
Citation: Shu, C.; Luo, Y.; Liu, F.

Probabilistic Task Offloading with

Uncertain Processing Times in

Device-to-Device Edge Networks.

Electronics 2024, 13, 1889. https://

doi.org/10.3390/electronics13101889

Academic Editor: Martin Reisslein

Received: 3 April 2024

Revised: 6 May 2024

Accepted: 9 May 2024

Published: 11 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Probabilistic Task Offloading with Uncertain Processing Times
in Device-to-Device Edge Networks
Chang Shu, Yinhui Luo * and Fang Liu

School of Computer Science, Civil Aviation Flight University of China, Guanghan 618307, China;
shuchang0530@163.com (C.S.); fangliu@cafuc.edu.cn (F.L.)
* Correspondence: loyinhv@163.com

Abstract: D2D edge computing is a promising solution to address the conflict between limited
network capacity and increasing application demands, where mobile devices can offload their tasks
to other peer devices/servers for better performance. Task offloading is critical to the performance
of D2D edge computing. Most existing works on task offloading assume the task processing time
is known or can be accurately estimated. However, the processing time is often uncertain until it is
finished. Moreover, the same task can have largely different execution times under different scenarios,
which leads to inaccurate offloading decisions and degraded performance. To address this problem,
we propose a game-based probabilistic task offloading scheme with an uncertain processing time
in D2D edge networks. First, we characterize the uncertainty of the task processing time using a
probabilistic model. Second, we incorporate the proposed probabilistic model into an offloading
decision game. We also analyze the structural properties of the game and prove that it can reach
a Nash equilibrium. We evaluate the proposed work using real-world applications and datasets.
The experimental results show that the proposed probabilistic model can accurately characterize the
uncertainty of completion time, and the offloading algorithm can effectively improve the overall task
completion rate in D2D networks.

Keywords: device to device; edge computing; Internet of Things; probabilistic model; task offloading

1. Introduction

Recent years have witnessed the increasing proliferation and popularity of mobile
devices (MDs) in day-to-day life. It is envisioned that by the year 2022, around 12.3 billion
interconnected MDs will surge at the network edge [1]. Meanwhile, novel applications
are rapidly growing along with MDs, such as augmented reality (AR) [2], autonomous
driving [3], and online games [4]. However, the unprecedented growth of these latency-
critical and computationally intensive applications is hardly manageable on the resource-
limited MDs. To tackle this issue, in recent years, the emergence of mobile edge computing
has provided a ray of hope in addressing the challenge posed by computationally intensive
applications for MDs.

The combination of device-to-device (D2D) communications and edge computing,
denoted as D2D edge computing, has emerged as a promising research direction to unleash
the full potential of edge computing [5–9]. With D2D edge computing, each MD offloads its
tasks to peer MDs to utilize spare computation/communication resources, which enlarges
network capacity and improves resource utilization.

In D2D edge computing, each device often has multiple candidate devices for offload-
ing, and different offloading choices can lead to largely different offloading efficiencies.
Therefore, the offloading decision is a critical problem in D2D edge computing. Many re-
search efforts have been devoted to task offloading in D2D edge computing [6,10,11]. Most
existing works study the optimal computation allocation policy to minimize the end-to-end
delay. For example, Gong et al. [10] studied a delay-optimal distributed task offloading
strategy that exploits wireless connected edge devices to perform distributed computing.

Electronics 2024, 13, 1889. https://doi.org/10.3390/electronics13101889 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13101889
https://doi.org/10.3390/electronics13101889
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0007-8597-1648
https://doi.org/10.3390/electronics13101889
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13101889?type=check_update&version=2

Electronics 2024, 13, 1889 2 of 24

One of the fundamental assumptions in these works is that the processing times
of all tasks are known or can be accurately estimated [6,10]. However, in practice, a
task’s processing time (TPT) is generally uncertain until it is processed to completion.
Existing offloading decisions rely on knowledge of the TPT, i.e., the goal is to minimize
the overall TPT [10] or maximize task completion rates while guaranteeing the TPT within
deadlines [12]. Considering the variations in TPTs, existing works inevitably result in
inaccurate offloading decisions. Dealing with uncertain TPTs is a non-trivial task due to
the two challenges outlined below.

How to characterize varying task processing times? Existing efforts mainly employ
averaged mathematical expectations to estimate uncertain TPTs [13,14]. However, for the
same task, different input data will lead to a different number of iterations and different
selections of judgment statements triggered, resulting in different execution times for
the same program. For example, in visual relationship detection [15], the execution time
depends on the number of detected targets included in the input image. The TPT with one
target can be hundreds of times smaller than the TPT with twenty targets [15].

We can see that general average TPT values can hardly reflect the specific TPT in given
scenarios. As a result, characterizing the TPT is essential to achieve accurate offloading
decisions in various scenarios.

How to incorporate uncertain TPT variations into task offloading? Due to the lack
of TPT distributions, existing works [13,14] use deterministic models for task offloading,
where each task is determined to be offloaded or not according to its performance expecta-
tions. However, it is entirely possible that some tasks with poor expectations can achieve
high offloading performance with certain probabilities. Such an impact is overlooked by
deterministic model-based offloading schemes and will thus lead to inaccurate offloading
decisions (as analyzed in Section 2). To exploit such potential opportunities, we need to
(1) build a connection between the TPT model and optimization performance metrics (e.g.,
task completion rate), which is non-trivial since it is affected by multi-task contentions
and queueing processes, and (2) support and incorporate the probabilistic TPT models
and metrics into the offloading process.

To address the above challenges, we propose Mature, a game-based probabilistic task
offloading scheme with uncertain processing times in D2D edge networks. Mature is
aimed at maximizing task completion rates within deadlines. It has two salient features.
First, the TPT uncertainty is characterized by a probabilistic model based on real-world
measurements. Second, we propose a game-based probabilistic offloading approach and
incorporate the probabilistic TPT model into the approach. As a result, the offloading
decision can effectively accommodate probabilistic TPT variations. We implement Mature
and conduct extensive experiments using five datasets and four applications. The results
show that the proposed fine-grained TPT distributions can accurately characterize the
completion time, and the offloading algorithm can effectively improve task completion
rates by 23%. It is worth noting that this improvement can reach 36% when the devices are
resource-limited. Overall, the contributions of this paper can be summarized as follows:

1. Innovative Probabilistic Model for TPT Uncertainty: We develop a probabilistic
model based on real-world data to effectively characterize the uncertainties in task
processing times (TPTs). This model enhances the predictability and reliability of task
offloading decisions within device-to-device (D2D) edge networks.

2. Game-Based Offloading Strategy: We introduce a novel game-based offloading strat-
egy that seamlessly integrates our probabilistic TPT model. This approach optimizes
task offloading decisions, allowing for dynamic adaptation to the inherent variability
in TPTs and enhancing task completion rates under various network conditions and
device capabilities.

3. Validation Through Comprehensive Experiments: The effectiveness of our model
and offloading strategy is demonstrated through extensive experimental evaluations
involving five datasets and four applications. The results confirm that our approach

Electronics 2024, 13, 1889 3 of 24

significantly improves the accuracy of completion time predictions and increases task
completion rates, particularly in resource-constrained environments.

The rest of this paper is organized as follows. Section 2 presents the related works and
the motivation for this work. Section 3 introduces the measurement-based probabilistic
model for TPTs and task completion rates. Section 4 proposes the main design of the game-
based probabilistic task offloading algorithm with uncertain processing times. Section 5
presents the evaluation results.

2. Related Works and a Motivating Example

In this section, we summarize the existing works on task offloading in D2D edge
computing. We use an example to show the limitations of existing works and explore the
potential benefits of probabilistic task processing times.

2.1. Related Works

Recent research has highlighted edge computing as a pivotal emerging technology for
5G networks, as acknowledged by the European 5G PPP (5G Infrastructure Public-Private
Partnership) research body. Extensive research has been conducted on the computation
offloading problem, resulting in a plethora of offloading policies. These policies can be
broadly categorized into two distinct stages.

In the first stage of investigation into computation offloading, researchers typically
treat applications as indivisible tasks that are wholly transferred to edge servers. The
authors of [16], examined the multi-user offloading challenge in an edge computing envi-
ronment characterized by multi-channel wireless interference. They established the prob-
lem’s NP-hard nature concerning achieving the optimal solution. Subsequently, a heuristic
method was utilized to enable efficient computation offloading across a distributed frame-
work. The efficacy of the approach was demonstrated through simulations, which indicated
that the algorithm not only enhances offloading performance but also maintains scalability
with an increase in the number of users. Moreover, in [17], the focus shifted to a dis-
tributed offloading strategy designed for multi-user and multi-server settings, employing
orthogonal frequency-division multiple access within small-cell networks. The authors
formulated a distributed overhead minimization challenge and applied potential game the-
ory to demonstrate that the decision-making process aligns with a potential game scenario.
The simulation results further affirmed that the newly proposed algorithm can significantly
conserve overhead compared to other existing computation offloading algorithms. Other
inquiries documented in [18–20] addressed similar multi-user and multi-server environ-
ments. These studies introduced heuristic decision-making algorithms for offloading,
which strategically assigned different tasks to optimal channels and servers with the ob-
jective of reducing average completion times. These collective efforts underscore a critical
engagement with the complexities of task offloading in contemporary edge computing
scenarios.

As applications grow increasingly complex, the field of computation offloading is ad-
vancing into the second stage, characterized by the use of Directed Acyclic Graphs (DAGs)
to pinpoint precise offloading opportunities. In this stage, as detailed in [21], applications
are broken down into sequential modules. The decision-making process involves selecting
specific modules for offloading and determining their execution context—either in cloud or
edge computing environments. This is facilitated by the Iterative Heuristic MEC Resource
Allocation (IHRA) algorithm, which dynamically adjusts offloading decisions based on
current conditions. Further exploration of this nuanced approach was presented in [22,23],
where the focus shifted to fine-grained task offloading within low-power IoT systems. The
authors aimed to strategically map subtasks across diverse servers while arranging their
execution order to meet task precedence demands and minimize the overall completion
time. The notable distinction in this stage of computation offloading research is the in-
teraction between subtasks—they are not merely sequential but exhibit interdependency.
To enhance decision-making efficiency, a distributed computation offloading algorithm,

Electronics 2024, 13, 1889 4 of 24

termed DEFO, has been developed using game theory principles. This algorithm optimizes
offloading decisions by considering the competitive and cooperative interactions among
the distributed components involved in the computation offloading process.

As the number of smart devices and the demand for real-time applications increase,
MEC architectures alone cannot fully meet the stringent latency requirements, especially
in scenarios with high device densities and unpredictable dynamic environments. This
realization has led to the emergence of D2D computing, which extends the concept of edge
computing by enabling direct communication between nearby devices without routing
traffic through a base station or central server [5,7,11,24–29].

Although device-to-device (D2D) edge computing can more effectively exploit the
computational resources of all devices in specific scenarios, the computational power
of these devices is generally inferior to that of traditional edge servers. Consequently,
the fluctuation in task processing times is more pronounced, which, in turn, directly
influences the strategies for task offloading. The offloading decisions determine when
and where to offload the tasks and play a critical role in the performance of D2D edge
computing. Existing works on offloading decisions can be classified into two categories
according to the different assumptions on TPTs.

Offloading decisions with given task processing times (TPTs). The offloading decision
in D2D networks with known TPTs was studied in [6–8,10,11,30]. For example, Gone
et al. [10] delved into the integration of D2D edge computing with parallel computing
within the framework of distributed edge computing (DEC). By leveraging distributed
devices in D2D edge networks, DEC is poised to significantly reduce service delays by
enabling parallel processing of computation tasks offloaded from an end device to edge
devices connected via a wireless network. The study focused on the crucial challenge
of minimizing execution delays for distributed algorithms applied to these tasks. Cao
et al. [30] presented a novel approach to enhance energy efficiency in D2D edge computing
systems through cooperative computation and communication. They examined a three-
node MEC setup involving a user node, a helper node, and an access point (AP) with an
MEC server, exploring two offloading models: partial and binary. A four-slot transmission
protocol was developed to enable efficient cooperation, optimizing resource allocation to
minimize energy consumption while meeting latency constraints. Efficient algorithms tack-
led non-convex optimization problems, and the numerical results demonstrated substantial
improvements in computation capacity and energy efficiency compared to conventional
methods. The study set a new standard for integrated resource management in D2D edge
network environments. In the aforementioned work, the TPT was assumed to be given
in advance and known during the offloading decision. These works may not be feasible
in practical scenarios considering that the TPT is often unavailable before the tasks are
executed [13].

Offloading decisions with uncertain TPTs. Other works studied the offloading problem
with uncertain TPTs [12–14]. Chang et al. [14] addressed the challenge of making offloading
decisions in edge computing (EC) for continuous applications with uncertain characteristics
such as user behavior and application duration. A novel algorithm, the Response Time Im-
proved Offloading algorithm with Energy Constraint (RTIOEC), was proposed to optimize
these decisions under energy consumption constraints. The study focused on minimizing
the average response time while maintaining energy efficiency. The evaluation results
confirmed that the RTIOEC effectively achieves these goals, demonstrating its practicality
for EC environments where application properties are not fully known. In [12], Zhan et al.
studied a D2D multimedia data offloading architecture to improve the QoS of multimedia
and meet the expected deadline. In these works, the unknown TPT is estimated using the
average TPT value. While the average TPT is reasonable in scenarios with stable inputs
and system environments, as analyzed in Section 3, the averaged expectation of the TPT
cannot reflect the actual task processing in general cases and thus can significantly mislead
the offloading decisions.

Electronics 2024, 13, 1889 5 of 24

Unlike the above works, Mature utilizes a probabilistic model to characterize the TPT
more accurately, thereby enhancing the precision of task processing time estimates. This im-
provement enables the formulation of more appropriate offloading strategies, subsequently
increasing the computational efficiency in D2D network edge computing environments.
Moreover, considering the distributed nature of D2D networks, the probabilistic model is
then incorporated into the proposed game-based offloading scheme. As a result, the tem-
poral variations of task processing are considered and utilized to achieve better offloading
performance in D2D edge computing.

2.2. A Motivating Example

Next, we use an example to illustrate the impact of a probabilistic TPT on the offloading
process and how it can be exploited to improve offloading performance. We consider a
typical scenario where the apps AR [2] and Beautycam continuously invoke the image
processing module on a smartphone. The average TPT for an image processing task (from
either app) is 1.2 s. As shown in the left part of Figure 1a, the deadlines for AR and
Beautycam are 600 ms and 1.3 s, respectively. Evidently, the average processing time
(1.2 s) does not meet the deadline requirement of the AR application (0.6 s). In addition,
the processing of AR tasks may also incur unexpected delays for Beautycam tasks. As
a result, the smartphone will seek to offload the AR tasks to other devices if possible.
Although there is a smartphone nearby that can provide extra computing capability, its
average TPT for image processing is 1.2 s, which also exceeds the AR deadline. In this
case, following the policy of existing works [10,12,30], the AR tasks will be dropped or only
processed with the best effort when there are no other tasks.

Figure 1. An example of task offloading with uncertain processing times. (a) Offloading decision in
D2D networks. (b) CDF of processing time.

However, as demonstrated in our measurement study in Section 3, a task’s processing
time usually fluctuates within a certain range (due to variations in input data, environment,
task contentions, etc.), and the average processing time can be highly misleading in offload-
ing decisions. Figure 1b depicts the cumulative distribution function (CDF) plots of the
processing times of the image processing module on the laptop and smartphone, respec-
tively. The black/blue lines denote the TPTs of image processing on the laptop/smartphone.
With the CDFs plotted for both devices, we observe the following:

1. Although the average TPT (1.2 s) is smaller than the deadline of Beautycam (1.3 s),
as shown in the figure, the actual task completion rate (the probability that the TPT is
under 1.3 s) is only 58%.

2. The offloading decisions made by existing works significantly underutilize the devices’
resources and yield an unsatisfactory overall completion rate (58%). The reason for
this is analyzed below.

We consider three offloading strategies for comparison: (1) Existing work: AR’s
tasks are dropped, and BC’s tasks are executed on the smartphone (as analyzed above).

Electronics 2024, 13, 1889 6 of 24

(2) OffloadAR: AR’s tasks are offloaded to the laptop, and BC’s tasks are executed on the
smartphone. (3) OffloadBC: BC’s tasks are offloaded to the laptop, and AR’s tasks are
executed on the smartphone. The round-trip communication delay for offloading is 300 ms.
The deadlines and corresponding cumulative probabilities are denoted using dashed red
lines (for OffloadAR) and green lines (for OffloadBC) in Figure 1b. For example, with Of-
floadAR, BC’s tasks (1.3 s) are executed locally on the smartphone (58% completion rate),
and AR’s tasks (0.3 s) are executed on the laptop (57% completion rate). It is worth noting
that the deadline for AR tasks on the laptop becomes 0.6 − 0.3 = 0.3 s, as the communica-
tion delay takes 0.3 s. Table 1 shows the task completion rates for the different offloading
strategies. We can see that OffloadBC achieves the highest overall task completion rate
of 36% + 92%. We use the sum as the overall task completion rate since the two apps are
treated as equally important. If the apps have different priorities, we could add weights to
each completion rate and use the weighted sum as the overall completion rate.

Table 1. The completion rate comparison.

Augmented Reality Beautycam

Existing work 0% 58%

OffloadAR 57% 58%

OffloadBC 36% 92%
BC: Beautycam; AR: Augmented Reality; The bold numbers represent the task completion rates under the optimal
offloading scheme.

From the example, we can infer that (1) the average task processing time cannot reflect
the actual offloading performance, and (2) the probabilistic distribution of the TPT can be
used to improve the overall task completion rate. However, exploiting TPT distributions to
improve offloading performance is a non-trivial task due to the following two challenges.
First, we need to obtain the probabilistic TPT models before making offloading decisions.
Moreover, considering the multi-task contention and queueing processes, the task com-
pletion rate cannot be obtained directly from the TPT model. Second, existing offloading
schemes use deterministic models and cannot effectively support the probabilistic TPT
model. In the next sections, we describe how we overcome the above challenges and exploit
probabilistic TPTs for better offloading performance.

3. Measurement-Based Probabilistic Model for TPTs and Task Completion Rates

Considering that the application types are known, we first use offline measurements
and curve fitting to obtain the rough TPT model for an application. Then, for specific
tasks and scenarios of the application, we use a small amount of initial data to obtain the
parameters for the TPT model.

While the TPT model with measurement-based curve fitting is relatively straightfor-
ward, unlike the example in Figure 1, it is a highly challenging task to further infer the task
completion rate using the TPT model and task deadlines. The reason is that besides the TPT,
the multi-task contention and scheduling processes also affect the whole task completion
period from input to output. As a result, there exists a gap between the TPT and the task
completion rate of a task.

In this section, we first use the image processing task as a case study to explain how
the probabilistic model is obtained. After that, we derive a model for the task completion
rate, which incorporates both the TPT model and the queueing process of multiple tasks.

3.1. Measurement-Based Model for TPTs

Now, we use the image processing task as a case study to explain the TPT modeling
process. Image processing is one of the most popular services in mobile offloading [31].
Specifically, we investigate the image processing service of visual relationship detection
(VRD), which has been widely used in a variety of image understanding tasks, e.g., object

Electronics 2024, 13, 1889 7 of 24

categorization [32], object detection [33], image segmentation [34], and human–object
interactions [15]. VRD involves detecting and localizing objects, as well as the relationship
between these detected objects. For the example in Figure 2, the VRD output could be
{mouse-eat-biscuit} or {mouse-in-cup}.

Figure 2. Visual relationship detection.

To obtain the TPT model for the VRD application (the MF-URLN algorithm—multi-
modal feature-based undetermined relationship learning network [15]), we first conduct
offline measurements using existing VRD datasets with 5000 images and 37,993 relation-
ships. The measured probability distribution function (PDF) of the TPT for VRD is shown
in Figure 3. Each bar represents the proportion of images for which the measured TPT is
within the corresponding time intervals. Then, we employ curve fitting to determine the
appropriate model formulation for the TPT model. The red line denotes the fitted curve of
the PDF, which follows an exponential distribution with µ = 0.588.

f (t) = µExp(−µt). (1)

Although the offline measurements and datasets do not exactly match the specific
task scenarios, we could use the obtained exponential distribution as an initial TPT model
for the VRD service. When encountering analogous tasks in diverse scenarios, we can
expediently calibrate the critical parameters of the distribution using minimal input data.
Comprehensive experimental validation of this method is detailed in Section 5.1.

0 2 4 6 8 10 12 14
Processing Time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

P
ro

ba
bi

lit
y

D
en

si
ty

 F
un

ct
io

n Processing time
Exponential distribution

Figure 3. PDF of processing times.

Electronics 2024, 13, 1889 8 of 24

3.2. Model for Task Completion Rates

After characterizing the uncertainty of the TPT using a probabilistic model, in this
section, we derive the task completion rate model based on the TPT.

In D2D edge networks, mobile devices (MDs) will generate new tasks at regular
intervals (e.g., AR devices continuously collect and process images to cope with the change
in the user’s view). Usually, we assume that inter-arrival times are independent and have
a common distribution. In many practical situations, tasks arrive according to a Poisson
stream. Therefore, we hypothesize that task processing follows a basic queueing model,
denoted as M/G/1 (queueing theory is widely used in literature to model the service
procedure [35]), with exponential inter-arrival time and arbitrary service time. In this basic
model, tasks arrive one by one, and they are always allowed to enter the system. There
is always room, there are no priority rules, and tasks are served in the order of arrival. In
queueing theory, the sojourn time is the waiting time plus the processing time. In D2D
edge computing, the completion time equals the sojourn time plus the transmission time if
the task is offloaded to other devices. The distribution of the completion time in VRD obeys

F(t − tr) = 1 − Exp[−(µj − λk)(t − tr)], (2)

where the parameter of processing time µ has been obtained by the TPT model in Equation (1)
and the parameter λk denotes the task arrival rate of a certain type of task, k. If the
task is executed locally, tr = 0. Figure 4 plots the cumulative density function (CDF) of
completion times with one type of task under different given deadlines, where we assume
its λk is 0.15. The red point depicts that 89% of the tasks can be finished before a given
deadline (4 s). If the task is offloaded to other devices with the same computing capability,
considering the transmission delay (tr = 2.1 s), the tasks should be completed before
1.9 s, and the completion rate will be reduced to 60%. Therefore, by investigating the CDF
curves of completion times and transmission times, we can see whether the device makes
the appropriate offloading decision (e.g., to execute locally or offload to other devices).
How to make an optimal offloading decision in D2D networks is discussed in Section 4.
Subsequently, in Section 5.1, we further evaluate the fitting accuracy of the task completion
rate model using real data.

Figure 4. CDF of completion times.

Queueing theory is also suitable for modeling the completion rate with various TPT
models, the theoretical completion time follows the M/G/1 model, which can be formu-
lated as

F(t) = L−1{S(α)} = L−1
{ (1 − λ/µ)B(α)α

λB(α) + α − λ

}
, (3)

Electronics 2024, 13, 1889 9 of 24

where B(α) can be obtained by

B(α) =
∫ ∞

0
e−αt d f (t) (4)

where f (t) denotes the TPT model, which is capable of accommodating any probabilis-
tic distribution model. In Section 5.1, we empirically validate this hypothesis through
experiments involving typical applications.

4. Game-Based Probabilistic Task Offloading with Uncertain Processing Times

In this section, we incorporate the TPT model and completion model into task of-
floading to achieve better offloading performance with uncertain processing times in
D2D networks. We first describe the system model and discuss how the TPT model is
incorporated into the offloading process. Then, we formulate the task completion rate
maximization problem as a strategy game. After that, we resort to the potential game
to prove the existence of the Nash equilibrium of our strategy game (multi-device task
offloading game). Based on the characteristics of the potential game, we design a game-
based distributed task offloading decision with uncertain processing times (Mature) in D2D
edge networks and then analyze its convergence. For ease of understanding, the notations
utilized in this paper are summarized in Table 2.

Table 2. Notations used in this paper.

Notation Description

N The set of MDs

K The arrival rate of tasks

ci The computation capability of device i

δi Energy consumption per CPU cycle of the device

τk The delay constraints of device i

λk The parameter of the Poisson distribution

λj The arrival rate of workloads on device j

ti,j The transmission time from device i to device j

Fk
i,j The completion rate of tasks

f (t) The probability distribution of all tasks

a An appropriate task offloading decision

ak
i,k Whether task k of device i is offloaded to device j

a−i Task offloading decision of all devices except for device i

Ai The offloading decisions of device i

Dk
i,j The completion rate decline of tasks

4.1. System Model

In this subsection, the system model adopted in this work is described. We consider a
set of N= [1, 2, ..i, j, ..N] mobile devices (MDs). Each MD has several tasks to be completed
with the help of other peer devices, and the computation capability of devices i can be
represented by ci. In the D2D networks, there are K types of computationally intensive tasks
permitted to be offloaded to other devices with delay constraints τk. As stated earlier in
Section 3, the arrival rate of task K= [1, 2, ..k] follows a Poisson distribution with parameter
λk, and the processing times required by this task follow a certain probability distribution.
Let ak

i,j be an indicator to denote whether task k of device i is offloaded to device j:

Electronics 2024, 13, 1889 10 of 24

ak
i,j =

{
1 if task k of device i is offloaded to device j
0 otherwise

(5)

Significantly, we adopt ai= {a1
i , a2

i , a3
i , ...ak

i } to represent a possible offloading decision
for each task of device i, where ak

i = {0} ∪ N denotes the offloading decision for task k
of device i (e.g., ak

i = i means that device i chooses to execute task k locally, and ak
i = 0

denotes that device i has no demand for task k). According to our measurement study of
VRD in Section 3, the completion rate for task k of device i can be obtained as

Fk
i,j(t

k
i,j) = 1 − Exp[−(µk/cj − (λj + λk))tk

i,j] (6)

tk
i,j = τk − ti,j (7)

where ti,j denotes the transmission time from device i to device j (ti,i = 0). The transmission
delay is fundamentally determined by the size of the task, denoted as S, and the bandwidth
of the communication network, represented as R. This delay, calculated by the formula
L/R, encapsulates the duration required for the entire task to be transmitted over the D2D
edge network. λj denotes the arrival rate of the existing workload on device j. From this
equation, we can observe that with an increasing number of tasks, the completion rate
of each task will decrease exponentially. It should be stressed here that Equation (6) is
only suitable for the processing time of the task, which follows an exponential distribution.
A more general expression can be described as Fk

i,j(λj, λk, f (t), cj, tk
i,j), where (f (t) denotes

the probability distribution of the TPTs of all tasks. More details can be seen in Equation (3)).
Our goal is to find an appropriate task offloading decision a = (a1, a2, ...aN) for all tasks
from different devices to maximize the completion rates of all tasks. The task offloading
problem can be formulated as follows:

Opt : max
a

N

∑
i=1

N

∑
j=1

K

∑
k=1

ak
i,jF

k
i,j(λj, λk, f (t), cj, tk

i,j) ∀i, j ∈ N (8)

s.t ai ∈ {0, 1, 2.., N} ∀i ∈ N (9)

N

∑
i=1

K

∑
k=1

ak
i,jδj/µk < Bj ∀i ∈ N , (10)

where Equation (10) represents the capacity constraint of each device; δi denotes the energy
consumption per CPU cycle in user device i, which can be obtained using the method
in [36]; and 1/µk denotes the average CPU cycle required to accomplish task k. We can
easily observe that finding the optimal task offloading decision is impractical (a special
case of our problem can be reduced to 0–1 knapsack problem), which inspires us to design
a distributed computation offloading scheme.

4.2. Potential Game Formulation

In this section, we adopt a game-theoretic approach to coordinate competition among
multiple users. In a game theory-based task offloading decisions among multiple users,
at each step, a rational user reacts to other users’ actions in the previous step and makes
an optimal local decision. After a finite number of steps, all users can self-organize into a
mutual equilibrium state: the Nash equilibrium. Let a−i = {a1, ..., ai−1, ai+1, ..an} denote
the task offloading decision for all devices except for device i. By analyzing the strategies of
other devices, device i aims to choose an optimal local offloading decision for all its tasks,
maximizing the overall completion rate:

max
ak

i =0,1,...,N
P(ai, a−i) ∀i ∈ N (11)

Electronics 2024, 13, 1889 11 of 24

Pi =
N

∑
j=1

K

∑
k=1

ak
i,jF

k
i,j ∀j ∈ N ∀k ∈ K (12)

Now we can formulate our task offloading problem as a strategic game, which can
be described by Γ = (N , {Ai}i∈N , {Pi}i∈N), where we regard each device as one player,
so N indicates the set of all players. Ai denotes the offloading decisions of device i. It is
worth noting that if a strategy a′ = (a′1, a′2, ..., a′n) is a Nash equilibrium, no user can further
increase its completion rate by changing its strategy, i.e,

P(a′i, a′−i) ≥ P(ai, a′−i) ∀i ∈ N ∀ai ∈ Ai (13)

Our aim is to explore the strategy a′ = (a′1, a′2, ..., a′n) after finite iterations. First, we
need to study the existence of the Nash equilibrium by proving that this strategy game is a
potential game.

Theorem 1. A strategy game is defined as a potential game if there is a potential function ϕ(a)
such that for every device i, a′i, ai ∈ Ai. If

P(a′i, a−i) ≥ P(ai, a−i) (14)

we have
ϕ(a′i, a−i) ≥ ϕ(ai, a−i) (15)

The obvious property of a potential game is that it can always achieve a Nash equi-
librium if only one device updates its strategy at any given time. Thus, we construct
such a potential function for our task offloading game to prove that it has at least one
convergent decision. The salient property of potential games, where they are guaranteed to
reach a Nash equilibrium when strategies are updated sequentially by individual players,
underscores their utility in modeling strategic interactions. Given this attribute, construct-
ing a potential function for our task offloading scenario is both strategic and beneficial.
Consider a scenario where devices decide whether to offload computational tasks to other
devices or handle them locally. The potential function is designed to increase when a device
efficiently offloads a task, enhancing system performance, and decrease when a device
inefficiently opts for local processing, reflecting suboptimal decisions. By devising such a
potential function, we establish a framework where each device’s decision to offload tasks
can be analyzed as part of a holistic system that inherently moves toward equilibrium.
This methodological approach not only enhances the predictability and stability of the
decision-making process but also ensures that the system admits at least one convergent
decision, aligning individual incentives with the collective optimal. Thus, integrating a
potential function into our game-theoretic model substantiates its efficacy by proving the
existence of at least one stable strategy configuration. In our work, the potential function
can be defined as follows:

ϕ(a) = −1/2
N

∑
i=1

N

∑
l ̸=i

k

∑
q1=1

k

∑
q2=1

Dq1
ij Dq2

l j I{aq1
i = j, i ̸= j}

− 1/2
N

∑
i=1

N

∑
l ̸=i

k

∑
q1=1

k

∑
q2=1

Dq1
ii Dq2

l j I{aq1
i = i}, ∀j ∈ N

(16)

where q1 and q2 denote the tasks belonging to device i and device l (l ̸= i). The indicator
function I{aq1

i = j} = 1 means that task q1 of device i will be offloaded to device j;
otherwise, I{aq1

i = j} = 0. Dk
i,j shows the completion rate decline of tasks that belong to

device i if task k of device i offloads to device j. In this strategy game, each device only
considers the completion rate of its own tasks and is only responsible for updating the
offloading decision for tasks that are generated by it (e.g., task k of device j is offloaded to

Electronics 2024, 13, 1889 12 of 24

device i; device i has no right to change the offloading decision for this task, even if this
task is executed on it). Dk

i,j can be described as

Dk
i,j =

k

∑
q=1

aq
i,j[F

q
i,j(λj, f (t), cj, tk

i,j)

− Fq
i,j(λj, λk, f ′(t), cj, tk

i,j)]

(17)

Equation (17) shows the completion rate decline of all tasks q (the tasks are generated
by device i) that are executed on device j if task k of device i is offloaded to device j. In the
offloading strategy game, device i will choose the peer device with a minimum Dk

i,j to
offload its task k.

Theorem 2. The task offloading decision with uncertain processing times is a potential game with
the potential function, as given in Equation (16), and thus it always can reach a Nash equilibrium.

Proof. Suppose that an MD wants to update the offloading decision ai to ai
′, as this update

will lead to an increase in the completion rate of its tasks, i.e., P(ai, a−i) < P(a′i, a−i). Ac-
cording to the definition of the potential game, our aim is to prove that this update will also
lead to a decrease in the potential function, i,e., ϕ(ai, a−i) < ϕ(a′i, a−i). Based on the different
offloading strategies, we aim to prove that the strategy game is a potential game using the
following three cases: (1) ak

i = i, (ak
i)

′ = j; (2) ak
i = j, (ak

i)
′ = i; and (3) ak

i = j1, (ak
i)

′ = j2.
(1) Case 1: ak

i = i, (ak
i)

′ = j.
As device i selects device j to offload its task k rather than computing it locally, we

know that P(ai, a−i) < P(a′i, a−i), which can further derive that the completion rate decline
is smaller when task k is offloaded to device j, Dk

ii > Dk
ij.

ϕ(ai
′, a−i)− ϕ(ai, a−i)

= Dk
ii

N

∑
l ̸=i

k

∑
q=1

Dq
lj − Dk

ij

N

∑
l ̸=i

k

∑
q=1

Dq
lj > 0

(18)

(2) Case 2: ak
i = j, (ak

i)
′ = i. Using a similar argument to case (1), we can conclude that

ϕ(ai
′, a−i)− ϕ(ai, a−i) > 0.
(3) Case 3: ak

i = j1, (ak
i)

′ = j2.
Since ak

i = j1, (ak
i)

′ = j2, we know that P(ai, a−i) < P(a′i, a−i), which further implies
that Dk

ij1
> Dk

ij2
and ∑N

l ̸=i ∑k
q ̸=k Dq

lj1
> ∑N

l ̸=i ∑k
q ̸=k Dq

lj2

ϕ(ai
′, a−i)− ϕ(ai, a−i)

= 1/2Dk
ij1

N

∑
l ̸=i

k

∑
q ̸=k

Dq
lj1

I{ak
i = j, i ̸= j}

+ 1/2
N

∑
l ̸=i

k

∑
q ̸=k

Dq
lj1

Dk
ij1 I{ak

i = j, i ̸= j}

− 1/2Dk
ij2

N

∑
l ̸=i

k

∑
q ̸=k

Dq
lj2

I{ak
i = j, i ̸= j}

− 1/2
N

∑
l ̸=i

k

∑
q ̸=k

Dq
lj2

Dk
ij2 I{ak

i = j, i ̸= j}

= Dk
ij1

N

∑
l ̸=i

k

∑
q ̸=k

Dq
lj1

− Dk
ij2

N

∑
l ̸=i

k

∑
q ̸=k

Dq
lj2

> 0

(19)

Electronics 2024, 13, 1889 13 of 24

From Theorem 2, we have proven that our task offloading strategy can be formulated
as a potential game by constructing a potential function in Equation (16). This implies
that the completion rates of all tasks from different devices are guaranteed to reach a Nash
equilibrium within a finite number of iterations. The Mature algorithm is elaborated in
Algorithm 1.

Algorithm 1 The Mature Algorithm

1. Input: N , K, ci, λk, fk(t),tk
i,j

2. Output: ak
i,j and average completion rate.

3. Initialize: ai = {0, 0, 0,...0}, all tasks execute locally,
study the PDF of TPT, broadcast λk and the ci
4. for each decision slot t do
5. for all i ∈ N do
6. for all k ∈ K do
7. compute Pi = ∑N

j=1 ∑K
k=1 ak

i,jF
k
i,j, base on other

users’ decisions in previous step, i.e., a−i
8. end for
9. end for
10. Find only one MD i to update its offloading decision, which could achieve the maximum
completion rate increment
11. if Gain = 1 or ∆Pi ≤ δ then
12. return a
13. end if
14. update ai and the workload on device i and peer devices
16. The updated devices will broadcast its existing workload
17. end for

4.3. The Game-Based Distributed Task Offloading Decision

In the initialization step of Mature (line 3), each MD executes its tasks locally to study
the probability distribution of each task’s processing time. Then, the MDs broadcast
information about the workload (probability distribution of TPT) and their computation ca-
pability to other MDs in D2D networks. This broadcasting not only happens at initialization
but also periodically, which ensures that any new device joining the network can receive
up-to-date information about the network’s state and seamlessly integrate into the decision-
making process. During every iteration, each MD computes the Pi = ∑N

j=1 ∑K
k=1 ak

i,jF
k
i,j

based on the offloading decisions of other MDs in the previous step. By utilizing the coor-
dination and agreement algorithms in [37], the devices in D2D networks vote on only one
MD with the greatest gain and update its offloading decision. In our proposed algorithm,
each device iteratively updates its offloading decisions at every decision slot based on the
most current available information. This iterative decision-making process is pivotal for the
system’s adaptability to dynamic network environments. Specifically, it enables the system
to swiftly respond to real-time changes, such as devices joining or exiting the network.
The flexibility of this approach ensures that the decisions made in each slot accurately
reflect the existing network configuration and conditions, thereby continually optimizing
the overall system performance. After that, the corresponding devices broadcast their
updated workloads to other devices. This mechanism ensures that when a device exits the
network, its tasks are redistributed among the remaining devices during the next decision
slot, maintaining balance and optimizing network performance. Moreover, devices that
update their workloads broadcast this information, guaranteeing that all devices in the
network are consistently informed about the current workload distribution. This is crucial
for making informed decisions in subsequent slots, particularly under changing network
conditions, and ensures the network’s adaptability to dynamically changing scenarios.

After a finite number of iterations, the system finally achieves the Nash Equilibrium in
lines 11–12. In such a state, no user can further increase the completion rate (or the growth

Electronics 2024, 13, 1889 14 of 24

is less than the threshold) by changing its strategy unilaterally. The threshold is introduced
to improve the performance of convergence, which makes the algorithm more suitable for
the dynamic scenario in the D2D edge network. Next, we analyze the convergence time of
the Mature algorithm.

Theorem 3. The game-based probabilistic task offloading decision will terminate within most
NKDmax

2/Dmin∆D decision slots.

Proof. First of all, we assume that

Dmax = max
i,j∈N,k∈K

{Dk
i,j} Dmin = min

i,j∈N,k∈K
{Dk

i,j} (20)

∆D = min{Dk
i,j − Dk

i,j′} (21)

(1) According to the potential function in Equation (16),

ϕ(a) =− 1/2
N

∑
i=1

N

∑
l ̸=i

k

∑
q1=1

k

∑
q2=1

Dq1
ij Dq2

l j

− 1/2
N

∑
i=1

N

∑
l ̸=i

k

∑
q1=1

k

∑
q2=1

Dq1
ii Dq2

l j

≥ −
N

∑
i=1

N

∑
l ̸=i

k

∑
q1=1

k

∑
q2=1

Dmax

= −N2K2Dmax
2,

(22)

and we can derive that −N2K2Dmax
2 ≤ ϕ(a) ≤ 0.

(2) In each iteration, if device i updates its offloading strategy from ai to ai
′, the com-

pletion rate will be increased. As we have proven, the strategy game is a potential game:

≺(a′i, a−i) ≥ ≺(ai, a−i) (23)

For case (1), ak
i = i, ak

i
′
= j,

ϕ(ai
′, a−i)− ϕ(ai, a−i)

= Dk
ii

N

∑
l ̸=i

k

∑
q=1

Dq
lj − Dk

ij

N

∑
l ̸=i

k

∑
q=1

Dq
lj

= (Dk
ii − Dk

ij)
N

∑
l ̸=i

k

∑
q=1

Dq
lj

(24)

as ∑N
l ̸=i ∑k

q=1 Dq
lj ≥ NKDmin, Dk

ii > Dk
ij:

ϕ(ai
′, a−i)− ϕ(ai, a−i) ≥ NKDmin∆D (25)

For case (2), ak
i = i, ak

i
′
= j, using a similar argument to case (1), we can conclude that

ϕ(ai
′, a−i)− ϕ(ai, a−i) ≥ NKDmin∆D.

Electronics 2024, 13, 1889 15 of 24

For case (3), ak
i = j1, ak

i
′
= j2, as ∑N

l ̸=i ∑k
q ̸=k Dq

lj1
> ∑N

l ̸=i ∑k
q ̸=k Dq

lj2
,

ϕ(ai
′, a−i)− ϕ(ai, a−i)

= Dk
ij1

N

∑
l ̸=i

k

∑
q ̸=k

Dq
lj1

− Dk
ij2

N

∑
l ̸=i

k

∑
q ̸=k

Dq
lj2

≥ Dk
ij1

N

∑
l ̸=i

k

∑
q ̸=k

Dq
lj1

− Dk
ij2

N

∑
l ̸=i

k

∑
q ̸=k

Dq
lj1

≥ NKDmin∆D.

(26)

From Equations (25) and (26), we know that the minimum increment of ϕ is NKDmin∆D.
According to Equation (22), we can see that the algorithm will terminate within at most
NKDmax

2/Dmin∆D decision slots.

Although the Mature algorithm may achieve a higher convergence time in some
conditions, it has much higher computation efficiency and provides a workable solution in
ultra-dense networks. It should be noted that (1) we can further reduce the convergence
time by adjusting the threshold δ in line 11, and (2) the convergence time only indicates
the duration until the game system becomes stable, not the time for task executions.
Before convergence, the task may achieve an unappealing completion rate, but it will
improve with the increasing number of iterations. In Section 5, we show the convergence
of the Mature algorithm through simulations.

5. Evaluation

In this section, we first conduct experiments to validate the accuracy of the task
completion rate estimation model presented in Section 3.2. We also assess its applicability
to a variety of tasks. Subsequently, experiments are performed to evaluate the performance
of our proposed offloading algorithm, Mature. Initially, we investigate the convergence
properties of Mature. Following this, a comparative analysis is conducted between Mature
and state-of-the-art algorithms [12].

5.1. Validation of Task Completion Rate Accuracy

In this section, we evaluate the accuracy and applicability of the task completion rate
model. However, prior to this assessment, it is essential to evaluate the estimation accuracy
and the time required for the TPT model, as these elements are critical factors affecting task
completion rates. To this end, we conduct an evaluation of TPT estimation across various
datasets.

5.1.1. Validation of TPT Model

In Section 3.1, offline measurements were conducted using established VRD datasets.
The task processing time (TPT) model was developed by training on a comprehensive
dataset of 5000 instances. Although these offline measurements introduced a measurable
degree of latency, the utility of the model in practical applications is considerable. By inte-
grating minimal data inputs with the model, it is possible to swiftly ascertain the critical
parameters of the TPT model, thereby markedly enhancing the efficiency of estimating
task completion rates. When our TPT model encounters VRD tasks with new datasets [38],
we can use a small portion of the input data to find satisfactory parameters. Parameter
training with different amounts of data is shown in Figure 5. We can see that only 30 input
images were enough to obtain a TPT model with an error rate of <4%. The error rate only
increased by 1.3% compared to fitting the TPT model with the whole dataset. Based on the
measurements, the curve fitting-based modeling approach can be applied to a number of
different scenarios. We applied our general TPT model (exponential distribution) of VRD
to characterize the processing time of VRD in a new dataset (which contains 4000 images)
by updating the parameter µ in the exponential distribution.

Electronics 2024, 13, 1889 16 of 24

4000 2000 1000 100 50 30
The number of training data

0

1

2

3

4

Figure 5. Error rate of fitting.

Next, we study the TPT model for more types of applications—automatic speech
recognition [24], forced alignment [25], and part-of-speech tagging [26]—using three real-
world datasets [27–29]. As different lengths of speech at a given time may lead to different
processing times in automatic speech recognition, Figure 6a plots the PDF of recognition
times, which follows a gamma distribution. In Figures 7a and 8a, the general TPT models
follow Gaussian and generalized extreme value distributions. Figure 9a represents the CDF
of specific applications, where the TPT fluctuates within a relatively narrow range. It can
be considered an extension of the exponential distribution. With these general TPT models
for various applications, we are able to update the TPT parameters using a small amount
of data and further obtain the task completion rates.

Figure 6. Automatic speech recognition.

Electronics 2024, 13, 1889 17 of 24

Figure 7. Forced alignment.

Figure 8. Part-of-speech tagging.

Figure 9. Specific distribution.

Electronics 2024, 13, 1889 18 of 24

5.1.2. Validation of Completion Rate Model

After confirming the high efficiency of the TPT model’s fitting process, we proceed
to evaluate the task completion rate model proposed in Equation (2) using actual data.
Figure 10 shows the CDF of completion times based on the actual completion rate running
on the processor (i.e., the red line) and the CDF of predicted completion times based on the
distribution fitting result (i.e., the blue line). In this experiment, the images from the visual
relationship detection dataset [38] are executed on a processor with an Intel(R) Xeon(R)
@1.60HZ, and the images arrive following a Poisson stream (λ = 0.15). In Figure 10, we can
see that (1) the proposed probabilistic model in Equation (1) can accurately characterize the
completion time uncertainty in Figure 3, and (2) queueing theory is suitable for modeling
the completion rate with an accuracy of 97.7%.

To ensure that the completion rate model is applicable to real networks, we extend
our model to various devices. Figure 11 presents the CDF of completion rates on different
processors. We first evaluate the completion rate on a processor with an Intel Xeon @
1.6GHz and obtain the parameter µ = 0.588 in Equation (2), as shown by the solid blue
line. Then, the tasks are offloaded to other devices with an Intel Core @3.20GHZ. As the
computation capability is doubled, the parameter µ in the complete rate model is increased
to 1.176, and the blue dashed line depicts our estimated completion rate on the offloading
device. The red dashed line represents the actual data running on the offloading device. By
comparing the red line to the blue line, it can be inferred that there is no need to fit the data
on the offloading device to obtain the completion rate model. Instead, we can obtain it by
updating the parameters in the completion rate model (e.g., Equation (2)) with an accuracy
of 98.2%.

To ensure that queueing theory is suitable for modeling the completion rate with vari-
ous TPT models, as shown in Equation (3), we implement the typical applications (speech
recognition, force alignment, and speech tagging) on a running processor with an Intel
i7 @1.8GHZ. The completion rate model is represented by the blue lines in Figures 6b–8b,
and the orange lines denote the theoretical completion time following the M/G/1 model,
which can be formulated as Equation (3) (e.g., Gamma distribution and Gaussian distri-
bution). From these figures, it can be inferred that queueing theory (M/G/1) is suitable
for modeling the completion rate with various TPT models, and the error rate is less than
5%. When applications with different TPT models (fk(t)) run on the same device, f (t) is
given as:

f (t) =
n

∑
k=1

λk
λ1 + λ1 + ..λn

fk(t) (27)

We also conduct an experiment to validate this assumption, as shown in Figure 9b.
The speech recognition application and visual relationship detection are executed on the
same processor simultaneously, and the red line depicts the PDF of the processing times.
The purple lines denote the results derived from Equations (3) and (27). We can observe
that these two lines are perfectly matched, and the assumption is valid.

Generally, the TPTs of different applications may follow different probability distri-
butions and one measurement does not fit all. However, we argue that as long as the
application types are known, we could conduct an offline measurement study to obtain
the corresponding TPT model. With the model, the parameters for specific task scenarios
can be further trained using a small amount of data, which is feasible and scalable for
practical scenarios.

Electronics 2024, 13, 1889 19 of 24

0 2 4 6 8 10
Completion time (s)

0

20

40

60

80

100

C
um

m
ul

at
iv

e
di

st
rib

ut
io

n
fu

nc
tio

n

Actual data
Fitting data

Figure 10. The CDF of completion times.

0 2 4 6 8 10
Completion time (s)

0

20

40

60

80

100

C
um

m
ul

at
iv

e
di

st
rib

ut
io

n
fu

nc
tio

n

Intel Xeon @ 1.60GHz: Actual data
fitting data u=0.588
Intel Core @ 3.20GHz: Actual data
fitting data u=1.176

Figure 11. The CDF of completion times.

5.2. Experimental Settings for D2D Edge Network

We consider a D2D edge network, where multiple MDs are randomly distributed in an
area. Each MD has several tasks to be executed, belonging to different types of applications.
Some MDs are occupied by computationally intensive applications, so it may be desirable
for them to offload their tasks to devices with underutilized resources. As there are multiple
choices of offloading destinations for each MD to offload their tasks, our goal is to offload
the tasks of each MD to the most appropriate peer devices to maximize the overall task
completion rate. The overall completion rate is calculated as the sum of the completion
rates of all tasks. When there are given priorities for the tasks, we could use a weighted
sum as the overall completion rate. The experimental settings are as follows:

• Each MD is equipped with one CPU. The CPU frequency of the MD is in the range of
1.6∼4.8 GHZ. In our experimental setup, a D2D edge network scenario is simulated,
where 20 mobile devices (MDs) are randomly distributed. Each node possesses a de-
fined communication range, facilitating direct data exchange among proximate devices.

• The applications executed on the MDs include (1) image recognition: visual rela-
tionship detection [15] and object detection [39]; (2) speech recognition: forced align-
ment [40] and part-of-speech tagging [41]; and (3) randomly generated applications
with TPT models following different probability distributions, where the CPU cy-

Electronics 2024, 13, 1889 20 of 24

cles required by each application vary from 20 Megacycles to 100 Megacycles. We
adopt open-source codes to implement these applications [42–44] and use the datasets
from [38,45–47].

• In the offloading game, MDs continuously select the "best" device to offload their tasks
to achieve the maximum completion rate.

• The transmission times of MDs depend on the distance and the number of hops
between them.

The parameters for the simulation are shown in Table 3.

Table 3. Simulation parameter settings.

Parameter Value

The CPU frequency of an MD 1.6∼4.8 GHZ

The number of MDs in the network 20∼25

The offloaded app image recognition; speech recognition;

The CPU cycle of a random app 20∼100 Megacycles.

The transmission power 100 mWatts

The background noise −50 dBm

The wireless channel bandwidth 20 MHZ

5.3. The Convergence of Mature

Mature is a game-based algorithm, and its convergence must be guaranteed. Follow-
ing the analysis in Section 4, at each step, only one MD can update its offloading decision.
As a result, the convergence time should increase with more MDs, and the convergence
performance will become a bottleneck factor for the system to meet the delay-sensitive
requirement. To solve this problem, we propose a complementary policy. With more MDs,
during each iteration, we select multiple MDs to update offloading decisions simultane-
ously, as long as these MDs select different peer MDs. Figure 12 shows the convergence
behavior of Mature with different numbers of MDs, which are very similar. The applications
are requested by the MDs following a uniform distribution, and the tasks are generated on
the MDs following a Poisson distribution. Figure 12a illustrates the average completion rate
at a given iteration. Specifically, one hundred experiments are repeated in each iteration
number. In this figure, we can observe that Mature reached a Nash equilibrium after a finite
number of iterations. We can also observe that the increased number of MDs increased
the average completion rate because (1) each user had more opportunities to offload their
applications, and (2) the distance between MDs was shorter, so the transmission times
decreased.

Figure 12. The convergence of Mature. (a) The average completion rate of all the devices. (b) The
completion rate of a single device.

Electronics 2024, 13, 1889 21 of 24

Note that the convergence time only indicates the time when the system became stable,
not the time when the task started to be executed. Figure 12b depicts the task completion
rates across the iterations in a single experiment. We can observe that before convergence
(the 35th iteration), the task achieved an unappealing completion rate. There was even a
decline during the 2nd–12th iterations because a large number of requests arrived in the
queue before the processor could execute them or offload them. However, the completion
rate improved with more iterations.

5.4. Performance of Mature

In this section, we mainly compare Mature with an existing work on D2D edge
computing, and the parameter settings are referenced from Table 3. Zhang et al. [12]
studied D2D multimedia data offloading architectures to satisfy statistical delay-bounded
QoS requirements. Unlike Mature, it uses deterministic models for task offloading, where
each application is determined to be offloaded or not based on its performance expectation.
However, there is a probability that some applications with poor expectations can also
achieve high offloading performance. Such an impact is overlooked by deterministic model-
based offloading schemes and may lead to inaccurate offloading decisions, as shown in
Figure 13.

Figure 13. Comparison with an existing work. (a) The completion rates for different task arrival rates.
(b) The completion rate of different processing capability.

Figure 13a shows the completion rates for different task arrival rates. The X-axis
denotes the average task arrival rate (the parameter λ in Equation (3). We can observe
that Mature effectively improved the task completion rates by 18%∼23% compared to
the existing work. However, as the arrival rate increased, the completion rate of Mature
declined more than that of the existing work. The main reason for this is that the offloading
scheme in the existing work abandons some applications if they cannot meet the deadline
constraint. With the increasing task arrival rate, more and more applications exceeding
the deadline are given up. As a result, there are more computation resources available
for other applications. Figure 13b shows the completion rates for MDs with different
processing capabilities (the parameter µ in Equation (3)). We can observe that Mature
always achieved a higher completion rate compared to the existing work. As the processing
capability of MDs increased, a large proportion of applications were executed on their
local processors without the need for offloading. In conclusion, Mature is more suitable for
resource-constrained MDs.

Figure 14 presents the performance of the extended Mature algorithm. Considering
the variability of edge network scenarios, it is challenging to pre-train data to obtain the
TPT model. To improve the efficiency of data depiction, we utilized only a small amount
of data to characterize the TPT model, which resulted in an error rate of 3.5%. Figure 14a
shows the difference between the completion rate with the actual TPT model and that
with the fitting TPT model (with an error rate of 4%). We can observe that the predicted
TPT model, even with certain errors, did not significantly influence the completion rate.

Electronics 2024, 13, 1889 22 of 24

Thus, utilizing a small amount of data to characterize the TPT model can improve the
efficiency of D2D edge networks. Figure 14b shows the completion rates of the improved
Mature algorithm. If the sojourn time of the task exceeds the delay constraint, it either
stops executing in the processor or quits the waiting queue. In this figure, we can observe
that the improved Mature always achieved a higher completion rate. However, with this
approach, MDs could not process tasks that exceeded the delay limitation.

Figure 14. Comparison with improved Mature. (a) The completion rate of actual model and predicted
model. (b) The processing capability of improving Mature and Mature.

6. Conclusions and Future Work

In this paper, we investigate the task offloading problem in D2D edge computing
with uncertain task processing times (TPTs). We propose Mature, a game-based task
offloading approach. By employing a probabilistic TPT model and a queueing-based
estimation scheme for task completion rates, Mature successfully exploits the benefits
of probabilistic TPT, as analyzed in Section 1. Moreover, we also analyze the structural
properties of the Mature game, prove that it can reach a Nash equilibrium, and propose
a distributed offloading decision scheme. We implement and evaluate Mature using
real-world applications and datasets. The experimental results show that compared to
existing works, Mature accurately characterizes the uncertainty of TPTs/task completion
rates, improving the offloading performance by 23% in terms of the overall task completion
rate. In future research, we aim to significantly expand the scope of our probabilistic models
by integrating a broader spectrum of statistical distributions and employing cutting-edge
machine learning algorithms. This augmentation is pivotal as it would substantially
enhance the predictive precision of our model regarding task processing times under
diverse operational scenarios. Such enhancements are critical for not only capturing the
inherent variability in task execution but also for adapting predictive frameworks to real-
time changes and uncertainties within networked environments.

Author Contributions: Conceptualization, C.S. and Y.L.; methodology, C.S. and Y.L.; software, F.L.;
validation, C.S.; formal analysis, C.S.; data curation, F.L.; writing—original draft preparation, C.S.;
writing—review and editing, C.S. and Y.L. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was supported by the Fundamental Research Funds for the Central Universities
(No. 24CAFUC04014).

Data Availability Statement: Data is contained within the article.

Acknowledgments: We acknowledge the support from the Fundamental Research Funds for the
Central Universities.

Conflicts of Interest: The authors declare no conflicts of interest.

Electronics 2024, 13, 1889 23 of 24

References
1. Chiang, M.; Tao, Z. Fog and IoT: An Overview of Research Opportunities. IEEE Internet Things J. 2017, 3, 854–864. [CrossRef]
2. Zhang, W.; Li, S.; Liu, L.; Jia, Z.; Raychaudhuri, D. Hetero-Edge: Orchestration of Real-time Vision Applications on Heterogeneous

Edge Clouds. In Proceedings of the IEEE International Conference on Computer Communications (INFOCOM) 2019, Paris,
France, 29 April–2 May 2019.

3. Liu, S.; Liu, L.; Tang, J.; Yu, B.; Wang, Y.; Shi, W. Edge computing for autonomous driving: Opportunities and challenges. Proc.
IEEE 2019, 107, 1697–1716. [CrossRef]

4. Wang, N.; Varghese, B.; Matthaiou, M.; Nikolopoulos, D.S. ENORM: A framework for edge node resource management. IEEE
Trans. Serv. Comput. 2017, 13, 1086–1099. [CrossRef]

5. Dai, X.; Xiao, Z.; Jiang, H.; Alazab, M.; Lui, J.C.; Dustdar, S.; Liu, J. Task co-offloading for D2D-assisted mobile edge computing in
industrial internet of things. IEEE Trans. Ind. Informat. 2022, 19, 480–490. [CrossRef]

6. Kim, J.; Kim, T.; Hashemi, M.; Brinton, C.G.; Love, D.J. Joint Optimization of Signal Design and Resource Allocation in Wireless
D2D Edge Computing. arXiv 2020, arXiv:2002.11850.

7. He, Y.; Ren, J.; Yu, G.; Cai, Y. D2D communications meet mobile edge computing for enhanced computation capacity in cellular
networks. IEEE Trans. Wirel. Commun. 2019, 18, 1750–1763. [CrossRef]

8. Abbas, N.; Zhang, Y.; Taherkordi, A.; Skeie, T. Mobile edge computing: A survey. IEEE Internet Things J. 2017, 5, 450–465.
[CrossRef]

9. Saeik, F.; Avgeris, M.; Spatharakis, D.; Santi, N.; Dechouniotis, D.; Violos, J.; Leivadeas, A.; Athanasopoulos, N.; Mitton, N.;
Papavassiliou, S. Task offloading in Edge and Cloud Computing: A survey on mathematical, artificial intelligence and control
theory solutions. Comput. Netw. 2021, 195, 108177. [CrossRef]

10. Gong, X. Delay-Optimal Distributed Edge Computing in Wireless Edge Networks. arXiv 2020, arXiv:2002.02596.
11. Xing, H.; Liu, L.; Xu, J.; Nallanathan, A. Joint task assignment and resource allocation for D2D-enabled mobile-edge computing.

IEEE Trans. Commun. 2019, 67, 4193–4207. [CrossRef]
12. Zhang, X.; Zhu, Q. D2D offloading for statistical QoS provisionings over 5G multimedia mobile wireless networks. In Proceedings

of the IEEE INFOCOM 2019-IEEE Conference on Computer Communications, Paris, France, 29 April–2 May 2019; pp. 82–90.
13. Eshraghi, N.; Liang, B. Joint offloading decision and resource allocation with uncertain task computing requirement. In

Proceedings of the IEEE INFOCOM 2019-IEEE Conference on Computer Communications, Paris, France, 29 April–2 May 2019;
pp. 1414–1422.

14. Chang, W.; Xiao, Y.; Lou, W.; Shou, G. Offloading Decision in Edge Computing for Continuous Applications under Uncertainty.
IEEE Trans. Wirel. Commun. 2020, 19, 6196–6209. [CrossRef]

15. Zhan, Y.; Yu, J.; Yu, T.; Tao, D. On Exploring Undetermined Relationships for Visual Relationship Detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15 June–20 June 2019; pp. 5128–5137.

16. Chen, X.; Jiao, L.; Li, W.; Fu, X. Efficient multi-user computation offloading for mobile-edge cloud computing. IEEE/ACM Trans.
Netw. 2015, 24, 2795–2808. [CrossRef]

17. Yang, L.; Zhang, H.; Li, X.; Ji, H.; Leung, V. A Distributed Computation Offloading Strategy in Small-Cell Networks Integrated
With Mobile Edge Computing. IEEE/ACM Trans. Netw. (TON) 2018, 26, 2762–2773. [CrossRef]

18. Wang, X.; Ye, J.; Lui, J.C. Decentralized task offloading in edge computing: A multi-user multi-armed bandit approach. In
Proceedings of the IEEE INFOCOM 2022-IEEE Conference on Computer Communications, Virtual, 2–5 May 2022; pp. 1199–1208.

19. Zhang, Z.; Li, C.; Peng, S.; Pei, X. A new task offloading algorithm in edge computing. EURASIP J. Wirel. Commun. Netw. 2021,
2021, 17. [CrossRef]

20. Tang, L.; Tang, B.; Zhang, L.; Guo, F.; He, H. Joint optimization of network selection and task offloading for vehicular edge
computing. J. Cloud Comput. 2021, 10, 23. [CrossRef]

21. Ning, Z.; Dong, P.; Kong, X.; Xia, F. A cooperative partial computation offloading scheme for mobile edge computing enabled
Internet of Things. IEEE Internet Things J. 2018, 6, 4804–4814. [CrossRef]

22. Shu, C.; Luo, Y.; Liu, F. Exploiting Duplications for Efficient Task Offloading in Multi-User Edge Computing. Electronics 2022,
11, 2244. [CrossRef]

23. Shu, C.; Zhao, Z.; Han, Y.; Min, G.; Duan, H. Multi-user offloading for edge computing networks: A dependency-aware and
latency-optimal approach. IEEE Internet Things J. 2019, 7, 1678–1689. [CrossRef]

24. Tam, P.; Math, S.; Kim, S. Optimized multi-service tasks offloading for federated learning in edge virtualization. IEEE Trans.
Netw. Sci. Eng. 2022, 9, 4363–4378. [CrossRef]

25. Zhang, X.; Liu, Y.; Liu, J.; Argyriou, A.; Han, Y. D2D-assisted federated learning in mobile edge computing networks. In
Proceedings of the 2021 IEEE Wireless Communications and Networking Conference (WCNC), Nanjing, China, 29 March–1 April
2021; pp. 1–7.

26. Wang, F.; Lau, V.K. Multi-level over-the-air aggregation of mobile edge computing over D2D wireless networks. IEEE Trans.
Wirel. Commun. 2022, 21, 8337–8353. [CrossRef]

27. Long, D.; Wu, Q.; Fan, Q.; Fan, P.; Li, Z.; Fan, J. A power allocation scheme for MIMO-NOMA and D2D vehicular edge computing
based on decentralized DRL. Sensors 2023, 23, 3449. [CrossRef]

28. Jiang, W.; Feng, D.; Sun, Y.; Feng, G.; Wang, Z.; Xia, X.G. Joint computation offloading and resource allocation for D2D-Assisted
mobile edge computing. IEEE Trans. Serv. Comput. 2022, 16, 1949–1963. [CrossRef]

http://doi.org/10.1109/JIOT.2016.2584538
http://dx.doi.org/10.1109/JPROC.2019.2915983
http://dx.doi.org/10.1109/TSC.2017.2753775
http://dx.doi.org/10.1109/TII.2022.3158974
http://dx.doi.org/10.1109/TWC.2019.2896999
http://dx.doi.org/10.1109/JIOT.2017.2750180
http://dx.doi.org/10.1016/j.comnet.2021.108177
http://dx.doi.org/10.1109/TCOMM.2019.2903088
http://dx.doi.org/10.1109/TWC.2020.3001012
http://dx.doi.org/10.1109/TNET.2015.2487344
http://dx.doi.org/10.1109/TNET.2018.2876941
http://dx.doi.org/10.1186/s13638-021-01895-6
http://dx.doi.org/10.1186/s13677-021-00240-y
http://dx.doi.org/10.1109/JIOT.2018.2868616
http://dx.doi.org/10.3390/electronics11142244
http://dx.doi.org/10.1109/JIOT.2019.2943373
http://dx.doi.org/10.1109/TNSE.2022.3200057
http://dx.doi.org/10.1109/TWC.2022.3165658
http://dx.doi.org/10.3390/s23073449
http://dx.doi.org/10.1109/TSC.2022.3190276

Electronics 2024, 13, 1889 24 of 24

29. Wang, X.; Ye, J.; Lui, J.C. Mean Field Graph Based D2D Collaboration and Offloading Pricing in Mobile Edge Computing.
IEEE/ACM Trans. Netw. 2023, 32, 491–505. [CrossRef]

30. Cao, X.; Wang, F.; Xu, J.; Zhang, R.; Cui, S. Joint Computation and Communication Cooperation for Energy-Efficient Mobile Edge
Computing. IEEE Internet Things J. 2019, 6, 4188–4200. [CrossRef]

31. Khan, W.Z.; Ahmed, E.; Hakak, S.; Yaqoob, I.; Ahmed, A. Edge computing: A survey. Future Gener. Comput. Syst. 2019,
97, 219–235. [CrossRef]

32. Winn, J.; Criminisi, A.; Minka, T. Object categorization by learned universal visual dictionary. In Proceedings of the Tenth IEEE
International Conference on Computer Vision (ICCV’05) Volume 1, Beijing, China, 17–21 October 2005; Volume 2, pp. 1800–1807.

33. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings
of the IEEE conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125.

34. Haralick, R.M.; Shapiro, L.G. Image segmentation techniques. Comput. Vis. Graph. Image Process. 1985, 29, 100–132. [CrossRef]
35. Cooper, R.B. Queueing theory. In Proceedings of the ACM’81 Conference; ACM: New York, NY, USA, 1981; pp. 119–122.
36. Wen, Y.; Zhang, W.; Luo, H. Energy-optimal mobile application execution: Taming resource-poor mobile devices with cloud

clones. In Proceedings of the Infocom, Orlando, FL, USA, 25–30 March 2012.
37. Coulouris, G.; Dollimore, J.; Kindberg, T. Distributed Systems—Concepts and Designs, 3rd ed.; Elsevier: Amsterdam, The

Netherlands, 2002.
38. Lu, C. Visual relationship detection with language priors. In Proceedings of the Computer Vision–ECCV 2016: 14th European

Conference, Amsterdam, The Netherlands, 11–14 October 2016.
39. Viola, P.; Jones, M. Robust real-time object detection. Int. J. Comput. Vis. 2001, 4, 4.
40. Moreno, P.J.; Joerg, C.; Thong, J.M.V.; Glickman, O. A recursive algorithm for the forced alignment of very long audio segments. In

Proceedings of the Fifth International Conference on Spoken Language Processing, Sydney, Australia, 30 November–4 December
1998.

41. Toutanova, K.; Klein, D.; Manning, C.D.; Singer, Y. Feature-rich part-of-speech tagging with a cyclic dependency network. In
Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human
Language Technology–Volume 1, Edmonton, AB, Canada, 27 May–1 June 2023; Association for Computational Linguistics:
Stroudsburg, PA, USA, 2003; pp. 173–180.

42. Uberi. Automatic Speech Recognition. Available online: https://github.com/RevoSpeechTech/speech-datasets-collection
(accessed on 9 June 2018).

43. Tilusnet. Part-of-Speech Tagging. Available online: https://paperswithcode.com/dataset/penn-treebank (accessed on 6 June
2018).

44. Aeneas. Forced Alignment. Available online: https://github.com/RevoSpeechTech/speech-datasets-collection (accessed on 5
June 2018).

45. CMU. Automatic Speech Recognition Datasets. Available online: http://festvox.org/cmuarctic/ (accessed on 21 August 2018).
46. DARPA. Forced Alignment Datasets. Available online: https://paperswithcode.com/dataset/timit (accessed on 5 January 2022).
47. Cristian. Part-of-Speech Tagging Datasets. Available online: https://consonni.dev/datasets/wikilinkgraphs-rawwikilinks-

snapshots/ (accessed on 1 March 2021).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TNET.2023.3288558
http://dx.doi.org/10.1109/JIOT.2018.2875246
http://dx.doi.org/10.1016/j.future.2019.02.050
http://dx.doi.org/10.1016/S0734-189X(85)90153-7
 https://github.com/RevoSpeechTech/speech-datasets-collection
https://paperswithcode.com/dataset/penn-treebank
https://github.com/RevoSpeechTech/speech-datasets-collection
http://festvox.org/cmuarctic/
https://paperswithcode.com/dataset/timit
https://consonni.dev/datasets/wikilinkgraphs-rawwikilinks-snapshots/
https://consonni.dev/datasets/wikilinkgraphs-rawwikilinks-snapshots/

	Introduction
	Related Works and a Motivating Example
	Related Works
	A Motivating Example

	Measurement-Based Probabilistic Model for TPTs and Task Completion Rates
	 Measurement-Based Model for TPTs
	 Model for Task Completion Rates

	Game-Based Probabilistic Task Offloading with Uncertain Processing Times
	System Model
	Potential Game Formulation
	The Game-Based Distributed Task Offloading Decision

	Evaluation
	Validation of Task Completion Rate Accuracy
	Validation of TPT Model
	Validation of Completion Rate Model

	Experimental Settings for D2D Edge Network
	The Convergence of Mature
	Performance of Mature

	Conclusions and Future Work
	References

