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Abstract: Connected and automated vehicles (CAVs), integrated with sensors, cameras, and commu-
nication networks, are transforming the transportation industry and providing new opportunities
for consumers to enjoy personalized and seamless experiences. The fast proliferation of connected
vehicles on the road and the growing trend of autonomous driving create vast amounts of data that
need to be analyzed in real time. Anomaly detection in CAVs refers to identifying any unusual or
unforeseen behavior in the data generated by vehicles’ various sensors and components. Anomaly
detection aims to identify any unusual behavior that might indicate a problem or a malfunction in
the vehicle. To identify and detect anomalies efficiently, a method must deal with noisy data, missing
data, dynamic frequency data, and low- and high-magnitude data, and it must be accurate enough
to detect anomalies in a dynamic sensor streaming environment. Therefore, this paper proposes a
fast and efficient hard-voting-based technique named FT-HV, comprising three fine-tuned machine
learning algorithms to detect and classify anomaly behavior in CAVs for single and mixed sensory
datasets. In experiments, we evaluate our approach on the benchmark Sensor Anomaly dataset that
contains data from various vehicle sensors at low and high magnitudes. Further, it contains single and
mixed anomaly types that are challenging to detect and identify. The results reveal that the proposed
approach outperforms existing solutions for detecting single anomaly types at low magnitudes and
detecting mixed anomaly types in all settings. Furthermore, this research is envisioned to help detect
and identify anomalies early and efficiently promote safer and more resilient CAVs.

Keywords: sensory anomaly detection; connected and automated vehicles (CAVs); low- and
high-magnitude anomalies; single and mixed anomalies

1. Introduction

Connected and automated vehicle (CAV) facilities create a safer, more efficient, and
more sustainable transportation system for consumers [1–3]. The development of CAVs
is closely linked to the development of other emerging technologies, such as artificial
intelligence (AI) and the Internet of Things (IoT), which are expected to transform various
industries and consumer experiences [4,5]. CAVs can be categorized into different levels
of automation, ranging from partially automated vehicles with features such as adaptive
cruise control and lane-keeping assistance to fully autonomous vehicles that can operate
without human input [6–8]. Integrating connectivity and automation in vehicles enables
new capabilities such as improved road safety, reduced traffic congestion, and increased
energy efficiency. CAVs can transform the transportation industry and change how people
travel [9]. By communicating with each other and the infrastructure around them, CAVs
can share information about road conditions, traffic patterns, and other factors that can

Electronics 2024, 13, 1885. https://doi.org/10.3390/electronics13101885 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13101885
https://doi.org/10.3390/electronics13101885
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-2383-621X
https://orcid.org/0000-0001-5072-0434
https://doi.org/10.3390/electronics13101885
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13101885?type=check_update&version=2


Electronics 2024, 13, 1885 2 of 17

improve the driving experience and make the roads safer [10,11]. However, CAVs can still
malfunction due to cyberattacks and anomalies that need to be detected in the preliminary
stage [12,13].

Anomaly detection in CAV sensors is an essential and challenging task, as many
security and privacy concerns are involved. In connected vehicles, anomaly detection can
be performed on various data sources, such as GPS signals, engine data, or other sensor
readings. Machine learning algorithms, such as clustering and classification algorithms,
can be used to analyze these data and identify anomalies [5,7,14]. For example, a cluster-
ing algorithm can identify data patterns and points that deviate significantly from these
patterns. Another critical aspect of anomaly detection in connected vehicles is real-time
monitoring. Since connected vehicles generate vast amounts of data in real time, anomaly
detection algorithms must be able to process these data in real time and identify anomalies
as they occur. Additionally, anomalies must be investigated to determine the root cause
of the problem, as they could indicate a severe issue that requires immediate attention.
Data generated by the various systems of a connected and automated vehicle, such as
sensors, cameras, and GPS, are constantly monitored to identify anomalies and prevent
potential issues. With the help of advanced machine learning algorithms, the system can
learn normal behavior patterns and detect any deviations that might indicate a problem.
This helps prevent potential accidents and improve the vehicle’s overall performance.

Motivation: Anomalies in CAVs can have significant consequences for consumers (i.e.,
drivers) since anomalies in CAVs can result in a reduced vehicle performance, loss of control,
increased risk of minor and major accidents (sometimes fatal accidents), and increased
costs. Therefore, detecting and addressing them as quickly as possible ensure these systems’
safe and reliable operation. Some studies [5,7,14] focused on anomaly detection; however,
they failed to provide a good performance for detecting low-magnitude anomalies and did
not focus on early-stage (less time complexity) anomaly detection. Keeping in mind the
above limitations, this paper makes the following contributions:

• It introduces a methodology that employs a swiftly optimized machine learning
algorithm alongside hard voting to efficiently identify both low- and high-magnitude
single anomalies as well as mixed anomalies in connected and automated vehicles.

• The proposed approach preprocesses sensor data streams, applies random oversam-
pling to minority class instances and subsequently conducts anomaly detection.

• The experimental findings indicate that the proposed approach enhances anomaly
detection performance when compared to other leading classifiers. This enhancement
could potentially enhance the identification of abnormal vehicle behavior, thereby
bolstering overall safety and reliability.

• Designed to be adaptable across various types of automated vehicles and driving
scenarios, the proposed approach holds promise for a broader applicability, catering
to developers and researchers within this domain.

The subsequent sections of this paper are structured as follows: Section 2 reviews
state-of-the-art studies concerning sensory anomaly detection in connected and automated
vehicles. Section 3 outlines the proposed anomaly detection approach. The experimental
analysis and results of the proposed approach are detailed in Section 4. Finally, Section 5
encapsulates the conclusion and highlights future directions.

2. Related Work

The research in [15] explores the integration of digital forensics into the Internet of
Vehicles (IoV) ecosystem, addressing challenges and proposing solutions. It emphasizes the
significance of preserving the chain of custody, gathering forensically sound evidence and
navigating privacy concerns within the IoV. This article introduces the Attack Attribution
and Forensics Readiness Tool (AAFRT) within the Novel Adaptive Cybersecurity Frame-
work for the IoV, aiming to ensure the collection and utilization of appropriate forensic
data. The AAFRT is designed to be adaptable, undergo continuous improvement, and
comply with data privacy regulations like GDPR, ensuring legality and ethicality in IoV
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digital forensic practices. The research in [16] offers a thorough examination of stakeholders
involved in CAVs within intelligent transportation systems (ITSs), particularly focusing
on their roles in shaping a Cybersecurity Regulatory Framework (CRF). By visualizing the
scope of these stakeholders, this study highlights various aspects, including compliance
requirements for ITS communication service providers, regulatory standards for CAV
automakers, policy readiness for CAV users, and the role of CAV network operator centers
in managing data flows. Additionally, it sheds light on essential pathways for future en-
deavors, emphasizing the need to synthesize and forecast the legal landscape of CAV-based
transportation systems to facilitate the integration of regulatory frameworks for all CAV
stakeholders. The insights provided by the study can significantly aid policymakers in the
development of a comprehensive CRF.

The authors of [14] demonstrated that sensors in connected automated vehicles (CAVs)
are vulnerable to malfunctions or failures, leading to possible safety hazards if not detected
and addressed promptly. They suggested an approach named the Kalman filter-based
convolutional network, KF-CNN. The KF can track sensor data in real time, look for anoma-
lies, and pinpoint problematic sensors. They also focused on creating a publicly available
dataset for CAV-based anomaly identification. They employed a deep autoencoder neural
network trained on typical and unusual sensor readings. This system can continuously
monitor several sensors and identify irregularities in real time. Once an anomaly is detected,
the system can identify the faulty sensor using a feature ranking algorithm. The authors
of [5] proposed two approaches MSALSTM and WAVED to detect complex anomalies
based on multiple stages of attention, effectively a Convolutional Neural Network (CNN).
They tested the proposed system using a dataset of sensor readings from a real-world
automated vehicle. They used CNN blocks and attention mechanisms to detect anomalies.
They took the input’s spatial properties, enhanced them, and raised the level of abstraction.
The authors reported that the system could accurately detect and identify sensor anomalies
in real time.

The authors of [17] proposed a symmetrical simulation scheme that creates a mirrored
environment for autonomous vehicles, allowing for detecting anomalies in both real and
simulated environments. They used LSTM for anomaly detection using data from the
symmetrical simulation scheme. The LSTM model is trained on a combination of real
and simulated data to improve its accuracy in detecting anomalies. The authors of [18]
discussed the need for post-accident analysis of cyberattacks on connected and automated
vehicles. They proposed a framework for post-accident analysis of cyberattacks on these
vehicles, which involves collecting data from various sources, such as the vehicle’s sensors
and computer systems, and analyzing these data to determine if a cyberattack was involved
in the accident. The authors also discussed various challenges and limitations of this
framework, such as the difficulty of collecting accurate and comprehensive data and the
need for standardized data analysis methods.

The authors of [19] focused on creating a dataset to simulate various types of cyber-
attacks on VANETs, including jamming attacks, spoofing attacks, and denial-of-service
attacks. They describe the methodology used to create the dataset, which involves simu-
lating various cyberattacks on a VANET using the NS-3 network simulator. The dataset
includes many network features, such as packet counts, transmission rates, and signal
strengths, that can be used as input features for machine learning algorithms. The authors
of [20] proposed a hybrid deep sensor anomaly detection approach that combines the
advantages of both deep learning and sensor-based approaches. They used CNNs and long
short-term memory (LSTM) networks to analyze sensor data from an autonomous vehicle.
A CNN was used to extract spatial features from the sensor data, while LSTM was used to
analyze the temporal features. The author of [21] proposed a new approach that combines
deep reinforcement learning and Bayesian inference to detect real-time anomalies. They
used a deep reinforcement learning agent that learns to detect anomalies in a dynamic
environment by interacting with the environment and receiving rewards based on its
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actions. The agent also has a Bayesian inference module that updates its beliefs about the
environment based on new observations.

The author of [22] proposed an explainable AI (XAI)-based neural network to detect
real-time anomalies while explaining its decisions. The paper describes the implementa-
tion of the proposed approach using an autoencoder-based neural network that learns to
reconstruct normal traffic patterns and detect anomalies based on reconstruction errors.
The network also has an attention mechanism that highlights the features contributing to
its decisions and provides explanations. The authors evaluated the proposed approach
using a real-world vehicular network traffic dataset and compared it to traditional anomaly
detection methods. The authors of [23] proposed a cooperative trust-aware tolerant misbe-
havior detection system (CT2-MDS) to detect misbehavior in a cooperative environment.
They used trust management and machine learning techniques to detect misbehavior. The
CT2-MDS system uses trust values to evaluate the reliability of the data received from other
vehicles and combines them with machine learning algorithms to detect misbehavior.

The author of [24] proposed a new approach called ADS-Lead that uses a lifelong
learning algorithm to learn and adapt to new data while detecting anomalies continuously.
They used an adaptive mixture of Gaussians (AMoG) algorithm that learns the normal
behavior of the ADS and detects anomalies based on deviation from the learned behavior.
The AMoG algorithm also has a lifelong learning mechanism that updates the learned
behavior as new data are received. The authors of [25] propose a response-type road
anomaly detection and evaluation method that uses sensors and algorithms to detect and
evaluate road anomalies. They analyze the vehicle’s response to the road surface and detect
anomalies based on deviation from the normal response. The algorithm is also equipped
with a road anomaly evaluation mechanism that evaluates the severity of the detected
anomaly based on the response characteristics of the vehicle.

In summary (See Table 1), some studies exist [5,7,14,22], but they lack to provide
promising performance and early detection of anomalies in automated vehicles. Therefore,
we proposed this study to detect anomalies efficiently in the early stages.

Table 1. Summary of related work.

Ref. Year Summary

[15] 2023

This research explores the integration of digital forensics into the Internet of
Vehicles (IoV) ecosystem, emphasizing the preservation of the chain of custody, the
gathering of forensically sound evidence, and privacy concerns within the IoV. It
introduces the Attack Attribution and Forensics Readiness Tool (AAFRT) within
the Novel Adaptive Cybersecurity Framework for the IoV.

[16] 2023

Thorough examination of stakeholders involved in connected automated vehicles
(CAVs) in intelligent transportation systems (ITSs) and their roles in shaping a
Cybersecurity Regulatory Framework (CRF). It highlights compliance
requirements, regulatory standards, policy readiness, and the role of CAV network
operator centers.

[14] 2019
Demonstrates the vulnerability of sensors in CAVs to malfunctions and proposes
the Kalman filter-based convolutional network (KF-CNN) and KF approach for
real-time anomaly detection and faulty sensor identification.

[5] 2020
Proposes MSALSTM and WAVED approaches for complex anomaly detection in
automated vehicles using Convolutional Neural Networks (CNNs) and attention
mechanisms.

[17] 2022 Introduces a symmetrical simulation scheme for anomaly detection in autonomous
vehicles using LSTM and a combination of real and simulated data.

[18] 2022
Discusses the post-accident analysis of cyberattacks on connected and automated
vehicles, proposing a framework for data collection and analysis to determine if a
cyberattack was involved in the accident.
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Table 1. Cont.

Ref. Year Summary

[19] 2022
Focuses on creating a dataset to simulate various types of cyberattacks on
Vehicular Ad Hoc Networks (VANETs) and proposes a hybrid deep sensor
anomaly detection approach combining CNNs and LSTM networks.

[20] 2022
Proposes a hybrid deep sensor anomaly detection approach for autonomous
vehicles using CNNs and LSTM networks to analyze spatial and temporal features
in sensor data.

[21] 2022 Introduces an approach combining deep reinforcement learning and Bayesian
inference for real-time anomaly detection in dynamic environments.

[22] 2022 Proposes an explainable AI (XAI)-based neural network for real-time anomaly
detection in vehicular network traffic, providing explanations for its decisions.

[23] 2022
Presents a cooperative trust-aware tolerant misbehavior detection system
(CT2-MDS) for detecting misbehavior in a cooperative environment using trust
management and machine learning techniques.

[24] 2022
Proposes ADS-Lead, a lifelong learning algorithm for anomaly detection in
autonomous driving systems (ADSs) that adapts to new data continuously using
the adaptive mixture of Gaussians (AMoG) algorithm.

[25] 2022
Introduces a response-type road anomaly detection and evaluation method that
uses sensors and algorithms to detect and evaluate road anomalies based on the
vehicle’s response characteristics.

3. Proposed Approach

This section elucidates all the building blocks of the proposed approach. Figure 1
shows the working of our presented approach, which comprises four major blocks: dataset
selection, data preprocessing, data oversampling, and detection. We then discuss the
dataset and the concepts of the Fine Tuned k Nearest Neighbor (FT-KNN), Fine Tuned
Extremely Randomized Trees (FT-ERTs), Fine Tuned Random Forest (FT-RF), and Single
and Mixed Anomaly Detection Fine Tuned Hard Voting (FT-HV) approaches.

3.1. Dataset Selection

A typical dataset for anomaly detection in automated vehicles can include sensor data
from various sources, such as cameras, lidars, radars (accelerometers and gyroscopes),
magnetometers, and temperature and GPS sensors. Furthermore, data may include the
vehicle’s position, speed, acceleration, orientation, and environment and any anomalies or
errors the sensors detect. We use the benchmark dataset provided by Van Wyk et al. [14].
The dataset contains several sensors denoted by Sn = Sen1, Sen2 . . . Senn. Each sensor in
Sn produces numerical data that are stored in the form of an instance. This collection
of instances from each sensor results in a feature matrix of I × J, where I represents the
number of instances and J represents the number of features. The overall feature matrix
(FM) is represented in Equation (1).

FM = { f ji
ii
}J,I

j,i=1 (1)

3.2. Data Analysis

We perform exploratory data analysis of the sensor readings to visually understand
the pattern of anomalies of various sensors (i.e., in-vehicle longitudinal speed, GPS speed
and in-vehicle longitudinal acceleration). This step enabled us to gain insights into the
data’s distribution, correlation, and patterns. As shown in Figure 1, some irregular spikes
show the anomalies.
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Figure 1. An overview of the proposed approach for anomaly detection.

3.3. Data Preprocessing

Data concerning vehicles are frequently gathered from a variety of origins, including
sensors, GPS devices, and telematic systems. However, these data often need to be more
complete, consistent, and accurate. Moreover, due to their voluminous and intricate nature,
processing them can result in prolonged processing periods, subpar performances, and
storage constraints. Data preprocessing is instrumental in enhancing the data quality by
pinpointing and rectifying errors, filling in missing values, and eliminating duplicates.
Additionally, it aids in reducing data size by filtering out irrelevant or redundant informa-
tion, thereby enhancing the processing and storage efficiency. Our approach encompasses
several data preprocessing stages: managing duplicate data, detecting outliers, normalizing
linear data, and oversampling data to ensure quality. When dealing with imbalanced
datasets during preprocessing, a technique called random oversampling is often employed
to address this issue. This technique, employed for preprocessing imbalanced datasets in
machine learning [26], entails augmenting the number of instances in the minority class by
randomly duplicating some until it reaches a level comparable to the majority class. Let
X denote the feature matrix and y the target vector of the original dataset. Similarly, let
X_min and y_min represent the feature matrix and target vector of minority class instances,
respectively. With n_major denoting the number of instances in the majority class and
n_minor representing the number of instances in the minority class, random oversampling
can be executed by randomly selecting k instances from X_min and adding them to X and y
k times. Here, k is chosen such that n_minor + k(n_minor) equals n_major. In mathematical
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notation, let x_resampled and y_resampled be the resampled feature matrix and target
vector, respectively. First, we calculate k as shown in Equation (2):

k =
(n_major− n_minor)

n_minor
(2)

Next, it randomly selects k instances from X_min and adds them to xresampled and
yresampled k times.

3.4. Detection Approach

We use multiple classification algorithms for anomaly detection in connected vehicles.
We use K-Nearest Neighbor (KNN), Extremely Randomized Trees (ERTs), Random Forest
(RF), and the Voting classifier. The classification algorithms were selected based on their
capability to cover scenarios such as small, large, and noisy datasets and the detection rate
improvement of weak learning classifiers. Below are the descriptions and parameters of
all algorithms.

K-Nearest Neighbor (KNN): is an effective non-parametric and lazy learning algorithm
that does not make any assumptions about the underlying distribution of the data and only
makes predictions when a new input is given [https://scikit-learn.org/stable/modules/
generated/sklearn.neighbors.KNeighborsClassifier.html (accessed on 1 April 2024)]. FT-
KNN finds the nearest neighbors in the training data based on the distance metric and
assigns the class label that appears most frequently among the KNNs to the new input. The
value of k is an important parameter in the FT-KNN algorithm. A larger value of k means
that the decision boundary is smoother and less prone to overfitting. Still, it also reduces
the ability of the algorithm to capture fine-grained patterns in the data. The parameter
setting of FT-KNN is set as follows: n_neighbors is set to 3, the weights are uniform, and
the algorithm parameter is set to auto. Three searching algorithms in FT-KNN, ball_tree,
kd_tree, and brute, will use a brute-force search. Furthermore, lea f _sizeint is set to 30, the
power parameter (pint) is set to 2, and metricstr or callable is set to minkowski.

Extremely Randomized Trees (ERTs) is an ensemble learning algorithm that extends
the RF algorithm and uses a similar approach with some additional modifications. This
algorithm works by building many decision trees, where each tree is trained on a random
subset of the training data and a random subset of the features. The splitting of the
tree nodes is also performed randomly, without considering the optimal split that would
minimize the impurity measure (such as Gini impurity or entropy). The main advantage of
FT-ERT is that it reduces the variance of the model compared to FT-RF by introducing more
randomness in the tree-building process. This results in a less complex and biased model,
which can be more robust and less prone to overfitting, especially when the training dataset
is small. The parameter setting for FT-ERT is as follows: n_estimators is set to 100, criterion
is set to gini, max_depthint is set to None, bootstrapbool is set to False, oob_scorebool
is set to False, n_jobsint is set to −1, random_stateint is set to 0, verboseint is set to 0,
warm_startbool is set to False, ccp_alphanon-negative float is set to 0.0, max_samplesint is
set to None, and class_weight is set to None.

Random Forest (RF) is an ensemble algorithm widely used for classification, regres-
sion, and feature selection tasks [https://scikit-learn.org/stable/modules/generated/
sklearn.ensemble.RandomForestClassifier.html (accessed on 1 April 2024)]. It creates
many decision trees, each trained on a random subset of the training data and a ran-
dom subset of the features. The trees are then combined to make predictions by taking
the majority vote for classification tasks or the average for regression tasks. The main
advantage of FT-RF is that it is highly accurate and robust to noise and overfitting due
to the use of multiple trees and the random selection of features for each tree. The pa-
rameter setting for FT-RF is as follows: n_estimators is set to 100, criterion is set to gini,
max_depthint is set to None, min_samples_splitint is set to 2, min_samples_leafint is set to
1, min_weight_fraction_leaffloat is set to 0.0, max_features is set to sqrt, max_leaf_nodesint
is set to None, min_impurity_decreasefloat is set to 0.0, bootstrapbool is set to True,

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
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oob_scorebool is set to False, n_jobsint is set to None, random_stateint is set to 0, ver-
boseint is set to 0, warm_startbool is set to False, ccp_alphanon-negative float, default = 0.0
and class_weight is set to None.

Voting Classifier is an ensemble learning algorithm that combines multiple individ-
ual classification models to make predictions [https://scikit-learn.org/stable/modules/
generated/sklearn.ensemble.VotingClassifier.html (accessed on 1 April 2024)]. It aggregates
the predictions of multiple individual classifiers and predicts the class with the highest vote.
The FT-HV classifier can also be used for model selection, where multiple models with
different hyperparameters are trained and combined using the ensemble approach. This
can help to find the best combination of hyperparameters and improve the performance
of the overall model. The parameter setting for FT-ERT is as follows: voting is set to hard,
n_jobsint is set to None, flatten_transformbool is set to True, and verbosebool is set to False.

Algorithm 1 provides the functioning of the proposed approach, where C is a set of
classifiers and R is the instance to be classified. The proposed algorithm iterates through
each classifier in C and uses it to predict the class labels for each instance in R. The results
are stored in the S set. The algorithm then computes the majority vote for each data point
in R based on the results in S. If the majority vote for an instance is an “Anomaly”, it is
stored in the set V along with the instance itself. The final result is a set V of all data points
predicted to be anomalous by the FT-HV classifier.

Algorithm 1 FT-HV for anomaly detection in vehicle sensor networks

Input: R← SensorData, C ← Classi f iers
Output: Normal, Anomalous Sensors

Evaluation Measures: Accuracy, F-Score, Recall, Precision
1: S← ∅
2: for i = 1 to |C| do
3: ci ← Classifier i in C
4: si ← ci.predict(R)
5: S← S ∪ si
6: end for
7: V ← ∅
8: for j = 1 to |R| do
9: vj ← Majority vote of si,j | si,j ∈ S

10: if vj = Anomaly then
11: V ← V ∪ (rj, vj)
12: end if
13: end for
14: return V

4. Experimental Analysis and Results

This section provides the experimental setup, analysis, and results of the proposed
approach. We first present the results of all detection algorithms and provide a comparison.
Next, we compare the results with state-of-the-art methods KF-CNN [14], MSALSTM-
CNN and WAVED [5]. We evaluate our approach on two important factors: detection
performance and time complexity. For the performance analysis, we select standard
evaluation measures such as the accuracy, precision, recall, F1-Score and Area Under
Curve (AUC).

4.1. Single Anomaly Types

This section elucidates the results of single anomaly types detected during the classifi-
cation: instant, constant, gradual drift, and bias.

(1) Instant: Table 2 presents the detection performance of instant anomaly detection
using FT-HV. The first row represents the results of instant anomaly detection when the
magnitude is low. In all the next rows, the magnitude of the anomaly increases. There is
less danger when the magnitude is low, and there is a higher chance of danger when the

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingClassifier.html
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magnitude is higher. For a magnitude of “25 × N(0, 0.01)”, the model achieves an accuracy
of 99.27, a recall of 99.27, a precision of 99.28, an F1-Score of 99.27, and an AUC of 99.26.
The training time (second(s)) is reported as 37.5, the prediction time is 2.9, and the overall
time is 40.2. The table shows that as the number of anomalies increases, the accuracy, recall,
precision, F1-Score, and AUC of the model decrease slightly. However, the decrease in
performance is relatively small, indicating that the model can still accurately predict the
labels even when the number of anomalies is high. We can also see that as the number
of anomalies increases, the model’s training time and prediction time increase, which is
expected as the model processes more data.

Table 2. Instant anomaly detection using the FT-HV classifier.

Accuracy Recall Precision F1-Score Training Time Predict Time Total Time AUC.

Instant Anomaly 25 × N(0, 0.01) 99.27 99.27 99.28 99.27 37.4 2.9 40.2 99.26

Instant Anomaly 100 × N(0, 0.01) 99.25 99.25 99.26 99.25 23.1 1.7 24.9 99.23

Instant Anomaly 500 × N(0, 0.01) 99.11 99.11 99.12 99.11 21.2 1.7 22.9 99.09

Instant Anomaly, 1000 × N(0, 0.01) 99.03 99.03 99.05 99.03 20.1 1.7 21.8 99.02

Instant Anomaly, 10,000 × N(0, 0.01) 98.94 98.94 98.96 98.94 16.5 1.6 18.1 98.93

(2) Constant: From Table 3, we can see that as the duration of the anomaly increases,
the accuracy, recall, precision, F1-Score, and AUC of the model decrease. This indicates that
the model has a harder time detecting longer anomalies. Additionally, we can see that as
the range of the uniform distribution decreases, the accuracy, recall, precision, F1-Score,
and AUC of the model decrease. This indicates that anomalies with a smaller range are
harder to detect. Finally, we can see that the model’s training time and prediction time
remain relatively constant across different instances of constant anomalies.

Table 3. Constant anomaly detection using FT-HV.

Duration Accuracy Recall Precision F1-Score Training Time Predict Time Total Time AUC.

Constant Anomaly + U(0, 5) 3 95.09 95.09 95.52 95.07 17.5 1.8 19.2 95.05

Constant Anomaly + U(0, 5) 5 92.06 92.06 93.07 92.00 17.1 1.7 18.8 91.97

Constant Anomaly + U(0, 5) 10 81.76 81.76 82.99 81.58 17.6 1.7 19.3 81.70

Constant Anomaly + U(0, 3) 10 81.88 81.88 83.14 81.69 16.6 1.7 18.4 81.82

Constant Anomaly + U(0, 1) 10 81.82 81.82 83.08 81.63 16.1 1.9 18.0 81.76

(3) Gradual Drift: Table 4 shows the performance of the proposed approach for gradual
drift anomaly detection. The first two rows of the table indicate that the algorithm performs
well when the drift anomaly has a small duration (either 10 or 20) and a low drift intensity
(between 0 and 2). The algorithm achieved an accuracy of 81.63% and 64.00%, respectively.
The recall and AUC values are also high, indicating that the algorithm can effectively
identify anomalies. The third row shows the results for a drift anomaly with a higher
intensity of up to four. In this case, the algorithm achieved an accuracy of 81.51%, slightly
lower than the first row but still acceptable. However, the recall is relatively low at 51.51%,
which suggests that the algorithm had some difficulty detecting the anomaly in this case.
The fourth row shows the results for a longer-duration drift anomaly with a low intensity
of up to four. In this case, the algorithm achieved an accuracy of 63.88%, which is lower
than the other rows. The recall, precision, and F1-Score values are also low, indicating that
the algorithm had significant difficulty detecting the anomaly in this case.
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Table 4. Drift anomaly detection using FT-HV.

Accuracy Recall Precision F1-Score Training Time Predict Time Total Time AUC.

Drift Anomaly 0_2_dur_10 81.63 81.63 82.83 81.45 28.0 2.6 30.6 81.57

Drift Anomaly 0_2_dur_20 64.00 64.00 64.10 63.94 24.2 2.3 26.5 64.00

Drift Anomaly 0_4_dur_10 81.51 51.51 82.65 81.33 25.3 2.6 27.9 81.45

Drift Anomaly 0_4_dur_20 63.88 63.88 63.98 63.82 22.8 2.3 25.1 63.88

(4) Bias: From Table 5, we can see that for the first three samples of bias, the accuracy,
recall, precision, and F1-Score of the model are low. However, for the next two levels of
bias anomalies, the model’s performance is still relatively high compared to the other levels
of bias anomaly. The training time, prediction time, and total time are relatively consistent
across different levels of bias anomaly. Moreover, the 0_5_dur_3 level of bias anomaly is
slightly longer than the others. Finally, we can see that the AUC is highest for the 0_5_dur_5
level and lowest (at 81.67%) for the 0_3_dur_10 level.

Table 5. Bias anomaly detection using FT-HV.

Accuracy Recall Precision F1-Score Training Time Predict Time Total Time AUC.

Bias Anomaly 0_1_dur_10 83.42 83.42 85.33 83.18 28.0 2.6 30.7 83.35

Bias Anomaly 0_3_dur_10 81.67 81.67 82.86 81.50 24.9 2.5 27.4 81.62

Bias Anomaly 0_5_dur_10 81.66 81.66 82.87 81.48 24.8 2.4 27.2 81.60

Bias Anomaly 0_5_dur_3 95.09 95.09 95.53 95.08 27.8 2.4 30.3 95.06

Bias Anomaly 0_5_dur_5 92.10 92.10 93.13 92.04 23.4 2.5 25.9 92.01

4.2. Mixed Anomaly Types

This section elucidates the results of mixed anomaly types. As shown in Table 6, for
the “Instant Anomaly” type, the FT-HV achieved a high accuracy, precision, recall, and
F1-Score across all sensors, indicating that it could detect instant anomalies with a very
high accuracy. The training time and prediction time were also reasonable. The AUC
value was close to 1, indicating that the classifier performed well in distinguishing between
normal and anomalous data points. The FT-HV also performed well for the “Constant
Anomaly” type, achieving a high accuracy, precision, recall, and F1-Score. The training
time and prediction time were reasonable as well. However, the AUC values were slightly
lower than for the “Instant Anomaly” type, indicating that the classifier’s performance
distinguishing between normal and anomalous data points was slightly worse. For the
“Gradual Drift Anomaly” type, the FT-HV did not perform as well as the other types of
anomalies, achieving a lower accuracy, precision, recall, and F1-Score across all sensors. The
training and prediction time was reasonable, and the AUC value was also lower, indicating
that the classifier’s performance in distinguishing between normal and anomalous data
points was poor. For the “Bias Anomaly” type, FT-HV achieved a high accuracy, precision,
recall, and F1-Score across all sensors, indicating that it could detect bias anomalies with a
high accuracy. The training and prediction times were reasonable, and the AUC value was
close to 1, indicating that the classifier performed well in distinguishing between normal
and anomalous data points. Overall, the FT-HV classifier performed well for instant and
bias anomalies but struggled with gradual drift anomalies. The results also suggest that
the classifier’s performance varies depending on the type of anomaly and the sensor used.
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Table 6. Mixed anomaly types.

Sensor Anomalies Accuracy Recall Precision F1-Score Training Time Predict Time Total Time AUC.

1
Instant Anomaly, 1000 × N(0.01)

99.94 99.94 99.94 99.94 10.5 0.7 11.3 99.93
2 99.96 99.96 99.96 99.96 8.7 0.7 9.5 99.95
3 99.99 99.99 99.99 99.99 7.2 0.7 7.8 99.99

1
Constant Anomaly, U (0, 5), d = 20

99.98 99.98 99.98 99.98 8.5 0.6 9.1 99.97
2 99.91 99.91 99.91 99.91 7.3 0.6 8.0 99.91
3 99.99 99.99 99.99 99.99 6.4 0.6 7.0 99.99

1
Gradual Drift Anomaly linespace (0, 4), d = 20

99.88 98.88 98.88 98.88 9.0 0.6 9.6 98.88
2 99.18 99.18 99.18 99.18 8.2 0.6 8.8 99.17
3 98.97 98.97 98.97 98.97 98.97 7.6 0.6 98.97

1
Bias Anomaly, U (0, 5), d = 10

99.90 99.90 99.90 99.90 9.2 0.6 9.8 99.89
2 99.90 99.90 99.90 99.90 7.9 0.7 8.6 99.90
3 99.96 99.96 99.96 99.96 6.9 0.6 7.5 99.96

Figures 2–5 provide the overall comparison of three models, FT-KNN, FT-ERT, and
FT-RF, and FT-HV (a combination of the previous three models). All the algorithms
perform well in detecting instant anomalies, with F1-Scores ranging from 98.29% to 99.27%.
Figure 2 compares the F1-Scores and total time (in seconds) for different anomaly detection
models applied to datasets with varying numbers of instant anomalies. FT-RF and FT-HV
algorithms show the highest F1-Scores for all the magnitudes of instant anomalies, followed
closely by FT-ERT. The time the algorithms take to detect instant anomalies increases with
the magnitude of the anomalies. FT-KNN is the fastest algorithm for detecting anomalies
for all magnitudes, taking less than 4 s for all cases. FT-ERT and FT-HV algorithms take
around 4 to 25 s, while FT-RF takes the longest time, ranging from 13 to 41.5 s. In most
cases, the FT-HV model has the highest F1-Score, followed closely by the FT-RF model.
The FT-KNN model has the lowest F1-Score across all datasets. The FT-KNN model has
the lowest run time, while the others take longer to train. However, the difference in run
time between the models needs to be larger to significantly impact the choice of model,
considering the high F1-Scores achieved by all models. Figure 3 compares all classifiers and
the time consumption. Among the algorithms, FT-HV performs better than FT-KNN and
others, as indicated by the higher F1-Scores across different dataset settings. The FT-KNN
model has the lowest F1-Score across all datasets. The FT-KNN model has the lowest run
time, while the others take longer to train. Figure 4 shows that the FT-RF model performs
consistently well across all drift anomalies and durations, with the highest F1-Score in most
cases. The FT-ERT model performs well, with high F1-Scores and relatively short total
times. FT-HV, which combines the predictions of multiple models, performs similarly to
individual models in most cases. The FT-KNN model has lower F1-Scores and shorter total
times than the other models. Figure 5 shows that the FT-HV algorithm performs well for
most anomaly types and durations, while the FT-ERT algorithm is particularly effective at
detecting bias anomalies with short durations. The FT-KNN model has lower F1-Scores
and shorter total times than the other models.

Figures 6–9 show the results of our approach alongside the baseline results. Figure 6
shows that our FT-ERT model achieves better results in most instant anomaly detection
cases. Furthermore, Figure 7 depicts that our FT-HV model achieves better results when the
anomaly magnitude is low and obtained poorer results in the rest of the cases for instant
anomaly detection. In Figure 8, it can be noted that our FT-RF model achieves poorer
results in the rest of the cases for instant anomaly detection. Finally, Figure 9 depicts that
our FT-HV model achieves better results when the anomaly magnitude is low and obtains
poorer results for instant anomaly detection in the rest of the cases.
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Figure 2. Instant anomaly detection (F1-Score) and time comparison.

Figure 3. Constant anomaly detection (F1-Score) and time comparison.
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Figure 4. Gradual drift anomaly detection (F1-Score) and time comparison.

Figure 5. Bias anomaly detection (F1-Score) and time comparison.
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Figure 6. Performance comparison of Instant anomaly detection (F1-Score) with existing approaches.

Figure 7. Performance comparison of Performance Comparison of Constant anomaly detection
(F1-Score) with existing approaches.

Table 7 shows that the proposed approach outperforms the other two methods regard-
ing the accuracy and F1-Score for all types of anomalies and all sensors. We provide a
comparison only with studies that used all sensor anomalies, single anomalies, and mixed
sensor anomalies. Specifically, the proposed approach achieves an accuracy and F1-Score
close to 100% for most cases, while the other two achieve an accuracy and F1-Score around
90% or lower. It is also worth noting that the performance of all methods is affected by
the type of anomaly and the sensor used. For example, the proposed approach achieves a
lower F1-Score for the gradient anomaly type than other types. In contrast, the other two
methods achieve a higher accuracy and F1-Score for the constant anomaly type compared
to other types. Overall, this table suggests that the proposed approach is promising for
detecting various types of anomalies in sensor data.
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Figure 8. Performance comparison of Gradual drift anomaly detection (F1-Score) with existing
approaches.

Figure 9. Performance comparison of Bias anomaly detection (F1-Score) with existing approaches.

Overall, the proposed FT-RF approach performed well in the case of a single anomaly
type, and FT-HV performed well in mixed anomaly detection compared to other classifiers
and state-of-the-art studies. Further, it is noted that there is a trade-off between speed and
accuracy. FT-KNN and FT-RF are seen to be the fastest algorithms, but in some cases, they
did not perform well. Meanwhile, FT-HV takes a lot of time but performs well on mixed
anomaly types. Further, it is noted that since the datasets have few features and deep
learning needs high feature dimensions and a large dataset, this is the reasoning behind
the superior working of our approach.
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Table 7. Performance comparison with existing studies.

[5] [14] FT-HV

Anomaly Type Sensor F1-Score F1-Score F1-Score

Instant, 1000 × N(0, 0.01)
1 78.11 77.9 99.94
2 73.38 72.8 99.96
3 64.44 61.2 99.99

Constant, U(0, 5), d = 10
1 90.43 90.1 99.98
2 81.10 80.7 99.91
3 77.79 76.0 99.99

GD linespace(0, 4), d = 20
1 84.30 83.3 98.88
2 81.35 80.2 99.18
3 76.33 74.7 98.97

Bias, U(0, 5), d = 10
1 90.45 89.3 99.90
2 81.43 82.1 99.90
3 76.17 75.1 99.96

5. Conclusions

Anomaly detection is an important area of research in connected and automated
vehicles, as anomalies can pose a significant risk to safety, reliability, and performance.
Developing fast and efficient anomaly detection systems is critical for ensuring the timely
identification and response to anomalies in these vehicles. This paper proposes an approach
that uses a fine-tuned machine learning algorithm and a hard voting classifier (FT-HV) to
efficiently detect low/high-magnitude single anomalies and low/high-magnitude mixed
anomalies in connected and automated vehicles. The experiments reveal that FT-RF per-
forms well in the case of single anomalies, and FT-HV improves the performance of mixed
anomaly detection compared to other classifiers and state-of-the-art studies. Further, it is
noted that there is a trade-off between speed and accuracy. FT-KNN and FT-RF are seen to
be the fastest algorithms; however, in some cases, they did not perform well. Meanwhile,
FT-HV took a lot of time, but performed well on mixed anomaly types. The results suggest
that this study could lead to more effective identification of abnormal behavior in vehicles,
improving their overall safety and reliability and making them more trustworthy and
dependable for consumers. Future research could focus on data collection from more
sensors, improving anomaly detection systems’ accuracy, efficiency, and transferability, and
could explore new applications and use cases for these systems.
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