on them.

Nitrogen, a paramount element among the essential nutrients, is indispensable for the
robust growth of pastures [11]. Traditionally, quantifying nitrogen content in forage leaves,
used to assess forage status or nutritional worth, has involved labor-intensive laboratory-
based chemical assays, such as the Kjeldahl method, or near-infrared (NIR) spectroscopy
techniques [12–14]. However, these conventional approaches, though accurate, require
extensive sample collection and preparatory processes before subsequent lab analyses.
Therefore, determining nitrogen content through these means can be arduous and costly,
especially with an increasing sample volume. This is where the ingenuity of grassland
nitrogen optical remote sensing becomes prominent, operating within the 400–2500 nm
range, covering both visible and near-infrared bands. Once the model is established, near-
infrared spectroscopy will greatly reduce the laboratory costs, enabling large-scale coverage
and the regular provision of pasture quality data. This technology offers a low-cost, efficient
alternative to the rigors of laboratory investigation.

The prowess of remote sensing technology in promptly measuring the nitrogen con-
tent across various crops has been thoroughly documented in numerous studies [15–17].
At the minute level of the leaf structure, it is evident from spectrometric analysis that the
chlorophyll content is the predominant influence on the spectral values, particularly within
the 400–700 nm wavelength range, the domain where pigment absorption is most signifi-
cant [18]. On the other hand, the spectral absorption features attributed to non-pigmented
compounds predominately manifest at wavelengths beyond the 700 nm threshold [19].
While nitrogen constitutes only a minor fraction of the leaf mass by itself, the majority of
it is intricately linked with pigments and proteins that are integral to the photosynthetic
process. Previous research has elucidated that the uptake of nitrogen by crops is especially
pronounced within the red and green spectral bands [20–22], thus enabling a basis for the
estimation of foliar nitrogen content. Specific absorption bands that are characteristic of
nitrogen, proteins, and chlorophyll, specifically at wavelengths such as 640 nm [23], 910 nm,
1510 nm, and 2300 nm [24], have been identified and effectively utilized for nitrogen esti-
mation in forage analysis. Moreover, tri-band parameters and vegetation indices—such
as red edge slope, red edge vegetation indices (VIs), and red edge position (REP)—have
shown a strong correlation with herbage nitrogen content [25]. Noteworthy examples
include the soil-adjusted vegetation index (SAVI), normalized difference vegetation index
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(NDVI), normalized difference nitrogen index (NDNI), and the Structurally Independent
Pigmentation Index (SIPI). These spectral signatures, red edge parameters, and vegetation
indices are highly responsive to nitrogen levels, significantly impacting the spatial variabil-
ity and distribution patterns of the nitrogen content in grassland ecosystems. However,
despite the precision with which these methods estimate nitrogen content, the link between
chlorophyll concentration and nitrogen levels remains an area of debate. By harnessing
cutting-edge spectral analysis techniques and developing robust, data-derived spectral
indices, we can achieve a more nuanced understanding of this complex interaction. It is
through the continual innovation of remote sensing methodologies that we can decipher
the real impact of nitrogen on plants’ physiological status.

Hyperspectral data are characterized by large volumes and a high dimensionality [26,27].
Additionally, these variables are typically highly correlated, often exhibiting multicollinearity,
a significant challenge in remote sensing data analysis [28,29]. In the context of remote sens-
ing and chemometrics, two methods are commonly employed to analyze hyperspectral data:
PLS regression and RF regression [30,31]. PLS regression, recognized as a state-of-the-art
non-parametric method for analyzing spectroscopic data, has been widely used in vegetation
property mapping [32,33]. On the other hand, RF regression, as an ensemble classification
and regression algorithm, has gained popularity in remote sensing for its high accuracy and
flexibility when used with complex datasets [34]. Moreover, feature selection techniques play
a crucial role in remote sensing analysis. These techniques aim to enhance the predictive
accuracy and interpretability of machine learning classification algorithms by eliminating
redundant, noisy, or irrelevant variables from training datasets or feature spaces [35]. The
goal is often to maximize the accuracy of specific classification models, as measured by preci-
sion indicators, by identifying and selecting the most effective combination of features [36].
Therefore, understanding the impact of the feature selection processes on various machine
learning or deep learning models applied to remote sensing data is essential.

The overall objective of this study is to estimate the chlorophyll (Chl) and crude
protein (CP) content of alpine meadow grasses at various stages of degradation using
hyperspectral data through the application of the backward feature elimination (BFE)
method. The specific goals of the study are as follows.

(i) To assess the effectiveness of PLS, RF, and tree-based regression methods in the
quantification of Chl and CP levels.

(ii) Testing the implementation of the BFE technique to optimize predictive models and
determining the most important spectral parameters for predicting grassland quality
markers based on their indicator importance and stability.

(iii) To utilize partial least squares path modeling (PLS-PM) to explore both the direct and
indirect linkages between the canopy structure and the soil background with spectral
estimation of chlorophyll and crude protein contents and to explicate the network of
relationships and intricate interactions that interlink these variables.

2. Materials and Methods
2.1. Study Area

The study area is located in an alpine meadow on the northeastern edge of the Qinghai–
Tibet Plateau (37◦40′ N, 102◦32′ E), with altitudes ranging from 2960 m to 3425 m. The region
features a moist climate, thin air, and strong solar radiation. The natural vegetation consists
of cold temperate humid alpine meadows. This area experiences concurrent hydrothermal
conditions with no absolute frost-free period, dividing the year into cold and hot seasons.
The average annual temperature is –0.1 ◦C, with the warmest month, July, averaging 12.7 ◦C
and the coldest month, January, averaging –18.3 ◦C. The annual accumulated temperature
above 0 ◦C is 1380 ◦C. The average annual precipitation is 416 mm, mainly concentrated
in July, August, and September. The annual evaporation rate is 1592 mm, approximately
3.8 times the precipitation, indicating concurrent hydrothermal periods. The soil types are
predominantly subalpine meadow soil and subalpine dark calcareous soil, with the soil
depths ranging from 40 to 80 cm and a soil pH of 7.0 to 8.2.
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2.2. Grassland Observation Data
2.2.1. Experimental Site Information

Field investigations took place during the peak growth phase of the principal species
in the alpine meadow, around mid-August, aiming to improve the general applicability
and precision of the fodder nutrient prediction model. Following a four-level gradient
standard for grassland degradation, five natural grazing grasslands were selected as the
research sample plots for the experiment. The altitude, longitude, and latitude of these
sample plots were recorded (Table 1).

Table 1. Types and geographical positions of the grassland communities.

Degraded Degree Altitude (m) Geography Coordinate Graze Rate (Sheep Unit·Day/hm2)

Non-Degradation (ND) 2930 37.209◦ N, 102.765◦ E 1.06
Light Degradation (LD) 2960 37.204◦ N, 102.752◦ E 3.47

Medium Degradation (MD) 3080 37.233◦ N, 102.680◦ E 6.63
Heavy Degradation (HD) 2710 37.196◦ N, 102.781◦ E 11.02
Over-Degradation (OD) 2880 37.187◦ N, 102.795◦ E 16.64

Note: The grassland communities are used as cold season pastures, and the grazing period is from October
to May.

Using an equidistant sampling method for the sample investigation, 24 samples of
1 m × 1 m were collected from each degradation gradient sample area, with a distance
of 5 m between each sample. A total of 120 samples of 1 m × 1 m were collected. In
each subplot, a FieldSpec 4Hi-ResASD4Hi-ResASD ground object spectrometer (spectral
range: 350 to 2500 nm; spectral acquisition time: 100 milliseconds) was used to measure
the spectrum of the grassland canopy. The vertical height of the fiber probe in relation to
the vegetation canopy is determined by the size of the sample canopy and the angle of
the probe’s field (25) so that the sample canopy is within the probe’s field of view. The
mean spectral reflectance data, used as the sample spectral reflectivity, were derived from
ten measurements of the vegetation canopy’s spectral reflectivity. After gathering spectral
data from the vegetation canopy, the documented information encompassed altitude and
geographical coordinates (longitude and latitude), as well as details regarding the grass,
such as its variety, extent of cover, occurrence, dominant species, and the populations of
those species. Dominant species refers to the species that dominate a community, surpassing
other species within the same community in terms of their quantity, volume, biomass, or
impact on habitat. They have a significant control over the structure and environmental
formation of the community. A total of 11 plants were surveyed in the non-degraded plots,
including the dominant species Kobresia humilis with a coverage rate of 26.21%. A total
of 17 plants were surveyed in the light degradation plots, including the dominant species
Gentiana macrophylla, with a coverage rate of 19.12%. A total of 18 plants were surveyed
in the medium degradation plots, including the dominant species Polygonum viviparum,
with a coverage rate of 18.8%. A total of 11 plants were surveyed in the heavy degradation
plots, including the dominant species Melissitus ruthenicus, with a coverage rate of 9.32%.
A total of 3 plants were surveyed in the extreme degradation plots, including the dominant
species Melissitus ruthenicus, with a coverage rate of 11.23% (Table 2).

The plant community coverage, the Shannon–Wiener diversity index, the Margalef
richness index, and the Pielou evenness index for the study plots are detailed in Figure 1.
The average coverage of the non-degraded grassland plant community was the highest,
not significantly different from the lightly degraded grassland community (p > 0.05) but
significantly higher than the remaining degraded grasslands (p < 0.05). The order was ND >
LD > MD > HD > OD. For the Shannon–Wiener diversity index, the mean value was highest
in the MD area, and except for the HD area, it was not significantly different from the other
degraded grasslands (p > 0.05), in the order of MD > ND > LD > HD > OD. Regarding the
Margalef richness index, the MD area had the highest mean value, significantly higher than
the HD and OD areas (p < 0.05), with the order being MD > ND > LD > HD > OD. For the



Agriculture 2024, 14, 757 5 of 21

Pielou evenness index, the ND area had the highest mean value, significantly higher than
the HD and OD area (p < 0.05), arranged as ND > MD > LD > HD > OD.

Table 2. Different plant species and their height and coverage.

Plant Species

None
Degradation (ND)

Light
Degradation (LD)

Medium
Degradation (MD)

Heavy
Degradation (HD)

Extreme
Degradation (OD)

Cover Height Cover Height Cover Height Cover Height Cover Height

Poa pratensis 11.7 29.32 3.20 21.62 4.00 21.53 6.04 22.20 6.40 10.12
Melissitus ruthenicus 9.32 2.31 4.12 2.42 6.52 2.34 9.32 1.82 11.23 1.23

Kobresia humilis 26.21 15.32 17.12 10.02 9.15 7.35 4.64 5.32
Koeleria cristata 5.32 11.31 3.65 19.40 3.33 15.70 3.22 15.60

Polygonum viviparum 0.28 7.46 16.40 24.86 18.8 10.08 17 7.56
Gentianamacrophylla 16.21 17.24 19.12 13.02 9.23 15.21
Potentilla chinensis 9.32 8.23 4.25 13.03 1.12 6.02

Stipa purpurea 5.41 16.12 4.82 19.06 3.50 15.92
Aster tataricus 1.32 4.41 2.78 5.80 1.42 3.80

Carex breviculmis 22.23 8.96 9.23 7.62
Allium sikkimense 2.14 3.20 1.23 2.54

Iris tenuifolia 1.32 14.56 2.56 18.32 5.23 21.02
Polygonum sibiricum 2.23 6.63 3.24 6.25

Dracocephalum
heterophyllum 1.23 14.23 2.32 13.25

Saussurea japonica 1.63 13.16 2.54 14.22
Pedicularis kansuensis 3.24 14.23 4.02 16.23

Veronica polita 2.31 4.23
Leontopodium

leontopodioides 0.45 2.12 5.14 2.25

Anaphalis lactea 2.32 5.54 1.52 4.65
Astragalus membranaceus 3.36 6.32 4.32 5.32

Elsholtzia densa 5.62 6.32 7.32 8.23
Plantago depressa 4.32 2.23 15.2 3.14
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Figure 1. Analysis of the differences in plant community coverage (a), Shannon–Wiener diversity
index (b), Margalef richness index (c), and Pielou evenness index (d) across plots of varying degrees
of degradation. Note: Subfigure (a) shows the differential analysis of vegetation coverage with
different degrees of degradation. Subfigure (b) shows the Shannon Wiener diversity index difference
analysis for different degrees of degradation. Subgraph (c) shows the analysis of differences in the
Margalef wealth index for different degrees of degradation. Subgraph (d) shows the differential
analysis of Pielou evenness index for different degrees of degradation. In addition, different letters
within each subgraph denote significant differences between groups (p < 0.05). Any occurrence of the
same letter indicates that there are no significant differences between the two groups (p > 0.05).
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2.2.2. Indicators Measured in the Laboratory

Grass was collected and transported back to the laboratory in ice bags. Its chlorophyll
content was determined using fresh grass samples from the canopy vegetation, while the
remaining grass samples were dried at 60 ◦C for 48 h in the laboratory. After drying, the
samples were mixed, ground, and sifted through a 1 mm sieve prior to chemical analysis.
The methods for nutritional determination are as follows:

Forage chlorophyll (Chl) content: Spectrophotometry;
crude protein (CP) content: Kjeldahl method.

The descriptive statistics on the pasture quality variables are presented in Table 3.

Table 3. Descriptive statistics on the pasture quality variables used to fit the models.

Variables Maximum Minimum Mean SD CV

Chl 3.68 1.23 2.31 0.72 0.31
CP 0.14 0.10 0.12 0.01 0.08

2.3. Spectral Variables

Table 4 summarizes 26 spectral variables, including 12 vegetation indices and
14 spectral signature parameters, widely used to estimate forage nutritional models. Vege-
tation indices and spectral characteristic parameters have been extensively utilized in the
qualitative and quantitative evaluation of grassland growth.

Table 4. Spectral variables used for estimating forage model.

Variables Variables Formula and Description

SR [37] Simple ratio index R800/R670

mNDVI [38] Modified red edge normalized difference
vegetation index (R750-R705)/(R750 + R705 + 2R445)

NDNI [39] Normalized difference nitrogen index log (1/R1510) − log (1/R1680)]/[log (1/R1510) + log
(1/R1680)

PRI [40] Photochemical reflectance index (R531 − R570)/(R531 + R570)
SIPI [41] Structure insensitive pigment index (R800 − R445)/(R800 − R680)
DVI [42] Difference vegetation index R810 − R680

NDGI [43] Normalized difference greenness index (R750 − R550)/(R750 + R550)
NDCI [44] Normalized difference cloud index (R762 − R527)/(R762 + R527)
SAVI [45] Soil-adjusted vegetation index [(1 + 0.5) × (R800 − R670)]/(R800 + R670 + 0.5)
RDVI [46] Renormalized difference vegetation index (R800 − R670)/(R800 + R670)
NRI [47] Nitrogen reflectance index (R560 − R670)/(R560 + R670)

NDWI [43] Normalized Difference Water Index (R857-R1241)/(R857 + R1241)
Db [48] Blue edge amplitude Maximum first-order differential spectrum at 490–530 nm
Λb [48] Blue edge position Wavelength position of blue edge amplitude
Dy [48] Yellow edge amplitude Maximum first-order differential spectrum at 560–640 nm
Λy [48] Yellow edge position Wavelength position of yellow edge amplitude
Dr [48] Red edge amplitude Maximum first-order differential spectrum at 680–760 nm
Λr [48] Red edge position Wavelength position of red edge amplitude
Dg [48] Green peak reflectance Maximum first-order differential spectrum at 510–560 nm
Λg [48] Location of green peak Wavelength position of green peak
Rr [48] Red valley reflectance Minimum first-order differential spectrum at 650–690 nm
λRV [48] Location of red valley Wavelength position of red valley
SDb [48] Blue edge area Area surrounded by original spectral curve at 490–530 nm
SDr [48] Red edge area Area surrounded by original spectral curve at 680–760 nm
SDy [48] Yellow edge area Area surrounded by original spectral curve at 560–640 nm
SDg [48] Green peak area Area surrounded by original spectral curve at 510–560 nm

2.4. Backward Feature Elimination

Backward feature elimination (BFE) was employed to discern the most pivotal spectral
bands for predicting the quality attributes of the grass under study. In PLS, BFE is conducted
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through a filtration process that iteratively removes bands with the least absolute regression
coefficient values, as detailed by Mehmood [49]. Following the exclusion of the least
significant bands, Leave-One-Out cross-validation (LOOcv) is carried out to determine
the optimum number of latent variables (LVs) and recalculate the regression coefficients.
This procedure is reiterated until merely two bands remain. During each step, the Leave-
One-Out cross-validation (LOOcv) process involves determining both the coefficient of
determination (R2) and the root mean square error (RMSE). A parallel approach is applied
in the case of RFs. Here, the bands deemed least crucial, based on the smallest increase in
the mean square error (MSE), are successively eliminated until a pair remains, in line with
the methodology adopted by Abdel-Rahman E M [50].

To investigate the influence of the dataset and the stability of the selected bands, the
BFE process was repeated n = 100 times in a bootstrap selection of 70% of the samples.
The percentage of bands selected in the 100 iterations of BFE was used as an estimate of
its stability.

2.5. Partial Least Squares Regression

PLSR consists of a linear multivariate regression model that seeks to maximize the
covariance between Y and X by decomposing them into n orthogonal latent variables
(LVs), linking the response variable matrix Y (Chl, CP) with the predictor variable matrix X
(hyperspectral indices). The PLSR model is calibrated using Leave-One-Out cross-validation
(LOOcv). The only parameter to be tuned in PLSR is the optimal number of LVs, which is
chosen based on the first local minimum of the root mean square error (RMSE) predicted by
cross-validation. In this study, we describe the basic functionalities and characteristics of
PLSR. The PLSR model was implemented using the CRAN package “PLS”.

The use of the coefficient of the partial least squares model as an indicator of the
importance of an evaluation index has been proven to be a robust method for variable
selection in PLS.

2.6. Random Forest Regression

Random forest (RF) regression utilizes a collective of Classification and Regression
Trees (CART) as a part of its machine learning approach to construct predictive models. Two-
thirds of the original dataset is randomly selected as in-bag samples using the bootstrap
method, forming a collection of k decision trees. One-third of the dataset, designated
as Out-Of-Bag (OOB) data, is used to calculate the mean square error (MSE), which is
synonymous with the OOB error. This OOB error is considered an accurate measure of
the model’s accuracy [51,52]. The RF algorithm is implemented using the CRAN package
“randomForest”. As mentioned earlier, an RF has two main hyperparameters, namely the
number of trees to grow (ntree) and the number of predictor variables selected at each
node (mtry). The default values for “randomForest” are used for ntree (500 trees) and mtry
(1/3 of the total number of predictor variables), as they have been proven to be acceptable
values and are the most commonly recommended [53].

The importance of the random forest regression method lies in its ability to quickly
and effectively process large amounts of data, identify useful features, and provide reliable
prediction results. The basic principle involves randomly permuting the predictor variables
and using the remaining predictor variables to calculate the MSE of the OOB set prediction.
MSE is a key indicator for evaluating the importance of model indicators, and the closer
the indicator is to the response variable, the larger the MSE value [53].

2.7. Tree-Based Regression

Decision tree technology is applied to both classification and prediction. A decision
tree is a method for classifying data. It mainly identifies patterns and infers rules from dis-
organized and irregular datasets to create a decision tree for classification. The construction
of a decision tree employs a top-down, recursive approach. By analyzing the differences
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between each node according to the internal structure of the decision tree, the outcomes
are derived based on the distribution of the tree’s branches.

2.8. Model Evaluation

The coefficient of determination (R2) and root mean square error (RMSE) are used
to assess the model accuracy, where n is the number of samples, Yi is the actual observed
value, Ŷi is the predicted value, and Y is the mean of the actual observed values. R2 ranges
from 0 to 1, with values closer to 1 indicating a better model fit. A smaller RMSE indicates
the higher predictive accuracy of the model.

R2 = 1 − ∑n
i=1

(
Yi − Ŷi

)2(
Yi − Yi

)
RMSE =

√
∑n

i=1
(
Yi − Ŷi

)2

n

2.9. Partial Least Squares Path Modeling

Unlike covariance-based structural equation modeling, PLS-PM focuses on maximizing
the explained variance of the dependent constructs, making it a powerful tool in predictive
studies and when the research objective is theory building or exploratory in nature.

A significant benefit of PLS-PM lies in its low requirements for the scale of mea-
surement, the size of the sample, and the distribution of the residuals. This renders it
particularly apt for preliminary studies where such criteria are not stringently adhered
to. Furthermore, PLS-PM can handle both reflective and formative measurement models,
providing flexibility in modeling complex constructs that are not easily captured using
traditional methods [54,55].

In terms of interpretation, PLS-PM provides several outputs, including path coeffi-
cients (indicating the strength and direction of relationships between variables), loadings
and weights (for measurement models), and various goodness-of-fit measures to assess the
model’s predictive power and the quality of the measurement models.

2.10. Technical Ideas

Correlation analysis utilizing raw spectra, spectral signature parameters, vegetation
indices, and community nutritional indicators (Chl, CP) was conducted to identify crucial
spectral bands with a strong relationship. These correlations were incorporated as input
parameters for the PLS, TBR and RF models. Moreover, recursive feature elimination
was employed in the PLS, TBR and RF models to evaluate the changes in the model
accuracy before and after the application of this technique. The significance of the model
indicators was assessed using the regression coefficient (PLS) and the increase in the MSE
(RF) as benchmarks, while the stability of the model indicators was evaluated based on
the frequency of their appearance after 100 iterations of backward feature elimination.
The overall importance of the indicators and their stability determined the key spectral
indicators for predicting the chlorophyll and crude protein contents. PLS-PM was used
to explore the direct and indirect connections between the canopy structure (Shannon–
Wiener diversity index, Margalef richness index, and Pielou evenness index) and soil
background (coverage) and the spectral signatures of Chl and CP, elucidating the network
of interrelations and intricate interactions among these variables.

The construction process of the estimation model for the Chl and CP contents in alpine
meadow grasslands is shown in Figure 2.
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Figure 2. Modeling approach of the study.

3. Results
3.1. Effects of Steppe Grassland Degradation on Plants’ Spectral Reflectance

Under various degradation gradients, as depicted in Figure 3, the spectral shapes have
a similar appearance. The distinct visible absorption characteristic of plant chlorophyll near
550 nm is evident, and the reflectance at the green peak decreases rapidly with increasing
degradation levels.
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Figure 3. Original spectral spectroscopy and first-order differential spectral of vegetation canopy
with different degradation degrees of alpine grassland. Note: Subfigure (a) shows original spectral
spectroscopy of vegetation canopy with different degradation degrees of alpine grassland. Subfigure
(b) shows first-order differential spectral of vegetation canopy with different degradation degrees of
alpine grassland.



Agriculture 2024, 14, 757 10 of 21

At nearly 680 nm, there is a narrow band (approximately 0.68–0.78 µm) where the
spectral response of healthy plants exhibits a dramatic increase—approximately tenfold—
from the chlorophyll absorption outside the red light region to the high-reflectance region
in the near-infrared.

Compared with the original spectrum, the differential spectrum of the canopy can
eliminate the influence of noise and highlight the slope changes or peak information in the
spectrum and is very useful for identifying the peak position and shape in the spectrum,
especially for the obvious peaks at 0.52–0.55 µm and 0.71–0.720 µm in Figure 3b.

3.2. Correlation Analysis

Correlation analyses are performed to examine the relationships between the forage
Chl and CP and the spectral indices (including the original spectrum, spectral parameters,
and vegetation indices). As shown in Figure 4, the bands of the original spectrum that are
significantly correlated with forage Chl span 350–652 nm, 654–655 nm, and 684–925 nm,
which correspond to a total of 547 bands. Among these bands, the correlation coefficient
curves show three peaks at 384 nm (R = 0.52), 529 nm (R = 0.49), and 723 nm (R = 0.49).
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Figure 4. Correlation between the forage nutrient index and the spectral variables.

For the original spectrum bands that demonstrate significant correlation with forage
CP, the ranges are 355–535 nm, 661–690 nm, and 769 nm, extending to 2092–2099 nm,
encompassing a total of 221 bands. Among these, spectral reflectance presents a positive
correlation with forage CP, and the correlation coefficient curves exhibit one peak at 682 nm
(R = 0.339).

As shown in Figure 5,the absolute values of the correlation coefficient between these
vegetation indices and the forage nutrient indices were generally in the range of 0.28 to 0.63
(p < 0.01). The vegetation indices were significantly correlated with the chlorophyll content:
the mNDVI, PRI, SIPI, DVI, SAVI, NRI, and NDWI showed a significant correlation with
chlorophyll. The vegetation indices significantly correlated with the CP (crude protein)
content included the mNDVI and PRI.

The absolute values of the correlation coefficient between the spectral feature parame-
ters and forage nutrient indices were generally in the range of 0.29 to 0.65 (p < 0.01). The
spectral feature parameters significantly correlated with chlorophyll content included Db,
λb, Dr, λr, Dg, SDb, SDr, SDy, and SDg, while those significantly correlated with the CP
content included λr and Rr.
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Figure 5. Correlation between the forage nutrient indices, vegetation indices, and spectral feature
parameters. Note: Subfigure (a) shows the correlation coefficients between vegetation index, Chl, and
CP. Subfigure (b) shows the correlation coefficient graph between spectral parameters, Chl, and CP.

In general, spectral parameter techniques based on a combination of vegetation indices
and first-derivative transformation can improve the characterization of herbage nitrogen
content and minimize the effects of the atmosphere, soil background, and water absorption.
They also provide more comprehensive information than the original spectrum.

3.3. Regression Analysis Based on Backward Feature Elimination

In order to create inversion models for the Chl and CP variables, we used partial
least square regression, random forests, and tree-based BEF. We compared three methods
for estimating grassland nutrients after applying backward feature elimination: PLS-BEF,
RF-BEF, and tree-based BEF. Figure 6 displays the model fitting accuracy (R2) and root
mean square error (RMSE) for these three methods. In the Chl and CP models, all useless
or redundant features were eliminated after a certain point in the feature selection loop, at
which time the algorithm began to discard features containing non-redundant information.
The performance of the three models was significantly different. RF-BEF yielded the best
results, followed by tree-based BEF, while PLS-BEF had the poorest model performance.

To compare the inversion accuracy and root mean square error of the models after
variable feature elimination, Table 5 displays the number and proportion of frequency
bands chosen for each pasture quality variable using backward feature elimination. The
table also illustrates the capability of the spectral bands and vegetation indices to reflect the
reflectance curves of the pasture mass, which depend on the varying content of the pasture
mass. RF-BEF outperformed the other two methods when comparing the model accuracy
and root mean square error. Additionally, some differences were observed between the
models. ImProfil selected fewer frequency bands than both RF-BEF and tree-based BEF
for variable selection. RF-BEF selected 10 sensitive bands and tree-based BEF selected
9 sensitive bands in the chlorophyll content inversion model. Across the three methods for
estimating the chlorophyll models, the PRI and mNDVI were chosen as sensitive indices for
modeling. For the CP estimation models, 535 nm, 2091 nm, the PRI, and λr were selected
as sensitivity indices for participation in the modeling.
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Figure 6. Model accuracy and root mean square error based on backward feature elimination.
Note: Subfigure (a) shows the accuracy of the Chl model under different selection variables.
Subfigure (b) shows the root mean square error of the Chl model under different selection vari-
ables. The subgraph (c) shows the accuracy of the CP model under different selection variables. The
subgraph (d) shows the root mean square error of the CP model under different selection variables.

Table 5. Performance of models with all bands and with selected bands.

Pasture
Variables

Model
All Bands Backward Feature Elimination

R2 RMSE Selected Bands R2 RMSE

Chl
PLS PRI, mNDVI 0.66 9.45
RF 0.39 0.31 359 nm, 652 nm, PRI, SIPI, NDWI, SAVI, NRI, mNDVI, λb, λr 0.95 3.50

Tree-based 0.72 0.49 359 nm, 652 nm, PRI, SIPI, NDWI, SAVI, mNDVI, λr, λb 0.85 6.15

CP
PLS 2091 nm, 535 nm, mNDVI, PRI, λr, SAVI 0.85 6.51
RF 0.37 0.84 359 nm, 535 nm, 2091 nm, PRI, SAVI, λr 0.94 3.72

Tree-based 0.31 0.10 359 nm, 535 nm, 661 nm, 2091 nm, PRI, mNDVI, λr 0.84 6.46

3.4. Selection of Characteristic Variables

Random forests exhibit high predictive accuracy for high-dimensional datasets, even
when the variables are highly correlated. Figure 7 illustrates the significance of the variables
within a random forest, and their importance in the chlorophyll inversion model is ranked
as follows: 359 nm > PRI > λr > NDWI > SIPI > mNDVI > λb > 652 nm > SAVI > NIR. The
importance of the indicators in the crude protein (CP) inversion models is demonstrated by
the sequence PRI > 359 nm > 535 nm > λr > 2091 nm > SAVI.

The importance of the indicators in the PLS model is evaluated using the coefficients
of the following equations.

Lm(CP) = 12.03 × 2091 nm − 17.68 × 535 nm − 5.57 × mNDVI + 4.60 × PRI + 10.65 × λr +
10.07 × SAVI + 25.30

Lm(Chl) = 16.50 × PRI + 5.07 × mNDVI + 25.26

In all the models predicting the chlorophyll content, the spectral indicators mNDVI
and PRI appeared with a frequency higher than 70% in a hundred cycles (Figure 8a).
Similarly, in the models predicting the CP content, the spectral indicators 2091 nm and
535 nm were selected with a frequency exceeding 70% in a hundred cycles (Figure 8b). It
is noteworthy that high importance also exhibited high stability in the predictions of Chl
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and CP. For example, for Chl predictions with PLS, the PRI is the most important band,
respectively, and also has the highest stability values.

Agriculture 2024, 14, x FOR PEER REVIEW 14 of 22 
 

 

3.4. Selection of Characteristic Variables 

Random forests exhibit high predictive accuracy for high-dimensional datasets, even 

when the variables are highly correlated. Figure 7 illustrates the significance of the varia-

bles within a random forest, and their importance in the chlorophyll inversion model is 

ranked as follows: 359 nm > PRI > λr > NDWI > SIPI > mNDVI > λb > 652 nm > SAVI > 

NIR. The importance of the indicators in the crude protein (CP) inversion models is 

demonstrated by the sequence PRI > 359 nm > 535 nm > λr > 2091 nm > SAVI. 

The importance of the indicators in the PLS model is evaluated using the coefficients 

of the following equations. 

Lm(CP) = 12.03 × 2091 nm- 17.68 × 535 nm − 5.57 × mNDVI + 4.60 × PRI + 10.65 × λr + 

10.07 × SAVI + 25.30 
 

Lm(Chl) = 16.50 × PRI + 5.07 × mNDVI + 25.26  

 
Figure 7. Assessment of indicator importance. Note: Subfigure (a) shows the important values of
each indicator in the Chl random forest model. Subfigure (b) shows the important values of each
indicator in the CP random forest model.



Agriculture 2024, 14, 757 14 of 21

Agriculture 2024, 14, x FOR PEER REVIEW 15 of 22 
 

 

Figure 7. Assessment of indicator importance. Note: Subfigure (a) shows the important values of 

each indicator in the Chl random forest model. Subfigure (b) shows the important values of each 

indicator in the CP random forest model. 

In all the models predicting the chlorophyll content, the spectral indicators mNDVI 

and PRI appeared with a frequency higher than 70% in a hundred cycles (Figure 8a). Sim-

ilarly, in the models predicting the CP content, the spectral indicators 2091 nm and 535 

nm were selected with a frequency exceeding 70% in a hundred cycles (Figure 8b). It is 

noteworthy that high importance also exhibited high stability in the predictions of Chl 

and CP. For example, for Chl predictions with PLS, the PRI is the most important band, 

respectively, and also has the highest stability values. 

 

 

Figure 8. Assessment of indicator stability. Note: Subfigure (a) shows the frequency of occurrence 

of the three Chl models after 100 iterations. The subgraph (b) shows the frequency of the three CP 

models appearing after 100 iterations. 

  

Figure 8. Assessment of indicator stability. Note: Subfigure (a) shows the frequency of occurrence
of the three Chl models after 100 iterations. The subgraph (b) shows the frequency of the three CP
models appearing after 100 iterations.

3.5. Partial Least Squares Path Modeling

The PLS-PM framework delineates the interconnections between SpecCP (spectral
variables characterizing chlorophyll), SpecChl (spectral variables characterizing crude pro-
tein), C (community coverage), S (Shannon–Wiener index), P (Pielou evenness index), and
D (Margalef richness index). Blue arrows signify positive pathways, while red arrows
indicate negative pathways. Standardized path coefficients are displayed on the arrows. A
comprehensive summary of the overall effects is presented at the bottom of the chart.

To investigate the influence of the soil background and grassland vegetation commu-
nity structure on the spectral prediction of chlorophyll and crude protein content and to
mitigate the effects of multicollinearity among independent variables and their interactive
influences, we partitioned the independent variables into a partial least squares regression
path model. Initially, spectral indicators for the grassland community chlorophyll and
crude protein content were obtained through assessments of their importance and stability.
Subsequently, a path analysis framework was established to examine the impact of grass-
land coverage, the richness index, the evenness index, the diversity index, and the salinity
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index on these spectral indicators. The PLS-PM method was then employed to elucidate the
interactions among groups of independent variables (Figure 9). It enables the evaluation of
the model’s fit and predictive capacity. The model’s goodness of fit stood at 0.70. Among
the four groups of independent variables, grassland coverage contributed the most to the
estimation of SpecChl and SpecCP (r = 0.73, r = 0.39) (Figure 9). In the estimation of SpecCP,
both the evenness index and the diversity index exerted a negative impact, whereas in the
estimation of SpecChl, only the evenness index had a detrimental effect. SpecChl positively
influenced the estimation of SpecCP (r = 0.80).
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Figure 9. Partial least squares path modeling.

4. Discussion
4.1. The Impact of Backward Feature Elimination on the Model’s Predictive Capability

This study contrasts conventional modeling approaches (PLS, RF, tree-based) with
regression algorithms enhanced by backward feature elimination (PLS-BEF, RF-BEF, tree-
based BEF). The findings reveal that when leveraging the Pearson’s correlation coeffi-
cient method for feature selection in chlorophyll and crude protein inversion, the preci-
sion of traditional models is suboptimal (ChlRF = 0.39, ChlTree-based = 0.72, CPRF = 0.37,
CPtree-based = 0.31). This can be attributed to the Hughes phenomenon, stemming from
redundancy and high correlation amongst the hyperspectral data variables, a phenomenon
where the predictive performance improves with the addition of features only until an
optimal number is reached, beyond which further inclusion of features degrades the perfor-
mance. Often, traditional correlation methods are employed to select model variables, but
the criteria for selection remain uncertain, and the presence of redundant data still allows
the influence of multicollinearity to persist. Hence, the algorithms utilized must adeptly
address these issues to avert the “Hughes phenomenon”. The backward feature elimination
method iteratively recalculates the regression coefficients after discarding the variable with
the smallest absolute coefficient value. This cycle culminates in an optimal balance of
model accuracy and variable quantity. In trials, the backward feature elimination method
significantly reduced the data dimensionality, finely pruning the surplus variables on top



Agriculture 2024, 14, 757 16 of 21

of the initial indicators and considerably enhancing the model’s accuracy beyond the prim-
itive model (ChlPLS-BEF = 0.36, ChlRF-BEF = 0.95, ChlTree-based-BEF = 0.85, CPPLS-BEF = 0.85,
CPRF-BEF = 0.94, CPTree-based-BEF = 0.84). Moreover, Fernández-Habas and colleagues, uti-
lizing the same ASD FieldSpec spectral data for random forest regression prediction of
Mediterranean grassland crude protein mass, corroborated that the backward feature
elimination method markedly improved the model’s precision (R2 = 0.84, RMSE = 2.17)
compared to the original full-band model (R2 = 0.79, RMSE = 2.48), substantiating the
method’s superiority in managing high-dimensional hyperspectral data.

Conversely, within the backward feature elimination method, the RF was superior
to PLS when forecasting the accuracy of Chl and CP, a finding that aligns with numerous
reports where nonlinear algorithms (such as SVMs, RFs, or CNNs) were performant
when using hyperspectral data due to their capacity to elucidate more complex non-linear
relationships than traditional linear regression. Wijesingha and others [55] documented
that for predicting the CP and ADF in 950 samples from mountain hay meadows using
drone-based hyperspectral data (194 bands with a 118 nm spectral resolution), the RF’s
performance surpassed that of PLS.

4.2. Selection of Characteristic Variables

This research focused on feature selection via backward feature elimination to identify
spectral variables correlated with functional parameters (Chl, CP), analyzing the importance
and stability of these indicators to determine spectral variables related to chlorophyll and
crude protein content traits. It is critical to associate the selected bands, crucial in such
studies, with stability analyses to furnish additional insights. The reliability of the selected
spectral bands, despite changes in the dataset, is essential for prediction. This importance
stems from the need to counter the possible confusing influences of factors such as the
reflectance of the canopy, the angle of leaf positioning, varying plant species, moisture
levels, or the diversity in phenological phases [56–58].

The principle behind the remote estimation of crop chlorophyll content is predicated
on the differential reflectance and absorption rates of chlorophyll at various spectral bands,
resulting in distinct reflectance characteristics. These specific bands are sensitive to crop
chlorophyll. In this study, post-selection, the vegetation indices the PRI and mNDVI
exhibited the greatest significance and stability concerning Chl. Drawing from Figure 6, the
association of these selected variables with chlorophyll visibly trends downwards with the
intensification of degradation; samples with higher chlorophyll values inherently displayed
higher mNDVI and PRI values. These two vegetation indices have been widely studied in
depicting plant pigment status and canopy structure. The PRI, a normalized vegetation index
at 531 nm and 570 nm, is influenced by the xanthophyll cycle and associated with leaf photon
use efficiency. The close relationship between the PRI and chlorophyll content could stem
from a reliable correlation between leaf chlorophyll and xanthophyll concentrations, where
changes in xanthophylls can indirectly reflect alterations in chlorophyll concentrations.
Consequently, the PRI, which is sensitive to xanthophyll concentrations, is also keenly
sensitive to chlorophyll levels. This effect is also observable in Gamon’s data [59], where
the diurnal variation in the PRI for young leaves with a high chlorophyll content correlated
well with the epoxidation state in xanthophyll cycling. The mNDVI modifies the NDVI by
incorporating 445 nm, as chlorophyll strongly absorbs energy at the spectral band centered
around 0.45 nm and 0.67 nm. Plant leaves intensely absorb blue and red energies while
reflecting green; moreover, xanthophylls have an absorption band around 0.45 um (blue),
thus reflecting changes in chlorophyll concentrations to some extent.

The principle underlying remote sensing estimation of crop nitrogen content is based
on the vibrational response of nitrogen’s chemical bonds in the crop’s molecular com-
position under electromagnetic radiation, leading to spectral absorption and reflectance
differences at certain wavelengths. These specific wavelengths are sensitive indicators
(characteristic bands) of crop nitrogen content. In this study, post-selection, the vegetation
indices at 535 nm and 2091 nm showed the highest relevance and stability in relation to
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CP (crude protein). Adjorlolo and colleagues [60] found that according to the Variable
Importance in Projection (VIP) index in partial least squares (PLS) analysis, the 2015 nm
wavelength is crucial in predicting nitrogen levels in both C4 and C3 types of grass. They
further observed a strong correlation between the 720 nm wavelength and CP, under-
scoring the reliability and significance of assessing pasture quality in the red edge region.
Kokaly [61] noted that for the prediction of crude protein (CP) and neutral detergent fiber
(NDF), spectral bands from the near-infrared and short-wave infrared regions are frequently
chosen in both partial least squares (PLS) and random forest (RF) models. This preference
is due to the distinctive absorption features of compounds like cellulose, protein, nitrogen,
and starch, which are related to the molecular bonds of C-H, C-N, N-H, and O-H. These
findings suggest that targeted band selection in these regions can accurately predict pasture
quality with a limited number of bands [62]. In this study, the sampled pastures exhibited
distinct degradation characteristics, with the vegetation cover displaying a clear tiered
distribution. The stability of 535 nm and 2015 nm, superior to the SAVI and λr, is attributed
to their respective sensitivities to vegetation stress and the soil background. The mixture of
degraded and non-degraded samples could have potentially reduced the stability of the
indices in the model, thus obscuring the vibrational effects of nitrogen’s chemical bonds
under electromagnetic influence. Independent calibration models for different stages of
degradation could enhance the stability of these wavelengths. However, this approach
might limit the dataset’s scope and the model’s generalizability. Given the common oc-
currence of mixed degraded and non-degraded grasslands in the alpine grasslands of the
Tibetan Plateau, studying the soil background and community observational structure is
crucial to understanding the impact on the spectral sensitivity indicators of Chl and CP for
degraded pastures, thereby acquiring vital information on pasture quality.

4.3. PLS-PM

While the selected characteristic bands and hyperspectral indices are closely correlated
with the community chlorophyll and nitrogen content, it is crucial to acknowledge that
various confounding factors, such as the canopy structure, soil background, and observa-
tional geometry, can also impact the estimation model. Research indicates that grassland
coverage positively influences the estimation of SpecCP and SpecChl. Compared to veg-
etated surfaces, bare ground typically reflects higher short-wave infrared radiation but
lower visible and near-infrared radiation. Consequently, the spectral characteristics of
vegetation may be affected, resulting in lower green and red radiation reflectance. Under
low coverage, the degree of light absorption and scattering by the vegetation diminishes, as
the vegetation itself absorbs and scatters light. This leads to less light being absorbed by the
vegetation and more light penetrating the vegetation layer or being absorbed or reflected
by the underlying ground surface. Hence, low coverage might result in reduced light
energy utilization by the vegetation. Low community coverage could be attributed to poor
vegetation growth or stressors such as drought or pestilence. These factors can degrade
the health of the vegetation, manifesting in spectral anomalies like reduced chlorophyll
content and an abnormal photosynthetic performance.

Leaf nitrogen content (LNC) is a crucial crop nutrition indicator. Due to the high
correlation between chlorophyll and nitrogen content, over the past two decades, numer-
ous studies have constructed various chlorophyll-sensitive vegetation indices based on
chlorophyll’s sensitive bands in the visible light spectrum to estimate leaf nitrogen content.
However, the agricultural sector commonly uses the total nitrogen content, and chlorophyll
can only reflect photosynthetic nitrogen information related to photosynthesis. In this study,
SpecChl positively influenced the estimation of SpecCP (r = 0.80), showing its significant
impact and confirming that chlorophyll indeed reflects photosynthetic nitrogen informa-
tion related to photosynthesis but cannot fully represent the total nitrogen information
for crop leaves. Chlorophyll-based vegetation indices (VIs) have proven effective for leaf
nitrogen content mapping (LNCM), which is largely due to the high proportion of nitrogen
that is invested in the photosynthetic apparatus of foliage. Specifically, in C3 species, it
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is estimated that between 75% and 80% of a leaf’s nitrogen content is incorporated into
proteins within the chloroplasts, as described by Chapin [62].

Additionally, heterogeneity exists in the structure between different communities.
In the study, the evenness index negatively influenced the SpecCP and SpecChl estimates,
while the richness index positively affected the SpecChl estimates. Only the evenness index
had a negative impact on the SpecChl estimates. This indicates that different community
structures and functions affect the estimates of SpecCP and SpecChl. During the growing
season, the nitrogen allocation between photosynthetic and non-photosynthetic compounds
is dynamic [63] and depends on the species [64]. Consequently, the link between the overall
nitrogen content and chlorophyll may vary and be unique to each species, suggesting that
spectral estimation models could differ across various plant communities.

5. Conclusions

(i) PLS outperformed the RF in predicting Chl and CP in terms of the accuracy and
certainty of its predictions.

(ii) Backward feature elimination (BFE) can significantly decrease the number of spectral
bands required for predictive analysis and simultaneously enhance the precision of
the resulting models, particularly within the context of PLS regression techniques.

(iii) Moreover, the spectral bands within the red edge and near-infrared regions proved to
be significant and reliable in estimating the nutritional quality; particularly, the bands
at 535 nm and 2091 nm are pivotal for the precise forecasting of CP, while vegetation
indices such as the PRI and mNDVI are vital for predicting Chl.

(iv) Environmental factors such as grassland cover (soil background) positively influence
the prediction of SpecChl and SpecCP when degraded and non-degraded lands are
interwoven. However, within the community structure, the evenness index negatively
impacts the spectral predictions of both SpecChl and SpecCP. Notably, SpecChl has
a robust positive correlation with the SpecCP estimation (r = 0.80), affirming that
chlorophyll is indeed indicative of the photosynthetic nitrogen information associated
with photosynthesis.
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