
Citation: Bogacka , K.; Sowiński, P.;

Danilenka, A.; Biot, F.M.;

Wasielewska-Michniewska, K.;

Ganzha, M.; Paprzycki, M.; Palau, C.E.

Flexible Deployment of Machine

Learning Inference Pipelines in the

Cloud–Edge–IoT Continuum.

Electronics 2024, 13, 1888. https://

doi.org/10.3390/electronics13101888

Academic Editors: Simeone Marino

and Palden Lama

Received: 26 February 2024

Revised: 15 April 2024

Accepted: 7 May 2024

Published: 11 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Flexible Deployment of Machine Learning Inference Pipelines in
the Cloud–Edge–IoT Continuum
Karolina Bogacka 1,2 , Piotr Sowiński 1,2 , Anastasiya Danilenka 1,2 , Francisco Mahedero Biot 3 ,
Katarzyna Wasielewska-Michniewska 1 , Maria Ganzha 1,2,* , Marcin Paprzycki 1 and Carlos E. Palau 3

1 Systems Research Institute, Polish Academy of Sciences, ul. Newelska 6, 01-447 Warsaw, Poland;
karolina.bogacka@ibspan.waw.pl (K.B.); piotr.sowinski@ibspan.waw.pl (P.S.); danastas@ibspan.waw.pl (A.D.);
katarzyna.wasielewska@ibspan.waw.pl (K.W.-M.); marcin.paprzycki@ibspan.waw.pl (M.P.)

2 Faculty of Mathematics and Information Science, Warsaw University of Technology, ul. Koszykowa 75,
00-662 Warsaw, Poland

3 Communications Department, Universitat Politècnica de València, Camí de Vera, s/n, 46022 Valencia, Spain;
framabio@teleco.upv.es (F.M.B.); cpalau@dcom.upv.es (C.E.P.)

* Correspondence: maria.ganzha@ibspan.waw.pl

Abstract: Currently, deploying machine learning workloads in the Cloud–Edge–IoT continuum
is challenging due to the wide variety of available hardware platforms, stringent performance re-
quirements, and the heterogeneity of the workloads themselves. To alleviate this, a novel, flexible
approach for machine learning inference is introduced, which is suitable for deployment in diverse
environments—including edge devices. The proposed solution has a modular design and is com-
patible with a wide range of user-defined machine learning pipelines. To improve energy efficiency
and scalability, a high-performance communication protocol for inference is propounded, along with
a scale-out mechanism based on a load balancer. The inference service plugs into the ASSIST-IoT
reference architecture, thus taking advantage of its other components. The solution was evaluated in
two scenarios closely emulating real-life use cases, with demanding workloads and requirements
constituting several different deployment scenarios. The results from the evaluation show that the
proposed software meets the high throughput and low latency of inference requirements of the use
cases while effectively adapting to the available hardware. The code and documentation, in addition
to the data used in the evaluation, were open-sourced to foster adoption of the solution.

Keywords: machine learning; edge computing; IoT; cloud–edge–IoT; inference; gRPC; inference server

1. Introduction

The emerging popularity of machine learning (ML) solutions in recent years has led
to a sharp increase in the number of industry deployments. Many ML pipelines that
could previously be integrated only into environments with vast computational resources,
most often cloud-based, have been further expanded to include edge devices or even the
Internet of Things (IoT) [1], i.e., the Cloud–Edge–IoT continuum. In the Cloud–Edge–
IoT continuum, processing and storage tasks are performed on all levels of the network
hierarchy and not just in the cloud [2]. Such deployments often face similar challenges,
many of them purely related to the infrastructure: its energy consumption, scalability,
and the lack of user-friendly tools [3]. Therefore, many require similar solutions, which for
ML often come in the form of general purpose ML inference servers.

Here, an ML inference server is understood as an application that, upon receiving
a request containing data intended as input for inference, uses an ML model to obtain
predictions, which it returns in the form of a response. ML inference servers can function
as standalone deployments without additional software infrastructure, thus making them
more suitable for edge environments. As a consequence, numerous approaches to ML
inference servers have been introduced by the industry.

Electronics 2024, 13, 1888. https://doi.org/10.3390/electronics13101888 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13101888
https://doi.org/10.3390/electronics13101888
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-7109-891X
https://orcid.org/0000-0002-2543-9461
https://orcid.org/0000-0002-3080-0303
https://orcid.org/0000-0002-2810-398X
https://orcid.org/0000-0002-3763-2373
https://orcid.org/0000-0001-7714-4844
https://orcid.org/0000-0002-8069-2152
https://orcid.org/0000-0002-3795-5404
https://doi.org/10.3390/electronics13101888
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13101888?type=check_update&version=2


Electronics 2024, 13, 1888 2 of 31

In contrast, recent academic works tend to focus on developing elaborate infrastruc-
tures dedicated to model serving in the form of machine learning inference systems [4–6].
These systems are not limited to a single application but instead leverage existing con-
tainerization and orchestration tools to support and manage the deployment of complex
architectures. They are often integrated with well-known platforms such as Docker [7] and
Kubernetes [8]. As a result, it is common for ML inference pipelines inside these systems
to be implemented as chains or graphs of networked services, in which each of the ML
models, as well as preprocessing and preprocessing steps, is encapsulated as a separate
container. In the scope of this work, we assume an ML inference pipeline to be a series
of complex data processing steps, which typically have to be deployed alongside the ML
model [9] and with a particular focus on providing ML inference services.

There are many advantages of the inference system approach, especially with the grow-
ing length of ML pipelines and increasing model complexity in modern deployments [4].
First of all, it allows the pipeline to be easily modifiable. Any changes to the selection or
ordering of data processing steps do not necessitate the redeployment of the whole pipeline.
Instead, its composition can often be altered with just a few commands provided by the
integrated orchestration tools (for example, Kubernetes). Those commands are usually
well-documented and known to the maintainers of the infrastructure, which lowers the
barrier to adoption [10,11]. Only when a completely new data processing step is added
does it warrant additional effort from a software developer. As such, many of the changes
to the pipeline can be made very quickly. In addition, most of the data processing code
has been separated into independent components by design, which promotes reusability.
Already developed components can be easily repurposed into other deployments and
pipelines. Because of that, this approach is inherently extensible and flexible, as it can
accommodate complex pipelines involving multiple ML models as ensembles, as well as
multiple preprocessing steps. Furthermore, the encapsulation of data processing steps
as standalone applications simplifies the development of custom components. Instead
of ensuring that new code is well-integrated within a pre-existing server (a solution that
would be harder to debug and deploy), the user only has to worry about providing a
well-performing component. Overall, the concept of flexible ML inference pipelines en-
ables rapid, iterative experimentation with the deployed ML workflow. This focus on
experimentation may be especially beneficial for projects involving applied ML research
tested in pilot conditions, as it allows many variants of the workflow to be easily created
and tested. The users can adapt the pipeline to the real-life environment by adding or
removing custom preprocessing and postprocessing steps, testing multiple versions of a
given module, and changing the behavior of existing transformations through parameter
modification, all without the need to rebuild the application as a whole.

However, the design philosophy of treating each step in the pipeline as a separate
container also introduces a certain performance overhead. Even though the employment of
Kubernetes orchestration in edge environments is not only possible but also increasingly
popular [12], limited resources still necessitate a different architectural approach in edge-
friendly solutions. Firstly, although the encapsulation of applications inside of, for instance,
Docker containers, has only limited influence on the overall CPU usage, it is a noticeable
influence nonetheless [13]. This influence is then multiplied with each preprocessing
and postprocessing step, thus limiting the length of the pipeline. Secondly, dividing
preprocessing steps that use the same modules between different containers, which run
separate processes, means that the containers have to reserve RAM or GPU memory for
the same modules multiple times. This is a factor that influences the overall usage of those
resources [7]. Finally, and perhaps most importantly, this architecture causes the need for
continuous serialization and deserialization of data when passed from one preprocessing
step to the next. The consistent inclusion of such a transformation between each step
diminishes the effectiveness of the overall solutions. These drawbacks are not as relevant
for deployments located on multiple powerful devices as for those involving only a singular
machine with limited communicational and computational capabilities. As such, providing



Electronics 2024, 13, 1888 3 of 31

dynamic pipelines by dividing discrete steps between separate containers fits better with
the characteristics of cloud than edge environments.

Related to our research work involving the testing of ML models in real-life environ-
ments, there was an interest in a solution that would facilitate easy experimentation with
ML inference pipelines by providing the flexibility, extensibility, and reusability of ML
inference systems. It should be stressed that this solution would have to be deployed in a
very resource-constrained edge environment. The main challenge of this paper therefore
lies in providing the aforementioned features while facing stringent environmental limita-
tions. In this work, an approach designed to address this problem and developed within
the scope of the ASSIST-IoT Horizon 2020 project [14] is presented. Namely, the Modular
Inference Server (MIS), a flexible solution for deploying ML inference pipelines in a wide
variety of computational settings, is proposed along with the complementary Component
Repository. The Component Repository supports managing and persisting components
used to build ML inference pipelines.

The proposed system was designed with two real-life use cases in mind, which differ
greatly in terms of used ML models and hardware requirements. Thus, a large focus
was placed on obtaining an ML inference server that would be general enough to fulfill
the needs of both scenarios. Special attention was put on ensuring compatibility with
a variety of hardware platforms present in the use cases. Consequently, the persistent
storage of pipeline components was recognized as a useful addition, thus improving their
overall scalability and reusability. Finally, the resulting framework still had to offer fast
communication and low resource consumption or otherwise risk losing compliance with
the stringent performance requirements of the use cases. As an ML inference server, the MIS
achieves these goals by prioritizing a simpler architecture than that of ML inference systems
and by not requiring any data transfer between server instances. As a consequence, the MIS
does not offer support for distributing its pipelines across multiple compute nodes.

In summary, the main contributions of this work consist of (1) an extensive comparison
of freely available solutions for ML inference serving (including ML inference servers
and ML inference systems); (2) a novel solution for integrating flexible and reusable ML
inference pipelines into an ML inference server; (3) examples of two different ML inference
pipelines designed for two real-life use cases and integrated into the MIS; (4) the description
and results analysis of experiments testing the performance of the solution in multiple
scenarios motivated by real-life use cases. Our approach for integrating ML inference
pipelines focuses on providing a combination of wide hardware support, lightweight
communication, and scalability, which we were unable to find in existing works.

The code used to implement the MIS and the Component Repository, as well as
to prepare the presented ML use cases and conduct the benchmarks, has been made
public under the Apache 2.0 license. It is available on GitHub (as inference-server (https:
//github.com/Modular-ML-inference/inference-server), component-repository (https://
github.com/Modular-ML-inference/component-repository), ml-usecase (https://github.
com/Modular-ML-inference/ml-usecase), and benchmark-driver (https://github.com/
Modular-ML-inference/benchmark-driver); accessed on 3 April 2024) and Zenodo [15–18].

This paper is organized as follows. Section 2 introduces the proposed approach to the
problem of flexible inference pipelines in the Cloud–Edge–IoT continuum—the Modular
Inference Server and the supplementary Component Repository. Section 3 provides relevant
context for experiments with the MIS in the form of use case descriptions. Section 4 explains
the setup of the experiments used to test the effectiveness of the solution. Section 5 contains
an analysis of the results obtained from conducted experiments. In Section 6, the current
state of the art is presented, with an emphasis given to the identified research gaps and
how the MIS aims to address them. Here, the MIS is compared with other relevant
approaches. Finally, Section 7 discusses potential ambiguities and areas requiring future
work, and Section 8 formulates the final conclusions.

https://github.com/Modular-ML-inference/inference-server
https://github.com/Modular-ML-inference/inference-server
https://github.com/Modular-ML-inference/component-repository
https://github.com/Modular-ML-inference/component-repository
https://github.com/Modular-ML-inference/ml-usecase
https://github.com/Modular-ML-inference/ml-usecase
https://github.com/Modular-ML-inference/benchmark-driver
https://github.com/Modular-ML-inference/benchmark-driver


Electronics 2024, 13, 1888 4 of 31

2. Proposed Solution

In order to fulfill the aforementioned requirements, the proposed solution prioritizes
flexible pipeline design and low resource consumption. As depicted in Figure 1, it consists
of two applications: the Modular Inference Server (MIS) and the Component Repository.
The MIS, which can also function in standalone mode, provides the functionalities of an
ML inference server. Based on the configuration supplied by the administrator, the MIS
constructs the full ML inference pipeline—including a lightweight gRPC service, the ML
model wrapped in an inferencer component, and a list of preprocessing and postprocessing
functions. All of these components are pluggable—they can be easily replaced and chained.
If any of the pluggable components specified in the configuration are not present on the
local filesystem, the MIS can dynamically download them from the Component Repository.
The Component Repository is responsible for storing the metadata and the serialized files
of the pluggable components. It can be used to quickly distribute new functionalities
across multiple MIS instances. The MIS, however, still serves as the foundation of the
whole solution.

Modular Inference Server

Component Repository

Read
configuration

Configuration

Preprocessing

Service

Postprocessing Inference

Model

M
o

d
u

la
r 

p
ip

el
in

e
M

an
ag

em
en

t

Setup pipeline

Request
loading

Managers

Request component

Component
loaders

Load components

Send component
REST API

MongoDB

Administrator

Inference
request

Inference client
Inference
response

gRPC

Modify
configuration

Upload
components

Figure 1. A high-level overview of the proposed solution emphasizing relevant user interactions
with the system as a whole.

2.1. Modular Inference Server

The Modular Inference Server was originally developed as an inference component
for the ASSIST-IoT Federated Learning (FL) Local Operations enabler, where it is a part
of the larger ASSIST-IoT FL system [19]. The design of the MIS extends the idea of plug-
gable Data Transformations (first introduced in the FL system [20]) to a wider variety of
pluggable component types. By encapsulating all processing steps in a single application,
the MIS removes the need for interstep communication over the network, thereby positively
contributing to the energy efficiency of the solution.

The MIS, after it builds the ML inference pipeline at the start of the application, func-
tions as a gRPC server. The pluggable components can be used to dynamically reconfigure
the pipeline. As shown in Figure 2, the MIS supports four categories of pluggable compo-
nents: Data Transformation, Model, Inferencer, and Service. Data Transformations handle
the preprocessing and postprocessing that are operations common in ML pipelines. Model
components are essentially serialized ML models. Inferencers handle the initialization
of Models and form an abstraction over how the Models perform predictions. Services
encapsulate gRPC interfaces for the pipeline, along with their desired request and response
formats. In general, the components can and should contain custom code, with the length
of the preprocessing and postprocessing pipelines not being limited by the MIS.



Electronics 2024, 13, 1888 5 of 31

LOAD

Pluggable Components

Managers

Component Loaders

USING

Data Transformation Model

Inference Transformation Loader Inference Setup LoaderInference Model Loader

Inference Manager Setup Manager

ServiceInferencer

  LOAD  

  USING  

Figure 2. Pluggable components of the MIS and their interactions with the rest of the architecture.

Figure 3 presents the initialization of an ML inference pipeline, which is performed
based on the application’s configuration and specified in JSON files. The configuration
defines the components to be loaded, their parameters, their order in the pipeline, and the
data formats expected by the Service and the Model. This metadata allows the MIS to check
the correctness of the ML inference pipeline by comparing the input data format passed
through the pipeline with the format expected by the Model.

Component
RepositoryModular Inference Server

Manager
Component

Loader
Component

Repository API

alt

1
2

3

4

5

Figure 3. Sequence diagram illustrating the process of loading and initializing the pluggable compo-
nents. (1) The administrator modifies the configuration and restarts the application. (2) The Manager
checks which component needs to be loaded and calls the appropriate Component Loader to do it.
(3) The Component Loader checks if the component is in the local file system. If not, it sends a request
to the Component Repository to download the component. (4) If the downloaded component is a
model, the Component Loader unpacks the file and uses a dedicated inferencer method to load it.
Otherwise, the Component Loader decompresses and initializes the component. (5) The Manager
connects the component to other elements in the pipeline. If the inference pipeline is ready, it checks
whether the input/output data formats are consistent.

The system administrator can choose to either include the components in the MIS’s
file system or upload them to the Component Repository. The former allows the MIS
to operate in standalone mode, thus simplifying the deployment and lowering overall
hardware requirements. On the other hand, with the Component Repository, multiple
MIS instances can download components dynamically, thereby increasing the scalability of
the solution.

A decision was made for the MIS to utilize gRPC for inference communication, in-
cluding bidirectional gRPC streaming for its default interface. gRPC was selected due to
the very good throughput and latency characteristics offered by this modern, open-source
remote procedure call framework [21,22]. gRPC uses HTTP/2 as the underlying protocol



Electronics 2024, 13, 1888 6 of 31

to create robust and long-lived connections with advanced mechanisms such as keep-alive
messages, flow control, and multiplexing [23,24]. Bidirectional streaming allows the MIS
to asynchronously stream requests in and responses out, thereby minimizing the latency.
Additionally, as gRPC streaming combines the data compression offered by Protocol Buffers
with multiplexing, reducing the overhead necessary to communicate large amounts of
data when compared with protocols such as REST, its inclusion is expected to result in
a significantly more lightweight communication with little impact on the computational
resources [21,25]. Due to the notable influence of telecommunication networks on the
energy consumption of the ICT ecosystem, this design choice is expected to result in the
improved energy efficiency of the overall solution. It should also be stressed that, in con-
trast to ML inference systems, the MIS does not perform any internal communication over
the network, thereby removing the need for repeated serialization and deserialization and
further reducing energy use.

The dedicated Service, which is provided out of the box with the MIS, was designed
to be as efficient and reusable as possible. Both requests and responses encode the data
as a map with values in an established format (tensorflow.TensorProto). This format is
commonly used by TensorFlow [26], as well as TensorFlow Serving [27], and can effectively
encode multidimensional arrays of various types (integer, string, Boolean, float, etc.) while
preserving the information about its original shape. This interface allows for very diverse
data types to be effectively communicated in and out of the MIS, including entire batches
of data in a single request.

The MIS is publicly available under the Apache 2.0 license on GitHub (https://github.
com/Modular-ML-inference/inference-server) (accessed on 3 April 2024) and Zenodo [15].
More information on the creation of custom pluggable components can be found in the
repository’s README file. It contains extensive instructions on how to construct ML
inference pipelines, as well as directions on how to develop, serialize, and integrate the
components into the MIS based on Model and Data Transformation examples. The repos-
itory also includes components prepared for the use cases, along with the configuration
used to deploy them.

2.2. Component Repository

The Component Repository (called the FL Repository during its development in the
ASSIST-IoT project) consists of a lean FastAPI [28] application that handles the modification
of the underlying MongoDB [29] database instance. It allows the administrator to easily
create and update the metadata of pluggable components, upload their serialized files,
download the metadata, download the files, delete the metadata and the files, and display
a list of all currently available components in a given category. All of those functionalities
are implemented in a RESTful API.

The Component Repository handles every class of pluggable components used by
the Modular Inference Server: Data Transformations, Models, Inferencers, and Services.
The metadata of these components includes their description, software, and hardware
requirements, as well as accepted input parameters and their default values. The serialized
components themselves are stored using the GridFS functionality of MongoDB, which
is offered for files that may exceed the limit of 16 MB. MongoDB also supports robust
replication, thereby allowing for large deployments of the Component Repository if needed.
The Component Repository is available under the Apache 2.0 license on GitHub (https:
//github.com/Modular-ML-inference/component-repository) (accessed on 3 April 2024)
and Zenodo [16], along with usage instructions and API documentation.

2.3. Deployment and Integration

In order to make the MIS and the Component Repository deployable in containerized
environments, they were integrated with the Kubernetes orchestration platform, including
the selected tools commonly combined with it: Helm [30] and Prometheus [31]. Helm
serves as a package manager for Kubernetes applications—thus allowing the developer

https://github.com/Modular-ML-inference/inference-server
https://github.com/Modular-ML-inference/inference-server
https://github.com/Modular-ML-inference/component-repository
https://github.com/Modular-ML-inference/component-repository


Electronics 2024, 13, 1888 7 of 31

to easily define, install, and upgrade them—whereas Prometheus provides a dedicated
monitoring solution. Subsequently, a Helm chart for the Modular Inference Server was
created. The chart exposes the gRPC inference service and HTTP endpoint broadcasting
metrics in the Prometheus format. Through the efficient use of Kubernetes Persistent
Volumes and ConfigMaps, the chart empowers the system administrator with the ability
to easily modify the application on the fly. Deploying multiple instances of the MIS is
supported in order to allow for running multiple ML inference pipelines in parallel or to
replicate a single pipeline. Additionally, the MIS can be combined with a dedicated load
balancer (e.g., Envoy) to spread the requests over multiple MIS replicas, thus allowing
the system to handle more clients. Docker images for the MIS were built for the x86-
64 and ARM64 processor architectures to enable deployment on a wide range of cloud
and edge devices. For the Component Repository, a separate Helm chart was created.
The chart includes an easily modifiable ConfigMap, which describes the configuration of
the application.

The MIS was designed as a machine learning inference server and can be effectively
deployed in standalone mode as a single container (even without Kubernetes), which is
a feature deemed important due to the inclusion of edge environments in pilot use cases.
Because of that, its Kubernetes configuration was kept straightforward, with the only
additional component being the supplementary Component Repository. As such, it is
worthwile to explore in depth the influence of the use cases on the design and deployment
of the MIS.

3. Use Cases

This section describes the use cases and machine learning inference pipelines employed
to test the Modular Inference Server. These real-life scenarios were derived from the pilot
implementations of the ASSIST-IoT project and serve to validate the performance of the
MIS with realistic workloads and requirements. They were selected to be as diverse as
possible, thus representing very different workload types.

3.1. Worker Safety: Fall Detection

The first use case, based on the ASSIST-IoT Smart Safety of Workers pilot, involves
detecting the falls of construction workers in real time. As described in detail in a recent
work [32], the construction workers were equipped with acceleration sensors, which
reported their readings to an edge device nearby with a sampling frequency of 2 Hz.
The edge device then assembled an acceleration time series and fed it as input to a neural
network twice every second. The output of the network indicated the confidence that the
worker had fallen during the span of the time series. This information was then used to
alert the responsible persons about a possible accident.

Implementing this use case in practice comes with specific requirements, which stem
directly from the nature of the task. Mainly, the latency of detecting falls must be minimized
to provide aid to the potentially injured worker as quickly as possible. The MIS and its
interfaces have a major influence on this latency. Ideally, the time it takes for a request to
be sent, processed, and returned should always be less than 100 ms, with a mean latency
around 10 ms. Therefore, low latency here is understood as the latency that consistently
meets these requirements. The connection to the inference service must also be reliable,
so as to detect all falls that occurred. The ARM64-based edge device developed in the
ASSIST-IoT project that the inference will run on, the Gateway Edge Node [33], has very
limited processing capabilities. This fact influenced the design of the ML pipeline, which
aims to be as lightweight as possible.

The fall detection model must be able to run on the resource-constrained GWEN,
all while scaling to a high number of workers. In the field tests conducted within the
ASSIST-IoT project, scaling to up to 10 workers was tested with the GWEN, as this was
the number of available acceleration sensors. However, the system should support more
workers per edge device, as many as 40–60. The expected number of inferences per second



Electronics 2024, 13, 1888 8 of 31

can be then simply expressed as 2n, where n is the number of workers currently served by
the edge device, assuming the aforementioned 2 Hz sampling rate.

To implement this use case, the final model from a recent work was used [32],
with 203 parameters in total. Figure 4 presents the Modular Inference Server pipeline
implemented for this task.

InferencePreprocessing

Postprocessing

Transform prediction to TensorProto  

Input: gRPC stream

Convert input to numpy array

Compute vector length of each input row

Change unit of input data to milli-g

Merge data into the input array as an
additional column

Normalize using training set statistics

Expand dimensions of input data Classify input as fall or not fall

Output: gRPC stream

Modular Inference Server

Figure 4. Inference pipeline for the fall detection use case.

The first preprocessing step transforms the input received over gRPC into the format
of a numpy [34] array, which is often used for numerical operations in Python. Then, as the
unit in which acceleration is measured by the tags differs from the milli-g (where g stands
for the universal gravitation constant) employed by the model, it is converted in the second
preprocessing step. Subsequently, a new feature is created based on the input values by
calculating the length of the vector formed by the three acceleration axes supplied by the
client. The result is added as a new column to the input data. Later, the obtained array is
normalized with the help of statistics calculated on the training dataset to ensure that the
scale of the input data follows the scale of the data the model was trained on. Afterwards,
the dimension of the input data is expanded to form a batch of one input sequence for
model inference. In the inference stage, the model processes the input data and assigns
the probability of this input sequence being a fall in the range [0–1]. Finally, the prediction
is encoded as a map of tensorflow.TensorProto and transmitted back, along with the
original identifier of the message. The size of the output messages is both considerably
smaller and more deterministic than in the next use case focusing on scratch detection.

3.2. Car Inspection: Scratch Detection

The car inspection use case is a part of the ASSIST-IoT Cohesive Vehicle Monitoring
and Diagnostics Pilot. Here, the goal is to detect scratches on images of cars taken with
specialized vehicle scanners [19]. The scanners can be placed, for example, in rent-a-car
companies or in maintenance garages. The scanners take numerous photos of the vehicles
passing by, thereby allowing for further machine learning-based automated damage in-
spection. Each scanner is equipped with multiple cameras to provide images from different
points of view, thus resulting in each passing vehicle having 50–300 images taken [19] with
more than 200 vehicles passing through the scanner daily. This effectively necessitates
the machine learning inference system to have a high throughput so as to provide the
users with scratch detection results as quickly as possible. The use case-defined preferred
inference time per vehicle lies in the range of 2 to 5 min and depends on the business
processes linked to the damage recognition. For example, a vehicle inspector at a rent-a-car
company may require a faster processing time than a maintenance garage. The use case
focused on two damage types: scratches and rim damage. For this work, only the scratch



Electronics 2024, 13, 1888 9 of 31

damage type was chosen for experiments. To facilitate the necessary image processing
and accelerate ML inference, each scanner was connected to an edge device equipped with
a GPU.

In the use case, the Mask R-CNN model was used [35], which is a popular solution
for image segmentation tasks. The Mask R-CNN model consists of the following parts:
the backbone network that processes the image and creates feature maps; the region
proposal network that identifies candidate objects; RoI (region of interest) pooling for
extracting the features from candidate objects; classification and bounding box regression
heads for candidate objects classification and localization; and mask segmentation branch
responsible for generating pixel masks for each detected object. Overall, the model has
45,880,411 parameters and consumes 180 MB of disk space, thus making it a lot more
resource-demanding than the previously presented fall detection use case.

For each input image, the model produces a prediction in a dictionary format, which
is specified by the PyTorch [36] Mask R-CNN model builder documentation [37], where
the length of dictionary entries represents the number of detected instances (scratches):

• Boxes: The list of bounding boxes, where each box is described with a list of coordi-
nates [x1, y1, x2, y2].

• Labels: The list of predicted classes. In the presented use case, the values in the list are
always equal to “1” due to there being only one class of damages in the task.

• Scores: The list of prediction confidences with values in the [0–1] range.
• Masks: The list of 2-dimensional masks with values in the [0–1] range.

What should be noted here is that the size of the prediction depends on the number
of detected scratches in the image. This effectively means that when deployed in the MIS,
the inference responses will be larger for images containing scratches.

The model used in the experiments was trained on a manually labeled, representative
training dataset obtained from real vehicle scanners. Due to privacy and licensing con-
cerns, neither the training dataset nor the trained model can be made public. However,
the experiments presented in this work can still be partially reproduced. Similar results can
be obtained by using the raw Mask R-CNN model, with appropriate model architecture
modifications. The relevant source code and instructions for how to achieve this were
published under the Apache 2.0 license on GitHub (https://github.com/Modular-ML-
inference/ml-usecase) (accessed on 3 April 2024) and Zenodo [17].

The model operates in the MIS pipeline presented in Figure 5. The first preprocessing
step transforms the input data received over gRPC into a numpy array. Then, as the
data passed into the model can be a batch of images of any length, that numpy array
is decomposed into a list of arrays (one for every image in the batch). Each RGB input
image is represented by an array of dimensions (height, width, and channel). In the next
step, the axes are transposed to shape the image to the format expected by the model
(batch, channel, height, and width). The final step of preprocessing rescales each image
into the range of [0–1], as expected by the model, and forms the input batch as a list of
Torch tensors. The model performs inference on the input batch and returns a list of
dictionaries as the prediction. Each dictionary in the list is in the format described above.
The detected scratches are then filtered based on the reported confidence of the model,
excluding the ones that the model is not confident in. For the presented use case, the
confidence threshold was set to 0.5. The final list of detected scratches is transformed
into a map of tensorflow.TensorProto to send it back over gRPC. The response includes
concatenated information about the labels, boxes, scores, and masks found by the model for
the entire batch of images passed into it. Alongside it, a list of integers is included, which
encodes how many of those predictions were found for each image in the batch, thereby
enabling the client to assign each prediction to a specific input image.

https://github.com/Modular-ML-inference/ml-usecase
https://github.com/Modular-ML-inference/ml-usecase


Electronics 2024, 13, 1888 10 of 31

InferencePreprocessing

Postprocessing

Transform prediction to TensorProto Convert input to numpy array

Transpose the arrays forming the input

Decompose the input into a list of arrays

Detect scratches in the input images

Filter out predictions with insufficiently
high confidence from the output

Rescale the input to [0, 1] and transform
it from a list of arrays to a list of tensors

Modular Inference Server

Input: gRPC stream Output: gRPC stream

Figure 5. Inference pipeline for the scratch detection use case.

4. Experimental Setup

The setup for the experiments with the Modular Inference Server was designed to
maximize the consistency of benchmark results while emulating the real deployment
as much as possible. In all scenarios, the task of sending inference requests, analyzing
inference results, and collecting various metrics was delegated to a separate machine:
an x86-64 workstation. This separation allowed us to minimize the number of services that
had to be run on the inference server, thus yielding cleaner benchmark results.

During the experiments, two different machines were used for hosting the Modular
Inference Server. The first is the GWEN, the ARM64-based edge device developed as a part
of the ASSIST-IoT project. The GWEN was designed to be power-efficient and thus has
very limited processing capabilities. The second is an x86-64-based GPU server with ample
computing resources. The detailed specifications of all machines used in the experiments
can be found in Table 1. The machines were connected via Gigabit Ethernet, with a TP-Link
TL-SG108 L2 switch, as illustrated in Figure 6.

Table 1. Specifications of machines used in the experiments.

Device Arch. CPU Logical Cores GPU RAM Linux Kernel

Client x86-64 Intel Xeon Gold 5218 32 – 128 GB 5.4.0

GWEN ARM64 i.MX 8M Plus Quad 4 – 4 GB 5.16.71

GPU server x86-64 AMD Ryzen 5 3600 12 Nvidia RTX 3090 Ti (24 GB) 64 GB 6.2.0

TP-Link
TL-SG108 switch

Testbed 1:
GPU server (x86-64)

Client:
x86-64 workstation

Testbed 2:
GWEN (ARM edge device)

1Gb/s Ethernet

1Gb/s Ethernet

1Gb/s Ethernet

Figure 6. Network diagram of the test setup.

The inference requests were made by a dedicated test driver application written in
Scala and running on the client machine. The test driver uses the Apache Pekko Streams
library to reactively and reliably manage streaming gRPC requests to the Modular Inference
Server. It takes accurate (sub-microsecond) measurements of request and response times
using the system’s monotonic clock. This allows for very precise calculation of the round-
trip request–response latency in the experiments. The application was containerized for



Electronics 2024, 13, 1888 11 of 31

easier use and published under the Apache 2.0 license on GitHub (https://github.com/
Modular-ML-inference/benchmark-driver) (accessed on 3 April 2024) and Zenodo [18],
along with usage instructions.

The client machine also hosted a Prometheus 2.48.1 server to collect metrics from
two sources: the Modular Inference Server instances and the Prometheus Node exporter.
The MIS exposed metrics related to request processing time and the status of the Python
virtual machine. On both the GWEN and the GPU server, Prometheus Node exporter 1.7.0
was installed to expose metrics about the operating system and the hardware. Additionally,
Nvidia DCGM exporter 3.3.0 was installed on the GPU server to expose metrics about
the GPU.

In the experiments, a total of three different deployment scenarios were considered,
as summarized in Figure 7. For the GWEN edge device, due to its limited computing
resources, only one instance of the MIS was deployed in Docker without a load balancer
(scenario A). For the GPU server, two deployment variants were used with Kubernetes
(kubeadm 1.28.2). In scenario B, one instance of the Modular Inference Server was deployed
without load balancing. In scenario C, a varying number of MIS instances were deployed
in Kubernetes (1, 2, and 4), with a load balancer directing gRPC requests to them. The load
balancer used in the tests was Envoy 1.18.3 in a round-robin configuration.

A)

B)

C)

Docker

Modular Inference
Server

Node exporter

GWEN (ARM edge device)

Docker

Inference request
Benchmark driver

Prometheus

Client (x86 workstation)

Inference response

Inference metrics

gRPC

HTTP

Kubernetes

Modular Inference
Server

Node exporter

GPU server

Docker

Inference request
Benchmark driver

Prometheus

Client (x86 workstation)

Inference response

gRPC

HTTP

Kubernetes

Node exporter

GPU server

Docker

Benchmark driver

Prometheus

Client (x86 workstation)

Inference response

System metrics

gRPC

HTTP

Modular Inference
Server

Load balancer
(Envoy)

Inference request

Inference metrics

GPU metrics
Nvidia DCGM exporter

System metrics

Nvidia DCGM exporterGPU metrics

Inference metrics

System metrics

Figure 7. Component diagram of the benchmark setup. (A) Setup with the GWEN (only for the fall
detection scenario). (B) Setup with the GPU server, without load balancing. (C) Setup with the GPU
server, with load balancing and varying number of inference server pods.

The approach to the experiment design in this study was informed by existing works
describing ML inference servers and ML inference systems [6,38–41], both in terms of
metric selection, as well as the number and architecture of devices included in the setup.

https://github.com/Modular-ML-inference/benchmark-driver
https://github.com/Modular-ML-inference/benchmark-driver


Electronics 2024, 13, 1888 12 of 31

The experiments focused on scenarios with a single compute node while testing different
hardware and deployment strategies. Due to the MIS being an ML inference server, it
does not rely on complex, multinode deployments to realize its pipelines. Instead, all
stages of the pipeline are encapsulated within one compute node. The devices used in
the experiments were chosen on the basis of use case requirements, thus mimicking the
hardware used in real-life scenarios. At the same time, the used devices represent two
of the most popular CPU architectures and possess different ML acceleration capabilities
(GPU), thus demonstrating the portability of the MIS.

4.1. Fall Detection

For the fall detection use case, two host devices were tested: the GWEN and the x86-64
server. In both cases, only the CPU was used for inference, even though the server had a
GPU installed. This is due to the very small size of the model used (203 parameters) and
the need to maintain very low and consistent latency. With standard GPU accelerators,
parallelization is only possible with batching or by time-sharing the GPU between multiple
applications, both of which would incur additional latency. Therefore, the GPU was not
used in these experiments.

The workload was simulated with real-world data collected from workers performing
a range of activities on an active construction site during the trials of the ASSIST-IoT project.
The dataset consists of 11 h of recorded acceleration patterns from a single accelerometer and
is available publicly on GitHub (https://github.com/Modular-ML-inference/ml-usecase)
(accessed on 3 April 2024) and Zenodo [17]. During experiments, the benchmark driver
used it to simulate the load of a configurable number of devices. Several instances of the
benchmark driver could be launched simultaneously to simulate multiple clients—such
a situation would occur if several GWENs only collected acceleration data, while the
inference was performed on a central, more powerful machine. Each simulated device
generated data for 15 min with the use case-dictated 2 Hz frequency.

The following experiment variants were conducted. With the GWEN (setup A on
Figure 7), only one client was tested, which corresponded to the real-life scenario. The one
client simulated the load of 10, 20, 40, 80, or 160 devices. With the GPU server, both setup B
and C were tested (without or with load balancing; see Figure 7). In setup C, the number of
MIS pods was 1, 2, or 4. In all experiments with the server, the number of clients was 1, 4,
or 16, and the number of devices per client was 10, 20, 40, 80, or 160.

4.2. Scratch Detection

Due to the aforementioned privacy and licensing restrictions, the real images from
vehicle scanners could not be published. However, preserving the features of the real
dataset is important for the experiments, as the number of detected scratches on each image
has an impact on the total amount of data transferred during the inference. This is because
for each detected scratch, additional data is returned (e.g., image masks), thus yielding
larger response sizes. Hence, to precisely model the use case with regard to the volume of
data returned from the pipeline, the distribution of the number of detected scratches must
be kept.

In order to achieve this while keeping the experiments described in this work repro-
ducible, the CarDD [42] dataset was used as a substitute instead of the real images from
vehicle scanners. Specifically, first, the trained model performed inference on the real
dataset, and for each inferenced image, the number of scratches reported by the model
was recorded. This was used to estimate the probability distribution of the number of
detected scratches per image (Figure 8). Subsequently, the same model was used for in-
ference on the CarDD dataset, and the number of detected scratches was again recorded
for each image, thus forming the second probability distribution. During the next step,
this distribution was adjusted to match the real dataset’s distribution by subsampling
the images that reported a given number of detected scratches in the necessary propor-
tions. This resulted in a subset of the CarDD dataset that has the same detected scratches

https://github.com/Modular-ML-inference/ml-usecase


Electronics 2024, 13, 1888 13 of 31

probability distribution as the evaluation dataset. This ensured that during the inference
experiments performed in this paper, the distribution of response sizes from the MIS closely
mimicked the one that would be obtained with the real dataset. The code needed to gen-
erate this subset, along with the list of used images from CarDD is available on GitHub
(https://github.com/Modular-ML-inference/ml-usecase) (accessed on 3 April 2024) and
Zenodo [17].

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

Number of detected scratches

Pr
ob

ab
ili

ty

Figure 8. Probability distribution of the number of detected scratches per image in the evalua-
tion dataset.

The workload was simulated with the benchmark driver application, where each client
corresponded to one vehicle scanner. Every 3 min, the client generated a scan consisting
of 50 to 300 images, with continuous uniform distribution of image count. Each image
was 1200 pixels in width and 900 pixels in height with three color channels. The images
were grouped into batches of one or more images and sent over gRPC to the MIS. The
Modular Inference Server was deployed on the GPU server (benchmark setups B and C; see
Figure 7), and the GPU was utilized as the inference device. In setup C, GPU time sharing
was employed to allow multiple MIS instances to access the accelerator.

The following experiment variants were conducted. With both setup B and C (see
Figure 7), the number of clients was 1, 2, or 4, while the batch size (number of images
per gRPC request) was 1, 4, or 16. In setup C, the number of MIS pods was 1 or 2. In all
experiments, the clients generated vehicle scans in the same manner as described above.

4.3. Experiment Summary

Table 2 summarizes the deployments used in the performed experiments. The two use
cases were tested in several very different configurations, with the fall detection use case
using exclusively CPU-based inference, while scratch detection resorted to GPU-based
inference. In addition, Table 3 summarizes the pipelines deployed to the MIS in both
use cases.

Table 2. Summary of Modular Inference Server deployments in the performed experiments.

Use Case Testbed ML Inference
Device

Container
Orchestration

Load
Balancer Instances

Fall detection GWEN ARM64 CPU Docker No 1

Fall detection GPU server x86-64 CPU Kubernetes No 1

Fall detection GPU server x86-64 CPU Kubernetes Yes 1, 2, 4

Scratch
detection GPU server GPU Kubernetes No 1

Scratch
detection GPU server GPU Kubernetes Yes 1, 2

https://github.com/Modular-ML-inference/ml-usecase


Electronics 2024, 13, 1888 14 of 31

Table 3. Summary of tested Modular Inference Server pipelines. The input tensors here refer to the
tensors sent in the request over gRPC. In the table, b stands for the batch size.

Use Case Model Type Parameters Input Tensor
Type

Input Tensor
Size

Fall detection LSTM 203 int16 (9, 3)

Scratch detection Mask R-CNN 45,880,411 uint8 (b, 900, 1200, 3)

The two use cases have very different deployment, pipeline, and workload character-
istics. For fall detection, the requests are very small, very frequent, and arrive at a constant
pace. For scratch detection, the requests are much larger and arrive in irregular bursts.
The use case-specific performance requirements also differ—in fall detection, latency must
be optimized, while for scratch detection, throughput is the most important aspect. Overall,
the designed experiments present a diverse challenge for the MIS.

5. Results and Analysis

The following section describes the results of the experiments performed with the
Modular Inference Server in the context of the two presented use cases.

5.1. Fall Detection Results

For the fall detection use case, the most important performance aspect is latency (the
time from the client sending an inference request to it getting a response). Throughput is less
of a concern, as long as the MIS is able to operate in near-real time, that is, without creating
long queues of requests. Therefore, the following analysis focuses on end-to-end latency.
Due to the large number of performed experiments, the detailed results were placed in
Appendix A, while this section focuses only on the most important results.

For the resource-constrained GWEN, only one deployment variant was investigated:
one MIS container in Docker, and one client with a varying number of client devices, which
served as the data sources. Figure 9 illustrates the request–response latency distribution,
thus measuring the time from the client sending an individual request in a gRPC stream
to it getting the corresponding response. The plot does not include the experiment with
160 client devices, as the MIS did not manage to process that many requests in real time,
which yielded very high latencies (see Appendix A). As can be seen in the figure, for 10,
20, and 40 devices, the most common latency was around 8 ms, with some requests taking
less. For 40 and 80 devices, requests taking longer appeared more often. In all presented
cases, the maximum latency did not exceed 62 ms, while the median ranged from 7.52 ms
(40 devices) to 11.63 ms (80 devices).

5.0 6.3 7.9 10.0 12.6 15.9 20.0 25.2 31.7 40.0
Latency [ms]

0

10

20

30

40

50

Pr
ob

ab
ilit

y 
de

ns
ity

Devices
10
20
40
80

Figure 9. Inference request–reponse latency distribution for the deployment on the GWEN. The dis-
tribution is visualized using a kernel density estimate. The X axis is logarithmic.



Electronics 2024, 13, 1888 15 of 31

Interestingly, for higher numbers of devices, the proportion of sub-8 ms requests is
larger than with only 10 devices. The cause of this phenomenon has not been investigated
in depth; however, it may be a consequence of saturating the streams on both the client
and the server. When a stream processor has no elements to process, it is typically paused.
For example, the process is removed from the CPU by the kernel scheduler, or, in Apache
Pekko, the stream stage is removed from the actor thread to allow other workloads to take
its place. In such a case, when a new stream element arrives later, the stream processor must
be started again, which unavoidably introduces some latency. This can be circumvented
if the stream processor always has more elements to process, which is a situation which
occurs with streams of higher throughput.

Due to the nature of the gRPC protocol, the request and response streams are not
synchronous. This effectively means that the client may send several messages in the
request stream before it starts getting the corresponding responses from the server. In the
context of this study, an inference request that was sent but not yet responded to is called
an in-flight request—it can be thought of as queued for processing. Figure 10 presents the
distribution of in-flight requests for the experiments on the GWEN. The in-flight count was
measured and recorded every time a request was sent and a response was received. Hence,
for 10 and 20 devices, the in-flight count was only 0 or 1, which corresponds to requests
being sent and received serially in a synchronous manner. For 40 devices, situations with
two in-flight requests occurred, while for 80 devices, the in-flight count reached up to
10 requests (not shown on the plot due to the very small bar size).

0 1 2 3 4 5 6 7 8
In-flight requests

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ilit

y

Devices
10
20
40
80

Figure 10. Probability distribution of in-flight fall inference requests for the deployment on the GWEN.

In experiments with the server, different deployment variants and numbers of clients
were tried, thus yielding two more dimensions in the data to explore. Figure 11 presents
the relation between the number of clients, devices per client, the deployment variant,
and the mean inference latency. In cases where the mean latency was very high (more
than 104 ms), the inference was not real time due to the formation of large queues of in-
flight requests. It can be observed that one-pod deployments were not able to support
real-time scenarios with 16 clients and 40 devices per client, or 4 clients and 160 devices
per client (a total of 640 devices). Increasing the number of MIS pods to two allowed the
server to handle these two scenarios. Consequently, four pods could handle 16 clients
with 160 devices each, thus raising the total number of supported devices to 2560. When
comparing the one-pod deployments (with or without load balancing), it can be seen that
the load balancer appeared to be introducing additional latency. This is expected—the load
balancer is essentially a relay which requires additional CPU time. However, for many-pod
deployments, the load balancer must be included to help the system scale to a higher
number of devices.



Electronics 2024, 13, 1888 16 of 31

1
4

16
Cl

ie
nt

s
1.82 1.68 2.99

1.76 1.67 > 10

1.96 > 10 > 10

No load balancing: 1 pod

2.04 1.79 2.94

2.08 1.79 > 10

2.04 > 10 > 10

Load balancing: 1 pod

10 40 160
Devices per client

1
4

16
Cl

ie
nt

s

2.01 1.80 3.03

1.92 2.14 3.78

1.87 2.24 > 10

Load balancing: 2 pods

10 40 160
Devices per client

2.02 1.78 2.92

1.95 1.88 3.23

2.01 1.95 10.14

Load balancing: 4 pods

2

4

6

8

10

M
ea

n 
la

te
nc

y 
[m

s]

2

4

6

8

10

M
ea

n 
la

te
nc

y 
[m

s]

2

4

6

8

10

M
ea

n 
la

te
nc

y 
[m

s]
2

4

6

8

10

M
ea

n 
la

te
nc

y 
[m

s]

Figure 11. Mean inference request–response latency for all deployment variants on the server.

The same stream saturation phenomenon to that found in the GWEN deployment is
noticeable in Figure 11, when comparing the experiments with 10 and 40 devices per client.
Namely, the variants with 40 devices per client sometimes have lower mean latencies,
which may stem from the same root cause as with the GWEN.

The latency distributions for 40 devices per client are visualized in Figure 12. In the
first two subplots, the peaks of the distributions for variants with load balancing are visibly
shifted to the right in relation to the variant without load balancing. This implies that the
load balancer consistently increased the latency. The distributions for higher numbers of
clients are also flatter, with a higher overall variance. This is caused by the clients having to
wait for the server to finish processing a request made by a different client.

0

5

10

15

20

Pr
ob

ab
ilit

y 
de

ns
ity

Clients: 1, devices per client: 40

1.0 1.4 2.0 2.8 4.0 5.7 8.0
Latency [ms]

Clients: 4, devices per client: 40

1.0 1.4 2.0 2.8 4.0 5.7 8.0
Latency [ms]

0

5

10

15

20

Pr
ob

ab
ilit

y 
de

ns
ity

Clients: 16, devices per client: 40

Deployment
No load balancing: 1 pod
Load balancing: 1 pod
Load balancing: 2 pods
Load balancing: 4 pods

Figure 12. Fall inference request–response latency distribution for all deployment variants on the
server, with 40 devices per client. The distribution is visualized using a kernel density estimate.
The x axis is logarithmic. The missing data series are for experiments which did not execute in
real time.



Electronics 2024, 13, 1888 17 of 31

Finally, performance metrics collected during the experiments were explored. Figure 13
visualizes how the total CPU usage and network traffic scaled with a growing workload.
For the GWEN (on the left subplot) it can be seen that CPU usage increased predictably
with the increasing number of devices. It should be noted here that the MIS is a Python
application. Python uses the Global Interpreter Lock (GIL), which limits the number of
active Python interpreter threads to one [43]. This means that the MIS is almost entirely
single-threaded—almost, because code outside the interpreter (e.g., optimized numerical
routines, network code) can execute asynchronously. Therefore, for 160 devices, the GWEN
CPU usage was observed to be on average 114.8%, which corresponds to one fully loaded
MIS instance. For 80 devices, the average CPU usage was at 95.9%.

10 20 40 80 160
Devices

0

20

40

60

80

100

120

Av
er

ag
e 

CP
U 

us
ag

e 
[%

]

GWEN: 1 client

1 4 16
Clients

0

100

200

300

400

500

600

M
ea

n 
CP

U 
us

ag
e 

[%
]

Server: 4 pods, 160 devices per client

0

15

30

45

60

75

90

Av
er

ag
e 

ne
tw

or
k 

us
ag

e 
[k

B/
s]

CPU
Network RX
Network TX

0

250

500

750

1000

1250

1500

M
ea

n 
ne

tw
or

k 
us

ag
e 

[k
B/

s]

CPU
Network RX
Network TX

Figure 13. Total CPU and network usage on the GWEN and the server for fall inference. Both X axes
are logarithmic. Network usage was measured on the Ethernet interface of the device that hosted the
MIS. Note that 100% CPU usage corresponds to one fully loaded CPU core; hence, values over 100%
are possible on multicore systems.

There was a disparity between network transmission (TX) and receive (RX) usages
for 10 and 20 devices on the GWEN. In the fall detection use case, the requests to the
MIS were larger than its responses, and therefore the RX should have been higher. This
can be, however, explained by the presence of the Prometheus metrics exporters on the
GWEN. The client workstation’s Prometheus instance regularly reads the metrics from the
exporters, thus adding significant TX traffic. This traffic is constant and independent of the
number of devices.

For the server, with four pods and 160 devices per client, the CPU usage scaled
predictably to an average of 438.7% with 16 clients. The average total network usage
(RX + TX) reached 1.92 MB/s in the most challenging scenario, thus using approximately
only 1.5% of the total bandwidth of the Gigabit connection.

5.2. Scratch Detection Results

In the scratch detection use case, the most important performance aspect is the time
needed to process a complete vehicle scan. Contrary to the fall detection use case, individual
request latency is not important, and therefore the focus of this analysis was different.

Figure 14 illustrates the total time needed to process a complete vehicle scan, from the
first request being sent to the last response being received. The most significant difference
that can be observed is the impact of batch sizes. The processing time dropped sharply by
increasing the batch size to 4 and then to 16. This is because the GPU can perform inference
on multiple images in parallel—at the cost of higher memory usage. Therefore, with larger
batch sizes, the GPU is expected to be better utilized.



Electronics 2024, 13, 1888 18 of 31

1 4 16
Batch size

0

10

20

30

40

50

60

70

Re
qu

es
t g

ro
up

 p
ro

ce
ss

in
g 

tim
e 

[s
]

No load balancer

1 4 16
Batch size

Load balancer, 1 pod

1 4 16
Batch size

Load balancer, 2 pods
Clients

1
2
4

Figure 14. Distribution of the total time to process a scratch inference request group (a complete
vehicle scan).

The plots in Figure 14 show a very high variance for all experiments, which was
largely due to the varying vehicle scan size (from 50 to 300 images). This variance makes it
harder to assess the impact of other variables (number of clients, deployment). Therefore,
Table 4 presents the same results, but they have been normalized by the number of images
in each vehicle scan, thereby effectively removing this variance. Firstly, it is noticeable that
for batch sizes 4 and 16, and with one MIS pod, the deployment with load balancing was
consistently faster than no load balancing. The variance was also decreased with the load
balancer, especially for the more challenging cases with more clients. This was likely caused
by the additional buffering done by the load balancer, which can increase throughput and
make the traffic flow more consistent. Secondly, it can be observed that the difference
between times with one and two pods was minimal.

Table 4. Total time to process a scratch inference request group (a complete vehicle scan) normalized
by the number of images in the scan. The indicated values are the mean time ± standard deviation
in milliseconds. Lowest mean values in a given row are bolded.

Clients Batch Size No Load Balancer Load Balancer, 1 Pod Load Balancer, 2 Pods

1 1 187.83 ± 2.27 179.64 ± 5.90 181.35 ± 0.95

1 4 89.61 ± 2.92 75.01 ± 2.49 74.44 ± 1.44

1 16 68.15 ± 1.31 53.66 ± 2.01 53.76 ± 3.23

2 1 179.62 ± 3.01 175.93 ± 0.86 180.93 ± 1.82

2 4 82.42 ± 4.90 74.29 ± 1.68 73.75 ± 1.13

2 16 70.35 ± 10.37 56.34 ± 4.16 55.40 ± 3.33

4 1 211.53 ± 40.27 180.57 ± 8.43 183.53 ± 16.20

4 4 85.76 ± 4.28 74.48 ± 1.96 73.59 ± 1.37

4 16 68.53 ± 7.33 55.00 ± 2.08 55.20 ± 2.69

Moving on to performance metrics, Figure 15 visualizes the GPU utilization and
GPU memory usage in different deployments with four clients. Looking at the GPU
utilization distribution (top-left subplot), it is evident that the GPU usage peaks was higher
with larger batch sizes, as expected. For a batch size of 16, the peak utilization reached
100%, thereby making use of the full potential of the GPU. Although the peak utilization
increased with batch size, the opposite was true for mean utilization (top-right subplot).
Effectively, total processing time on the GPU decreases with larger batch sizes. Together,
these two observations show that larger batch sizes are doubly beneficial—by both using



Electronics 2024, 13, 1888 19 of 31

the hardware to the maximum and utilizing less GPU time overall—thereby leaving more
time for other processes. The only outlier in these results was the higher than expected
mean GPU usage for two pods and a batch size of four, which was most likely caused by a
random occurrence.

1 4 16
Batch size

0

20

40

60

80

100
GP

U 
ut

iliz
at

io
n 

[%
]

GPU utilization distribution (4 clients)
No LB, 1 pod
LB, 1 pod
LB, 2 pods

1 4 16
Batch size

12.5

13.0

13.5

14.0

14.5

M
ea

n 
GP

U 
ut

iliz
at

io
n 

[%
]

Mean GPU utilization (4 clients)
Deployment

No LB, 1 pod
LB, 1 pod
LB, 2 pods

1 4 16
Batch size

0

2

4

6

8

10

12

14

GP
U 

m
em

or
y 

us
ag

e 
[G

B]

GPU memory usage distribution (4 clients)
No LB, 1 pod
LB, 1 pod
LB, 2 pods

1 4 16
Batch size

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

M
ea

n 
GP

U 
m

em
or

y 
us

ag
e 

[G
B]

Mean GPU memory usage (4 clients)
Deployment

No LB, 1 pod
LB, 1 pod
LB, 2 pods

Figure 15. Distribution and mean of GPU utilization and GPU memory (frame buffer) usage dur-
ing scratch inference experiments with 4 clients. The X axes on the right plots are logarithmic.

The GPU memory usage increased predictably with the batch size, as higher batch
sizes require linearly more memory. With four clients, two pods, and a batch size of 16,
the GPU memory usage reached almost 14 GB, which is well below the capacity of this GPU
(24 GB). Unlike the mean GPU utilization, the mean GPU memory usage was positively
correlated with the batch size.

Figure 16 illustrates network usage in different deployment variants with four clients.
Firstly, on the left subplot, it can be observed that the peak network receive usage was
noticeably higher with a load balancer in place, thereby reaching up to 1̃20 MB/s (the limit
of the Gigabit Ethernet connection). This is likely due to the additional buffering done by
the load balancer, which in turn allows the network bandwidth to be used in full. As for
network transmit, the usage increased predictably with batch size, thus peaking at about
35 MB/s for a batch size of 16 and two pods with load balancing.

1 4 16
Batch size

0

20

40

60

80

100

120

Ne
tw

or
k 

us
ag

e 
[M

B/
s]

Network receive, 4 clients

1 4 16
Batch size

0

5

10

15

20

25

30

35
Network transmit, 4 clients

Deployment
No LB, 1 pod
LB, 1 pod
LB, 2 pods

Figure 16. Distribution of receive/transmit network traffic on the Ethernet interface of the GPU
server during scratch inference experiments with 4 clients.



Electronics 2024, 13, 1888 20 of 31

6. Related Works

In the following section, a review of the state-of-the-art ML inference servers and ML
inference systems is conducted. A special emphasis is put on comparing their capabilities
to the Modular Inference Server and the Component Repository.

6.1. Machine Learning Inference Servers

There are many industry examples of machine learning inference servers [27,44–46]
with support for versatile features, including different communication protocols, ML li-
braries, and hardware types used for inference. Some of those solutions also provide
the ability to serve multiple ML models in parallel. Others include accommodations for
more complex ML pipelines, thereby involving models in ensembles or chained sequen-
tially. When it comes to managing resource-constrained environments, a wide variety of
approaches has been utilized, with SmartLite [39] being a particularly interesting one. It
leverages a database management system to store the model parameters and structural in-
formation of neural networks, thus achieving a smaller memory footprint aside from lower
memory consumption. However, as the framework does not focus on providing complex
ML preprocessing and postprocessing pipelines, it does not fully suit the requirements
of the study. EdgeEye [41], on the other hand, includes optimized inference engines to
support deployment on edge. Nevertheless, as it explicitly focuses on providing real-time
intelligent video analytics, it is of limited use for our purposes.

Recent work in this research area focuses on providing more sophisticated function-
alities to ML inference servers, for instance by optimizing GPU utilization in multimodel
workflows [47]. Unfortunately, some of the industry ML serving approaches are designed
by large companies for specific edge environments and as such do not prioritize inter-
operability. Instead, they prefer to limit themselves to certain dedicated runtimes and
focus on maintaining maximal efficiency [48,49]. Others, like TensorFlow Serving [27] and
Triton Inference Server [44], do allow some interoperability by supporting custom inference
serving components, but they do not extend this functionality to full flexible preprocessing
pipelines. TensorFlow Serving [27] is an especially interesting example, as it enables the
user to flexibly upload and update components (which can include preprocessing and
postprocessing steps) by placing them in a selected directory. However, for a new com-
ponent to be added, it requires the presence of dedicated classes managing its lifecycle
in the application. As such, only predefined components can be easily swapped, with no
support towards changing their order or type without recreating the application. Only the
AMD Inference Server [45] and TorchServer [46] allow for the flexible reconfiguration of
preprocessing pipelines in some limited form.

Many (among them the AMD Inference Server, as well as the aforementioned Ten-
sorFlow Serving, Triton Inference Server, and TorchServe) include gRPC for inference
by default, thereby employing well-maintained and documented serialization formats.
However, TorchServe allows for the flexible pipelines to be served only through HTTP API,
thereby excluding gRPC. Finally, Roboflow Inference [50], aside from acting as a regular
inference server, can provide inference based on an RSTP or UDP stream when supplied
with the appropriate IP address.

A comparison of publicly available ML inference servers can be found in Table A2 in
Appendix B. In general, the landscape of ML inference servers is dominated by frameworks
developed by the industry. Most of them are published under open licenses, such as Apache
2.0 or MIT. The majority provides adaptations for multiple processor architectures, as well
as the use of various accelerators for ML inference.

6.2. Machine Learning Inference Systems

Machine learning inference systems tend to focus more on ensuring well-functioning
inference in the cloud and therefore commonly incorporate various technologies designed
for those environments [10,11]. For example, MArk [5] minimizes the cost of ML serving
infrastructures constructed using AWS tools by effectively utilizing predictive autoscaling



Electronics 2024, 13, 1888 21 of 31

and dynamic batching. BATCH [51] expands on that idea by using a dedicated optimizer
to provide tail latency guarantees and adaptive batching support. S3ML [52] optimizes the
functioning of a machine learning inference system while ensuring the additional security
of the solution by leveraging the capabilities of a Trusted Execution Environment (TEE).
Here, a TEE stands for a secure, integrity-protected processing environment, which includes
storage and memory capabilities alike [53]. Interestingly, among the technologies utilized
by S3ML are Kubernetes and gRPC, although gRPC streaming has not been attempted.
RILaaS [54] also heavily uses gRPC to provide low-latency and reliable serving of ML
inference in cloud, edge, and fog environments, albeit focusing mostly on the area of
robotics. DLHub [55] takes a narrow focus as well, thereby aiming to design an ML
inference serving solution dedicated to scientific research. It includes a model database
with descriptive metadata, which is devised to make ML models developed as a result of
publicly available research. In addition, the authors performed a comparison of various
approaches to ML serving, in which the gRPC interface of TensorFlow Serving was one of
the best in terms of performance. Clipper [6] prioritizes making ensemble predictions more
robust, thus addressing the need for relevant straggler mitigation. It also makes it possible
to dynamically select the inference model to be used by the service.

A tendency towards the automation of ML inference systems, to the point of letting
the system automatically select a variant of the model, is exhibited in INFaaS [56]. Here,
a different variant is selected per query, with possible criteria including performance, cost,
and accuracy requirements. Kairos [57], on the other hand, leverages a query distribution
to optimially utilize heterogenous cloud resources. Finally, hybrid models [58] smartly
balances the accuracy guaranteed by inference performed on large models, which can be
deployed in the cloud, with the low latency achieved through running smaller models
in edge environments. By automatically filtering particularly demanding queries and
sending them to the cloud, the system successfully integrates two sides of the Cloud–Edge–
IoT continuum.

Some ML inference systems leverage distributed computing to enable a developer
to deploy them on the edge. Often, DNN partitioning is used to effectively accelerate
the prediction process by distributing the workloads to nearby mobile devices, such as in
Edgent [40]. EdgeFlow [59] successfully extends this technology to more complex model
architectures, thereby providing wider functionality and ensuring that the solution remains
up to date with contemporary trends. Both focus on the acceleration of edge inference
rather than built-in support for complex preprocessing and postprocessing functionalities.

InferLine [4] describes a very interesting serving solution, which aims to deploy
complex ML pipelines, thereby allowing the administrator to freely chain models and
preprocessing steps as long as they can be expressed as Directed Acyclic Graphs (DAGs).
A similar approach is included in popular production-grade systems such as KServe [11]
and Seldon Core [10]. Flexible inference with three types of reusable components (including
data transformations) stored in a dedicated library is offered by LASER [60] to facilitate
rapid experimentation and to quickly accommodate changes in the system. Unfortunately,
the design of the solution is suited more towards large clusters: a limited number of models
and ML libraries is supported, and the solution is not openly available. Velox [61] similarly
promotes reusability by storing each ML model with a dedicated, custom preprocess-
ing function. However, this method of providing custom preprocessing is not designed
for frequent and quick pipeline modifications. Rafiki [62] is a combined system for ML
training and inference, where the inference is considered as a supplementary feature. It
expects all preprocessing functions to be already present in the training code, thus limiting
its applicability.

The most commonly used and publicly available inference system solutions were
compared in Table 5. They are considerably lesser in number than publicly available ML
inference servers, as they can possibly integrate the aforementioned servers into their
Kubernetes infrastructure in order to gain their features. Due to this fact, although there
are custom servers built for a specific GPU architecture or ML platform, those servers may



Electronics 2024, 13, 1888 22 of 31

be quite easily combined with more general inference systems [10,11]. All three of the
compared systems support similar functionalities, such as autoscaling, tracing, and drift
detection. Two of them also include support for flexible preprocessing pipelines.

Table 5. A comparison of publicly available machine learning inference systems.

KServe [11] Seldon Core [10] BentoML [63]

API protocols gRPC, HTTP gRPC, HTTP gRPC, HTTP

Supported
architectures

PPC641E, ARM64,
x86-64, S390X x86-64 ARM64, x86-64

Supported platforms Kubernetes Kubernetes
Kubernetes, Bento
Cloud, OpenLLM,
OneDiffusion

Drift detection Yes, with bias/outlier
detection Yes Yes

Autoscaling Yes Yes Yes

Tracing No Yes Yes

Load balancing No Yes No

Ensemble support Yes Yes Yes

Explainability
support Yes Yes Yes

Flexible
preprocessing Yes Yes Yes

Extensible component
repository No No No

License Apache 2.0 Business Source
License 1.1 Apache 2.0

6.3. Comparison with State of the Art

Based on the presented state-of-the-art overview, a substantial research gap can be
identified. There is a clear lack of serving solutions that would provide flexibility, reusability,
and interoperability in the process of creating inference pipelines while remaining suitable
for edge deployment in terms of resource utilization and communication speed. This gap
is addressed by the Modular Inference Server.

In summary, although the MIS does not contain features supporting the deployment of
multiple models simultaneously, it does offer functionalities that are rare for standalone ML
inference servers, such as custom, modular, and flexible preprocessing and postprocessing.
These functionalities tend to be more common in ML inference systems (as showcased in
Appendix B), which commonly involve larger infrastructural overhead and are therefore
less suitable for edge environments. Other frameworks with custom, flexible preprocessing
both incur significant limitations. The AMD Inference Server [45] is optimized mainly for
AMD products. This means that it does not fulfill the use case requirements due to the
infrastructure including devices with an ARM64 CPU and a Nvidia GPU. Additionally,
the AMD Inference Server does not offer a gRPC streaming interface, which is used in
the MIS to greatly reduce the latency and to improve the reliability of inference services.
TorchServe [46] similarly supports flexible pipelines only when served through RESTful
HTTP interfaces, with no possibility of integration with the gRPC capabilities of the frame-
work. Furthermore, although TorchServe allows the user to define complex ML inference
workflows with custom components, it does not enable easy parameter modification or
component repurpose and rearrangement. Instead, the workflow as a whole has to be
unregistered, modified, compressed to the specified format, and reuploaded to apply even
the smallest of changes, with no built-in versioning or updating capabilities. Similarly,



Electronics 2024, 13, 1888 23 of 31

even though the application is able to dynamically download a workflow based on the
input URI, no tools for managing the remote archive are supplied. In contrast, the MIS
incorporates a unique (for ML inference systems and servers alike) approach to reusability
in the form of an easily extensible component repository, which allows the administrators
to quickly add or change selected components across many deployments.

A full feature comparison table of publicly available machine learning inference
servers, including the MIS, can be found in Table A2 in Appendix B. The Table describes
aspects such as available API protocols and ML runtimes, CPU architecture and inference
hardware support, the license of the ML inference server, as well as the inclusion of various
functionalities facilitating complex ML inference pipelines. ML inference systems were not
included in the comparison due to a major difference in design assumptions. The MIS must
be suitable not only for cloud but also edge deployment, thus making it fully functional
as a standalone application to be prioritized. The MIS cannot be strictly classified as an
ML inference system, as the Kubernetes-based orchestration tools provided with it are
only supplementary. Therefore, publicly available ML inference servers were used as a
benchmark instead.

7. Discussion and Future Work

What follows is a discussion of the obtained results, along with an outline of future
work directions. Investigated here are the functionalities of the MIS and the Component
Repository, performance and deployment aspects, and the specific use cases that were
included in the experiments.

7.1. Software Functionalities

The Modular Inference Server and the Component Repository have demonstrably
covered the needs of the two tested use cases. The software was successfully applied in
pilot trials involving real hardware, as well as in relevant simulated workloads. How-
ever, for future production deployments, further work on selected improvements and
functionalities would be needed.

Firstly, the software currently assumes that the deployment is done in a secure private
network, without the possibility of any foul play—these presuppositions were reflected in
the approach to interface design used by the system. Introducing authentication, authoriza-
tion, and encryption to increase the security of these components would allow for a broader
range of applications. Secondly, the mechanism of modular inference pipelines could be
extended to support the integration of multiple models chained together or forming an
ensemble. Similarly, the pipeline module format verification in the MIS could be formalized
and expanded into a semantically coherent system. Integrated into a command line tool and
coupled with the Component Repository, it would aid users in designing custom pipelines
based on pre-existing components, thereby increasing overall reusability. Additionally,
a broader analysis of potentially useful features adapting the MIS to scenarios beyond the
ASSIST-IoT use cases in the Cloud–Edge–IoT continuum could be conducted, thus focusing
on important aspects such as varying data location or geographical distribution [64].

7.2. Performance and Deployment

The Modular Inference Server was tested in a range of demanding and diverse bench-
marks, thus demonstrating robust performance. It could cater both to latency-sensitive
workloads (fall detection) and to throughput-restricted ones (scratch detection). The soft-
ware scaled both up/down (from the GWEN to the x86-64 server) and out (with multiple
MIS instances per server). It also managed to run on two of the most popular CPU architec-
tures (x86-64 and ARM64) and make efficient use of the GPU when available. As such, it
has fulfilled the requirements of adaptability within the described use cases. Due to the
use of Docker, the MIS can be assumed to be usable on any reasonably modern x86-64 or
ARM64 platform supporting containers, which covers a significant portion of the comput-
ing continuum. The range of supported CPU architectures can be extended in the future



Electronics 2024, 13, 1888 24 of 31

to include, for example, RISC-V. Adapting the MIS to new architectures is feasible, given
the few dependencies of the MIS (the most important are Docker and Python, which are
already ported to RISC-V). However, some of the needed machine learning libraries (e.g.,
TensorFlow) are at the time of writing still poorly supported on RISC-V, thus constituting
the largest barrier. A broader range of ML acceleration hardware should also be tested,
including various Neural Processing Units (NPUs) and GPUs from other vendors. This
would be especially useful for energy-efficient edge devices such as the GWEN. Addi-
tionally, further experiments, including scenarios with the load balancer managing the
communication between devices of different computational abilities, should be included in
future work.

As for Cloud–Edge–IoT continuum support, the MIS can not only run in the stan-
dalone mode suitable for resource-constrained edge devices but also in larger Kubernetes
deployments, thus making it suitable for the cloud or cloud-native deployments on the
edge [12]. Extending the MIS’s support to IoT devices depends largely on the device in
question—some would argue, for example, that the GWEN and comparable hardware
platforms (e.g., RaspberryPi) qualify as IoT devices. As of now, the MIS supports any x86-64
or ARM64 platform that can run Docker. Using the MIS on smaller devices is currently not
possible but could be investigated, for example, with the use of WebAssembly [65]. This
technology, although very promising, is still relatively young, and it is not immediately
clear how feasible would such an implementation be.

The results from the conducted experiments can be used to draw general conclusions
about other workloads that can be deployed with the MIS. While investigating the effect
a load balancer had on deployments with one MIS instance, it has been observed that
although it did increase latency in the fall detection use case, it decreased the time to
process a vehicle scan in scratch detection. This is a well-known trade-off of latency versus
throughput—with additional buffering and optimized networking code, the load balancer
can increase throughput, although at the cost of latency. Thus, when deploying workloads
with the MIS, using the load balancer for one-pod deployments is recommended only if
throughput is more important for the use case.

Analyzing the collected performance metrics allowed us to determine the bottlenecks
in both use cases. Depending on the used pipeline and the workload characteristics,
the availability of different resources may be the limiting factor. For example, the fall
detection use case is visibly CPU-bound, and more devices could be handled by simply
increasing the number of available CPU cores and MIS instances. On the other hand,
in scratch detection, full parallelization can only be achieved with batching, which is in
turn restricted by the available GPU memory. Peak inference throughput also appears to be
limited by network speed; therefore, employing faster networking (e.g., 10 Gigabit Ethernet)
or compressing the requests may substantially decrease inference time. In summary, for a
given workload, it is essential to evaluate its resource use, determine the bottlenecks,
and select appropriate hardware.

7.3. Use Cases

In the fall detection use case, the GWEN could responsively handle up to 80 client
devices with a single MIS instance, thus meeting the relevant requirements. The achieved
latencies were well within the expected ranges, while the in-flight request count analysis
shows that the MIS was able to process the requests in real time. In the server deployment
the solution scaled predictably—most likely it would be able to process thousands of
devices on many-core CPUs. In the future, using a specialized ML accelerator could be
investigated to further increase the number of supported devices per GWEN, or to make
it possible to use a larger ML model. The accelerator must be chosen carefully so as to
support very-low-latency inference, which would be very hard to achieve with standard
GPUs employing batching and time sharing concurrency.

For the scratch detection use case, the MIS supported up to four clients without
any issues in all deployment scenarios. Network bandwidth was clearly a bottleneck,



Electronics 2024, 13, 1888 25 of 31

which was mostly due to the images being sent as raw tensors without compression. Each
image encoded in such a manner takes up 3 MB, which would be significantly decreased
if, for example, JPEG encoding was used instead. This may be achieved by either treating
the JPEG image as a flat tensor of unsigned 8-bit integers (bytes) or by implementing a
custom gRPC Service in the MIS. Higher processing throughput per server machine could
likely be obtained by using Multi-Instance GPU (MIG) technology, which allows multiple
applications to use the same GPU concurrently [66]. This, however, requires using highly
specialized hardware.

8. Conclusions

In this work, the system for flexible and reusable ML inference in Cloud–Edge–IoT
environments is presented in the form of the novel Modular Inference Server supplemented
by the Component Repository. The system was compared with other publicly available
ML inference serving applications in terms of feature support and suitability for the edge
environment. The proposed approach possesses a unique combination of functionalities
not found in state-of-the-art solutions. It features modular and flexible inference pipelines,
integration with a database of reusable components, and bidirectional streaming in gRPC.
The MIS is a significant advancement over competing solutions by offering full modularity
while being applicable to a wide variety of deployment scenarios across the Cloud–Edge–
IoT continuum. The proposed system was rigorously tested in two scenarios based on
varied, real-life use cases. In the conducted experiments, the solution’s performance,
scalability, and stability was evaluated. The results confirm that the MIS can support
the two use cases while maintaining performance in line with the relevant requirements.
The solution is fully open-source and publicly available on GitHub (https://github.com/
Modular-ML-inference) (accessed on 3 April 2024).

Author Contributions: Conceptualization, K.B., P.S., F.M.B., M.G. and K.W.-M.; methodology, K.B.,
P.S. and A.D.; software, K.B., P.S., A.D. and K.W.-M.; validation, P.S. and F.M.B.; formal analysis, K.B.,
P.S. and A.D.; investigation, K.B. and P.S.; resources, M.G. and M.P.; data curation, K.B., P.S. and A.D.;
writing—original draft preparation, K.B., P.S. and A.D.; writing—review and editing, F.M.B., M.G.,
M.P., K.W.-M. and C.E.P.; visualization, K.B., P.S. and A.D.; supervision, M.G., M.P. and C.E.P.; project
administration, M.G. and C.E.P.; funding acquisition, M.G., M.P. and C.E.P. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was funded by the European Commission, in part under the Horizon 2020
project ASSIST-IoT, grant number 957258. The work of Marcin Paprzycki and Katarzyna Wasielewska-
Michniewska was funded under the Horizon Europe project aerOS, grant number 101069732.

Institutional Review Board Statement: Ethical review and approval were waived for this study
due to the fact that the experiments carried out (collecting acceleration data) were not classified as
medical research, and they did not involve more than a minimal risk to the subjects.

Informed Consent Statement: Informed consent was obtained from all subjects involved in gathering
the acceleration dataset.

Data Availability Statement: The data presented in this study are openly available in Zenodo at
https://doi.org/10.5281/zenodo.10508868 (accessed on 3 April 2024), reference number 10508868.
The software introduced in this study is available in Zenodo at https://doi.org/10.5281/zenodo.1050
8858 (accessed on 3 April 2024), reference number 10508858; https://doi.org/10.5281/zenodo.105088
62 (accessed on 3 April 2024), reference number 10508862; https://doi.org/10.5281/zenodo.10508864
(accessed on 3 April 2024), reference number 10508864.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

https://github.com/Modular-ML-inference
https://github.com/Modular-ML-inference
https://doi.org/10.5281/zenodo.10508868
https://doi.org/10.5281/zenodo.10508858
https://doi.org/10.5281/zenodo.10508858
https://doi.org/10.5281/zenodo.10508862
https://doi.org/10.5281/zenodo.10508862
https://doi.org/10.5281/zenodo.10508864


Electronics 2024, 13, 1888 26 of 31

Abbreviations
The following abbreviations are used in this manuscript:

AKS AI Kernel Scheduler
API Application Programming Interface
CPU Central Processing Unit
DAG Directed Acyclic Graph
GIL Global Interpreter Lock
GPU Graphics Processing Unit
GWEN Gateway Edge Node
IoT Internet of Things
LB Load Balancer
LSTM Long Short-Term Memory
MIG Multi-Instance GPU
MIS Modular Inference Server
ML Machine Learning
RAM Random Access Memory
RGB Red Green Blue
RX Network Receive
TEE Trusted Execution Environment
TX Network Transmit

Appendix A. Detailed Fall Inference Results

Table A1 presents detailed results for request–response latency in the fall detection
use case for all deployment variants. In the table, large latency values were summarized as
“>10x”, where x ≥ 3. In these cases, the MIS operated with a very long queue of requests,
and therefore fall detection was not performed in real time.

Table A1. Request–response latency in the fall detection benchmark: 5th percentile, median, 95th
percentile, and maximum. All values are in milliseconds.

Deployment Clients Devices/Client 5 pctl Median 95 pctl Max

GWEN 1 10 7.09 7.98 8.37 61.83

GWEN 1 20 6.73 7.88 8.25 48.60

GWEN 1 40 6.58 7.52 8.26 49.70

GWEN 1 80 6.57 11.63 24.13 56.39

GWEN 1 160 >104 >105 >105 >105

Server no LB, 1 pod 1 10 1.55 1.72 2.30 36.52

Server no LB, 1 pod 1 40 1.41 1.60 2.49 41.93

Server no LB, 1 pod 1 160 1.51 2.57 5.53 38.21

Server no LB, 1 pod 4 10 1.50 1.68 2.18 48.49

Server no LB, 1 pod 4 40 1.37 1.59 2.34 43.08

Server no LB, 1 pod 4 160 >103 >104 >104 >104

Server no LB, 1 pod 16 10 1.32 1.74 3.09 90.34

Server no LB, 1 pod 16 40 >103 >104 >105 >105

Server no LB, 1 pod 16 160 >105 >105 >105 >105

Server LB, 1 pod 1 10 1.72 1.94 2.57 38.66

Server LB, 1 pod 1 40 1.53 1.71 2.50 43.64

Server LB, 1 pod 1 160 1.62 2.69 5.04 51.54

Server LB, 1 pod 4 10 1.67 1.88 3.03 40.48

Server LB, 1 pod 4 40 1.49 1.70 2.54 49.20

Server LB, 1 pod 4 160 >103 >104 >104 >104

Server LB, 1 pod 16 10 1.43 1.86 3.03 67.29



Electronics 2024, 13, 1888 27 of 31

Table A1. Cont.

Deployment Clients Devices/Client 5 pctl Median 95 pctl Max

Server LB, 1 pod 16 40 >103 >104 >104 >104

Server LB, 1 pod 16 160 >105 >106 >106 >106

Server LB, 2 pods 1 10 1.73 1.92 2.49 47.70

Server LB, 2 pods 1 40 1.52 1.70 2.65 42.87

Server LB, 2 pods 1 160 1.61 2.68 5.55 43.11

Server LB, 2 pods 4 10 1.64 1.84 2.42 44.64

Server LB, 2 pods 4 40 1.55 1.81 3.53 47.83

Server LB, 2 pods 4 160 1.44 2.93 8.99 49.32

Server LB, 2 pods 16 10 1.31 1.80 2.59 65.65

Server LB, 2 pods 16 40 1.17 1.86 4.25 95.54

Server LB, 2 pods 16 160 >104 >105 >105 >105

Server LB, 4 pods 1 10 1.70 1.92 2.54 36.53

Server LB, 4 pods 1 40 1.51 1.73 2.15 35.92

Server LB, 4 pods 1 160 1.61 2.70 5.18 43.60

Server LB, 4 pods 4 10 1.67 1.87 2.42 41.78

Server LB, 4 pods 4 40 1.45 1.74 2.74 47.15

Server LB, 4 pods 4 160 1.40 2.75 6.70 53.72

Server LB, 4 pods 16 10 1.44 1.88 2.89 100.77

Server LB, 4 pods 16 40 1.17 1.74 3.29 130.65

Server LB, 4 pods 16 160 1.10 3.62 39.29 462.47

Appendix B. Comparison Table of Machine Learning Inference Servers

Table A2 summarizes feature support offered by various publicly available machine
learning inference servers. Here, custom inference stands for the ability to create custom
components responsible for obtaining predictions from the model; custom preprocessing—
the ability to create custom preprocessing components; flexible preprocessing—the ability
to freely connect and modify the order of those components without substantially changing
the underlying application; and extensible component repository—the availability of a
database storing the aforementioned pluggable components, which contains more than
ML models bundled with inference serving interfaces and can be easily extended by the
administrator. When looking at supported architectures, an effort was made to check the
documentation for any mention of available Docker images or instructions on how to build
them dedicated to that architecture. The table also includes the proposed solution (the
Modular Inference Server with the Component Repository), comparing it with state-of-the-
art approaches.



Electronics 2024, 13, 1888 28 of 31

Table A2. Comparison of existing machine learning inference servers, including the proposed solution.

AMD Inference
Server [45]

Triton Inference
Server [44] BentoML [63] TorchServe [46] Multi Model

Server [49]
Roboflow
Inference [50]

Tensorflow
Serving [27] ForestFlow [67] DeepDetect [68] Presented

Solution

API protocols gRPC, HTTP,
WebSocket

gRPC, gRPC
stream, HTTP gRPC, HTTP gRPC, gRPC

stream, HTTP HTTP HTTP gRPC, gRPC
stream, HTTP GraphPipe, HTTP HTTP gRPC, gRPC

stream

Supported
architectures x86-64 ARM64, x86-64 ARM64, x86-64 x86-64 x86-64 ARM64, x86-64 x86-64 x86-64 ARM, ARM64,

x86-64 ARM64, x86-64

Inference
hardware support

x86-64 CPU, AMD
GPU, AMD FPGA

ARM64 CPU,
x86-64 CPU, AWS
Inferentia, Nvidia
GPU

ARM64 CPU,
x86-64 CPU,
Nvidia GPU

x86-64 CPU,
Nvidia GPU

x86-64 CPU,
Nvidia GPU

ARM64 CPU,
x86-64 CPU,
Nvidia GPU,
Nvidia Jetson

x86-64 CPU,
Nvidia GPU x86-64 CPU

ARM CPU,
ARM64 CPU,
x86-64 CPU,
Nvidia GPU

ARM64 CPU,
x86-64 CPU,
Nvidia GPU

ML runtime
support

ONNX, PyTorch,
TensorFlow

ONNX, PyTorch,
TensorFlow, others

ONNX, PyTorch,
TensorFlow, others

ONNX, PyTorch,
TensorRT, others ONNX, MXNet ONNX TensorFlow H2O Caffe, TensorFlow,

others
PyTorch,
TensorFlow

Multi-model
inference No Yes Yes Yes Yes Yes Yes Yes No No

Ensemble support Yes Yes Yes Yes No No No No No No

Custom inference Yes Yes Yes Yes Yes No Yes No No Yes

Custom
preprocessing Yes Yes Yes Yes Yes No Yes No No Yes

Flexible
preprocessing Yes, using AKS No No Yes, using

Workflows No No No No No Yes

Extensible
component
repository

No No No No No No No No No Yes

License Apache 2.0 BSD 3-Clause Apache 2.0 Apache 2.0 Apache 2.0 Apache 2.0 Apache 2.0 Apache 2.0 GNU LPGL Apache 2.0



Electronics 2024, 13, 1888 29 of 31

References
1. Pan, J.; McElhannon, J. Future Edge Cloud and Edge Computing for Internet of Things Applications. IEEE Internet Things J. 2018,

5, 439–449. [CrossRef]
2. Ferry, N.; Dautov, R.; Song, H. Towards a model-based serverless platform for the cloud-edge-iot continuum. In Proceedings of

the 2022 22nd IEEE International Symposium on Cluster, Cloud and Internet Computing (CCGrid), Taormina, Italy, 16–19 May
2022; pp. 851–858.

3. Baier, L.; Jöhren, F.; Seebacher, S. Challenges in the Deployment and Operation of Machine Learning in Practice. In Proceedings
of the ECIS 2019—27th European Conference on Information Systems, Stockholm & Uppsala, Sweden, 8–14 June 2019; Volume 1.

4. Crankshaw, D.; Sela, G.E.; Mo, X.; Zumar, C.; Stoica, I.; Gonzalez, J.; Tumanov, A. InferLine: Latency-Aware Provisioning and
Scaling for Prediction Serving Pipelines. In Proceedings of the 11th ACM Symposium on Cloud Computing, New York, NY, USA,
26–30 July 2020; pp. 477–491. [CrossRef]

5. Zhang, C.; Yu, M.; Wang, W.; Yan, F. MArk: Exploiting Cloud Services for Cost-Effective, SLO-Aware Machine Learning Inference
Serving. In Proceedings of the 2019 USENIX Annual Technical Conference (USENIX ATC 19), Renton, WA, USA, 10–12 July 2019;
pp. 1049–1062.

6. Crankshaw, D.; Wang, X.; Zhou, G.; Franklin, M.J.; Gonzalez, J.E.; Stoica, I. Clipper: A Low-Latency Online Prediction Serving
System. In Proceedings of the 14th USENIX Symposium on Networked Systems Design and Implementation (NSDI 17), Boston,
MA, USA, 27–29 March 2017; pp. 613–627.

7. Turnbull, J. The Docker Book: Containerization Is the New Virtualization; James Turnbull: Brooklyn, NY, USA, 2014.
8. Kubernetes Developers. Kubernetes Documentation. Available online: https://kubernetes.io/docs/home/ (accessed on 3

February 2024).
9. Derakhshan, B.; Mahdiraji, A.R.; Rabl, T.; Markl, V. Continuous Deployment of Machine Learning Pipelines. In Proceedings of

the 22nd International Conference on Extending Database Technology (EDBT), Lisbon, Portugal, 26–29 March 2019; pp. 397–408.
10. Seldon Technologies Ltd. Seldon Core Documentation. Available online: https://docs.seldon.io/projects/seldon-core/en/latest/

(accessed on 26 February 2024).
11. KServe Authors. KServe Documentation. Available online: https://kserve.github.io/website/latest/ (accessed on

26 February 2024).
12. Vaño, R.; Lacalle, I.; Sowiński, P.; S-Julián, R.; Palau, C.E. Cloud-native workload orchestration at the edge: A deployment review

and future directions. Sensors 2023, 23, 2215. [CrossRef]
13. Casalicchio, E.; Perciballi, V. Measuring Docker Performance: What a Mess!!! In Proceedings of the 8th ACM/SPEC on

International Conference on Performance Engineering Companion, New York, NY, USA, 22–26 April 2017; pp. 11–16. [CrossRef]
14. ASSIST-IoT Consortium. ASSIST-IoT—H2020 ICT-56-2020—EU RIA Funded Research Project. Available online: https:

//assist-iot.eu/ (accessed on 3 April 2024).
15. Bogacka, K. Modular-ML-Inference/Inference-Server. 2024. Available online: https://doi.org/10.5281/zenodo.10508864

(accessed on 3 April 2024). [CrossRef]
16. Bogacka, K. Modular-ML-Inference/Component-Repository. 2024. Available online: https://doi.org/10.5281/zenodo.10508862

(accessed on 3 April 2024). [CrossRef]
17. Danilenka, A.; Bogacka, K. Modular-ML-Inference/Ml-Usecase. 2024. Available online: https://doi.org/10.5281/zenodo.105088

68 (accessed on 3 April 2024). [CrossRef]
18. Sowiński, P. Modular-ML-Inference/Benchmark-Driver. 2024. Available online: https://doi.org/10.5281/zenodo.10508858

(accessed on 3 April 2024). [CrossRef]
19. Garro, E.; Lacalle, I.; Bogacka, K.; Danilenka, A.; Wasielewska-Michniewska, K.; Tassakos, C.; Theodouli, A.; Kassiani, A.; Palau,

C.E. Decentralized Strategy for Artificial Intelligence in Distributed IoT Ecosystems: Federation in ASSIST-IoT. In Shaping the
Future of IoT with Edge Intelligence: How Edge Computing Enables the Next Generation of IoT Applications; River Publishers: Abingdon,
UK, 2024; p. 231.

20. Bogacka, K.; Danilenka, A.; Wasielewska-Michniewska, K.; Paprzycki, M.; Ganzha, M.; Garro, E.; Tassakos, L. Introducing
Federated Learning into Internet of Things Ecosystems–Maintaining Cooperation Between Competing Parties. In Proceedings of
the Big Data Analytics in Astronomy, Science, and Engineering: 10th International Conference on Big Data Analytics, BDA 2022,
Aizu, Japan, 5–7 December 2022; Springer Nature: Cham, Switzerland, 2023; pp. 53–69.

21. gRPC Authors. gRPC Documentation. Available online: https://grpc.io/ (accessed on 3 April 2024).
22. Bolanowski, M.; Żak, K.; Paszkiewicz, A.; Ganzha, M.; Paprzycki, M.; Sowiński, P.; Lacalle, I.; Palau, C.E. Eficiency of REST and

gRPC realizing communication tasks in microservice-based ecosystems. arXiv 2022, arXiv:2208.00682.
23. Giretti, A. Understanding the gRPC Specification. In Beginning gRPC with ASP. NET Core 6: Build Applications Using ASP. NET

Core Razor Pages, Angular, and Best Practices in. NET 6; Apress: Berkeley, CA, USA, 2022; pp. 85–102.
24. de Klerk, J. gRPC on HTTP/2 Engineering a Robust, High-Performance Protocol. 2022. Available online: https://grpc.io/blog/

grpc-on-http2/ (accessed on 3 April 2024).
25. Johansson, M.; Isabella, O. Comparative Study of REST and gRPC for Microservices in Established Software Architectures. 2023.

Available online: https://www.diva-portal.org/smash/get/diva2:1772587/FULLTEXT01.pdf (accessed on 3 April 2024).
26. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:

Large-Scale Machine Learning on Heterogeneous Systems. arXiv 2015, arXiv:1603.04467.

http://doi.org/10.1109/JIOT.2017.2767608
http://dx.doi.org/10.1145/3419111.3421285
https://kubernetes.io/docs/home/
https://docs.seldon.io/projects/seldon-core/en/latest/
https://kserve.github.io/website/latest/
http://dx.doi.org/10.3390/s23042215
http://dx.doi.org/10.1145/3053600.3053605
https://assist-iot.eu/
https://assist-iot.eu/
https://doi.org/10.5281/zenodo.10508864
http://dx.doi.org/10.5281/zenodo.10508864
https://doi.org/10.5281/zenodo.10508862
http://dx.doi.org/10.5281/zenodo.10508862
https://doi.org/10.5281/zenodo.10508868
https://doi.org/10.5281/zenodo.10508868
http://dx.doi.org/10.5281/zenodo.10508868
https://doi.org/10.5281/zenodo.10508858
http://dx.doi.org/10.5281/zenodo.10508858
https://grpc.io/
https://grpc.io/blog/grpc-on-http2/
https://grpc.io/blog/grpc-on-http2/
https://www.diva-portal.org/smash/get/diva2:1772587/FULLTEXT01.pdf


Electronics 2024, 13, 1888 30 of 31

27. TensorFlow Serving Contributors. TensorFlow Serving Documentation. Available online: https://www.tensorflow.org/tfx/
guide/serving (accessed on 26 February 2024).

28. Ramírez, S. FastAPI. Available online: https://github.com/tiangolo/fastapi (accessed on 26 February 2024).
29. Bradshaw, S.; Brazil, E.; Chodorow, K. MongoDB: The Definitive Guide: Powerful and Scalable Data Storage; O’Reilly Media:

Sebastopol, CA, USA, 2019.
30. Helm Authors 2024. Helm Documentation. Available online: https://helm.sh/docs/ (accessed on 26 February 2024).
31. Rabenstein, B.; Volz, J. Prometheus: A Next-Generation Monitoring System (Talk); USENIX Association: Dublin, Germany, 2015.
32. Danilenka, A.; Sowiński, P.; Rachwał, K.; Bogacka, K.; Dąbrowska, A.; Kobus, M.; Baszczyński, K.; Okrasa, M.; Olczak, W.;

Dymarski, P.; et al. Real-time AI-driven fall detection method for occupational health and safety. Electronics 2023, 12, 4257.
[CrossRef]

33. Szmeja, P.; Fornés-Leal, A.; Lacalle, I.; Palau, C.E.; Ganzha, M.; Pawłowski, W.; Paprzycki, M.; Schabbink, J. ASSIST-IoT: A
modular implementation of a reference architecture for the next generation Internet of Things. Electronics 2023, 12, 854. [CrossRef]

34. Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith,
N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [CrossRef]

35. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. arXiv 2018, arXiv:1703.06870.
36. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch:

An imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 2019, 32, 8024–8035.
37. PyTorch Contributors. Mask R-CNN Documentation. Available online: https://pytorch.org/vision/main/models/generated/

torchvision.models.detection.maskrcnn_resnet50_fpn.html#torchvision.models.detection.maskrcnn_resnet50_fpn (accessed on 26
February 2024).

38. Pääkkönen, P.; Pakkala, D.; Kiljander, J.; Sarala, R. Architecture for enabling edge inference via model transfer from cloud domain
in a kubernetes environment. Future Internet 2020, 13, 5. [CrossRef]

39. Lin, Q.; Wu, S.; Zhao, J.; Dai, J.; Shi, M.; Chen, G.; Li, F. SmartLite: A DBMS-Based Serving System for DNN Inference in
Resource-Constrained Environments. Proc. VLDB Endow. 2023, 17, 278–291. [CrossRef]

40. Li, E.; Zeng, L.; Zhou, Z.; Chen, X. Edge AI: On-demand accelerating deep neural network inference via edge computing. IEEE
Trans. Wirel. Commun. 2019, 19, 447–457. [CrossRef]

41. Liu, P.; Qi, B.; Banerjee, S. Edgeeye: An edge service framework for real-time intelligent video analytics. In Proceedings of the 1st
International Workshop on Edge Systems, Analytics and Networking, Munich, Germany, 10 June 2018; pp. 1–6.

42. Wang, X.; Li, W.; Wu, Z. CarDD: A New Dataset for Vision-Based Car Damage Detection. IEEE Trans. Intell. Transp. Syst. 2023,
24, 7202–7214. [CrossRef]

43. Beazley, D. Understanding the Python GIL (Talk). In Proceedings of the PyCON Python Conference, Atlanta, Georgia, 19–22
February 2010.

44. NVIDIA Corporation & Affiliates. Triton Inference Server Documentation. Available online: https://docs.nvidia.com/
deeplearning/triton-inference-server/user-guide/docs/index.html (accessed on 26 February 2024).

45. Advanced Micro Devices, Inc. AMD Inference Server Documentation. Available online: https://xilinx.github.io/inference-
server/main/index.html (accessed on 26 February 2024).

46. PyTorch Contributors. TorchServe Documentation. Available online: https://pytorch.org/serve/ (accessed on 26 February 2024).
47. Choi, S.; Lee, S.; Kim, Y.; Park, J.; Kwon, Y.; Huh, J. Multi-model Machine Learning Inference Serving with GPU Spatial

Partitioning. arXiv 2021, arXiv:2109.01611.
48. Wu, C.J.; Brooks, D.; Chen, K.; Chen, D.; Choudhury, S.; Dukhan, M.; Hazelwood, K.; Isaac, E.; Jia, Y.; Jia, B.; et al. Machine

Learning at Facebook: Understanding Inference at the Edge. In Proceedings of the 2019 IEEE International Symposium on High
Performance Computer Architecture (HPCA), Washington, DC, USA, 16–20 February 2019; pp. 331–344. [CrossRef]

49. Multi Model Server Contributors. Multi Model Server Documentation. Available online: https://github.com/awslabs/multi-
model-server/blob/master/docs/README.md (accessed on 26 February 2024).

50. Roboflow Inference Contributors. Roboflow Inference Documentation. Available online: https://inference.roboflow.com/
(accessed on 26 February 2024).

51. Ali, A.; Pinciroli, R.; Yan, F.; Smirni, E. BATCH: Machine Learning Inference Serving on Serverless Platforms with Adaptive
Batching. In Proceedings of the SC20: International Conference for High Performance Computing, Networking, Storage and
Analysis, Atlanta, GA, USA, 9–19 November 2020; pp. 1–15. [CrossRef]

52. Ma, J.; Yu, C.; Zhou, A.; Wu, B.; Wu, X.; Chen, X.; Chen, X.; Wang, L.; Cao, D. S3ML: A Secure Serving System for Machine
Learning Inference. arXiv 2020, arXiv:2010.06212.

53. Sabt, M.; Achemlal, M.; Bouabdallah, A. Trusted Execution Environment: What It is, and What It is Not. In Proceedings of the
2015 IEEE Trustcom/BigDataSE/ISPA, Helsinki, Finland, 20–22 August 2015; Volume 1, pp. 57–64. [CrossRef]

54. Tanwani, A.K.; Anand, R.; Gonzalez, J.E.; Goldberg, K. RILaaS: Robot Inference and Learning as a Service. IEEE Robot. Autom.
Lett. 2020, 5, 4423–4430. [CrossRef]

55. Li, Z.; Chard, R.; Ward, L.; Chard, K.; Skluzacek, T.J.; Babuji, Y.; Woodard, A.; Tuecke, S.; Blaiszik, B.; Franklin, M.J.; et al. DLHub:
Simplifying publication, discovery, and use of machine learning models in science. J. Parallel Distrib. Comput. 2021, 147, 64–76.
[CrossRef]

https://www.tensorflow.org/tfx/guide/serving
https://www.tensorflow.org/tfx/guide/serving
https://github.com/tiangolo/fastapi
https://helm.sh/docs/
http://dx.doi.org/10.3390/electronics12204257
http://dx.doi.org/10.3390/electronics12040854
http://dx.doi.org/10.1038/s41586-020-2649-2
https://pytorch.org/vision/main/models/generated/torchvision.models.detection.maskrcnn_resnet50_fpn.html#torchvision.models.detection.maskrcnn_resnet50_fpn
https://pytorch.org/vision/main/models/generated/torchvision.models.detection.maskrcnn_resnet50_fpn.html#torchvision.models.detection.maskrcnn_resnet50_fpn
http://dx.doi.org/10.3390/fi13010005
http://dx.doi.org/10.14778/3632093.3632095
http://dx.doi.org/10.1109/TWC.2019.2946140
http://dx.doi.org/10.1109/TITS.2023.3258480
https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/index.html
https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/index.html
https://xilinx.github.io/inference-server/main/index.html
https://xilinx.github.io/inference-server/main/index.html
https://pytorch.org/serve/
http://dx.doi.org/10.1109/HPCA.2019.00048
https://github.com/awslabs/multi-model-server/blob/master/docs/README.md
https://github.com/awslabs/multi-model-server/blob/master/docs/README.md
https://inference.roboflow.com/
http://dx.doi.org/10.1109/SC41405.2020.00073
http://dx.doi.org/10.1109/Trustcom.2015.357
http://dx.doi.org/10.1109/LRA.2020.2998414
http://dx.doi.org/10.1016/j.jpdc.2020.08.006


Electronics 2024, 13, 1888 31 of 31

56. Romero, F.; Li, Q.; Yadwadkar, N.J.; Kozyrakis, C. INFaaS: A model-less and managed inference serving system. arXiv 2019,
arXiv:1905.13348.

57. Li, B.; Samsi, S.; Gadepally, V.; Tiwari, D. Kairos: Building cost-efficient machine learning inference systems with heterogeneous
cloud resources. In Proceedings of the 32nd International Symposium on High-Performance Parallel and Distributed Computing,
Orlando, FL, USA, 20–23 June 2023; pp. 3–16.

58. Kag, A.; Fedorov, I.; Gangrade, A.; Whatmough, P.; Saligrama, V. Efficient edge inference by selective query. In Proceedings of
the Eleventh International Conference on Learning Representations, Virtual, 25–29 April 2022.

59. Hu, C.; Li, B. Distributed inference with deep learning models across heterogeneous edge devices. In Proceedings of the IEEE
INFOCOM 2022-IEEE Conference on Computer Communications, Virtual, 2–5 May 2022; pp. 330–339.

60. Agarwal, D.; Long, B.; Traupman, J.; Xin, D.; Zhang, L. LASER: A Scalable Response Prediction Platform for Online Advertising.
In Proceedings of the 7th ACM International Conference on Web Search and Data Mining, New York, NY, USA, 24–28 February
2014; pp. 173–182. [CrossRef]

61. Crankshaw, D.; Bailis, P.; Gonzalez, J.E.; Li, H.; Zhang, Z.; Franklin, M.J.; Ghodsi, A.; Jordan, M.I. The Missing Piece in Complex
Analytics: Low Latency, Scalable Model Management and Serving with Velox. arXiv 2014, arXiv:1409.3809.

62. Wang, W.; Wang, S.; Gao, J.; Zhang, M.; Chen, G.; Ng, T.K.; Ooi, B.C. Rafiki: Machine Learning as an Analytics Service System.
arXiv 2018, arXiv:1804.06087.

63. bentoml.com. BentoML Documentation. Available online: https://docs.bentoml.com/en/latest/ (accessed on 26 February 2024).
64. Marozzo, F.; Orsino, A.; Talia, D.; Trunfio, P. Edge computing solutions for distributed machine learning. In Proceedings of the

CBDCom 2022 (International Conference on Cloud and Big Data Computing), Falerna, Italy, 12–15 September 2022; pp. 1–8.
Available online: http://cyber-science.org/2022/assets/files/program_agenda.pdf (accessed on 3 April 2024)

65. Kakati, S.; Brorsson, M. WebAssembly Beyond the Web: A Review for the Edge-Cloud Continuum. In Proceedings of the 2023
3rd International Conference on Intelligent Technologies (CONIT), Hubli, India, 23–25 June 2023; pp. 1–8.

66. Li, B.; Gadepally, V.; Samsi, S.; Tiwari, D. Characterizing multi-instance gpu for machine learning workloads. In Proceedings of
the 2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), Lyon, France, 30 May–3 June
2022; pp. 724–731.

67. ForestFlow Authors. ForestFlow Documentation. Available online: https://forestflow.github.io/ForestFlow/ (accessed on 26
February 2024).

68. Jolibrain. DeepDetect Server Documentation. Available online: https://www.deepdetect.com/server/docs/server_docs/
(accessed on 26 February 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/2556195.2556252
https://docs.bentoml.com/en/latest/
http://cyber-science.org/2022/assets/files/program_agenda.pdf
https://forestflow.github.io/ForestFlow/
https://www.deepdetect.com/server/docs/server_docs/

	Introduction
	Proposed Solution
	Modular Inference Server
	Component Repository
	Deployment and Integration

	Use Cases
	Worker Safety: Fall Detection
	Car Inspection: Scratch Detection

	Experimental Setup
	Fall Detection
	Scratch Detection
	Experiment Summary

	Results and Analysis
	Fall Detection Results
	Scratch Detection Results

	Related Works
	Machine Learning Inference Servers
	Machine Learning Inference Systems
	Comparison with State of the Art

	Discussion and Future Work
	Software Functionalities
	Performance and Deployment
	Use Cases

	Conclusions
	Appendix A
	Appendix B
	References

