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Abstract: Most mainstream statistical models will achieve poor performance in Out-Of-Distribution
(OOD) generalization. This is because these models tend to learn the spurious correlation between
data and will collapse when the domain shift exists. If we want artificial intelligence (AI) to make
great strides in real life, the current focus needs to be shifted to the OOD problem of deep learning
models to explore the generalization ability under unknown environments. Domain generalization
(DG) focusing on OOD generalization is proposed, which is able to transfer the knowledge extracted
from multiple source domains to the unseen target domain. We are inspired by intuitive thinking
about human intelligence relying on causality. Unlike relying on plain probability correlations,
we apply a novel causal perspective to DG, which can improve the OOD generalization ability of
the trained model by mining the invariant causal mechanism. Firstly, we construct the inclusive
causal graph for most DG tasks through stepwise causal analysis based on the data generation
process in the natural environment and introduce the reasonable Structural Causal Model (SCM).
Secondly, based on counterfactual inference, causal semantic representation learning with domain
intervention (CSRDN) is proposed to train a robust model. In this regard, we generate counterfactual
representations for different domain interventions, which can help the model learn causal semantics
and develop generalization capacity. At the same time, we seek the Pareto optimal solution in the
optimization process based on the loss function to obtain a more advanced training model. Extensive
experimental results of Rotated MNIST and PACS as well as VLCS datasets verify the effectiveness
of the proposed CSRDN. The proposed method can integrate causal inference into domain gener-
alization by enhancing interpretability and applicability and brings a boost to challenging OOD
generalization problems.

Keywords: domain generalization; causal inference; counterfactual representation; domain intervention

1. Introduction

Today, deep learning (DL) has achieved remarkable success in various fields, showing
superior performance [1,2]. However, this performance guarantee mostly relies on a general
assumption that the distribution of training data (source domain) and test data (target
domain) is independent and identical (Independent Identically Distribution, IID) [3,4]. IID
assumptions mostly violate the real-life scene and affect the ability of models to generalize
in unknown environments, which limits the sustainability of artificial intelligence (AI)
in future fields. If DL models want to gain high-level machine intelligence targeting for
simulating human cognition to make progress in landing various real-life applications, we
must expand our horizons to the Out-Of-Distribution (OOD) problem, which means that
the data distribution of the target domain is different from that of the source domains [5].
When traditional statistical models relying on IID data are applied to OOD generalization
problems, catastrophic performance degradation occurs due to over-reliance on proba-
bilistic correlations [6,7]. Based on the pursuit of breaking this restricted situation, the
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motivation for our work is to design an effective training framework under the OOD
distribution, which can reduce the over-reliance on probabilistic correlations and enable the
model to stably perform OOD generalization, with superior generalization performance in
the unseen target domain. Domain generalization (DG) is proposed, which is essentially
a kind of OOD generalization problem, and can generalize the knowledge acquired from
source domains to the unseen target domain [8–10]. In DG, the target domain is unavailable
during the training phase, which fits the challenge of real-world situations [11]. In recent
years, challenging DG has attracted the attention of many researchers. In this paper, our
work focuses on the study of domain generalization and is committed to improving the
stable generalization performance of the model.

We define domain shifts as the discrepancy between training and testing domains.
In order to solve the problem caused by domain shifts and improve the generalization
ability of DL models, the methods in the DG field are increasing, which can be roughly
divided into domain alignment [9,12,13], meta-learning [14,15], data augmentation [16,17],
etc. Although these have achieved some success, most of them are operated at the tradi-
tional probability hierarchy without explaining the intrinsically causal mechanism. This
probabilistic correlation is insufficient for real-life tasks, such as in image classification,
where the background of boats is often the lake, implying that boats and lakes are highly
correlated. In this case, it is easier for the probabilistic model to learn the disruptive infor-
mation of the lake as the discriminative feature for classifying boats. When the domain
changes (e.g., the background is a desert), the model may not be able to recognize the
label of the boat due to the absence of factors that contain lake information, resulting in
poor generalization results. At this point, the cognitive level of the model is relatively low,
and it is not able to achieve stable cross-domain generalization. Unlike naive machine
models, humans can accurately identify the boat label in images without being affected by
changing backgrounds and image styles. It means that people have the ability to adapt to
complex and changing environments. Humans are capable of solving unknown problems
with continuously accumulated knowledge based on their high-level human cognition,
showing stable generalization ability. We argue that this intelligent generalization relies
on human inference ability, which is centered on causality [18,19]. Inspired by the above,
in order to enable deep learning models to enhance OOD generalization capabilities, we
combine causal inference with domain generalization and utilize a novel causal perspective
to view domain generalization. From a causal view, in this example, the characteristics
of the boat, such as lines and shapes, are stable causal factors, while the background
information is the unconcerned factor for the classification task. Causal models capture
causal relationships between variables and allow us to predict how a system will behave
under interventions or changes in distribution, which are more powerful than probability-
dependent models [18,19]. Integrating causality into domain generalization is bound to
have certain advantages and potential. With the deepening of causal inference in the field
of artificial intelligence, some studies that combine causality and DG have appeared [20–22].
These include MatchDG [20], which regards samples of the same category from different
fields as positive pairs and samples of different categories as negative pairs to pull in
similar representations for label matching. In addition, Rojas-Carulla et al. [23] propose
to utilize an effective subset of predictions in an adversarial environment, and Müller
et al. [21] rely on the principle of independent causal mechanism to build a gradient-based
learning framework. The key points of these methods differ, but they all contain causal
commonalities. Based on the motivation of improving the OOD generalization ability, our
work innovatively draws inspiration from human cognition, enhancing the interpretability
of the combination of domain generalization and causal inference, and the purpose is to
train the effective model that can improve domain generalization performance through an
innovative causal perspective.

In this paper, we regard domain generalization from a novel causal perspective, and
the task is dedicated to applying causal representation learning to domain generalization
and exploring the causal invariant mechanism, thereby improving the OOD generaliza-
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tion ability of the model. We propose the inclusive causal graph and leverage a novel
domain intervention to learn stable causal semantic representations through counterfactual
inference and ultimately seek the Pareto optimal solution in the optimization of the loss
function to obtain more advanced results, which can provide a creative idea for improv-
ing the OOD generalization. Firstly, an inclusive causal Directed Acyclic Graph (DAG)
is established, which can be applied to general DG tasks in the Computer Vision (CV)
field. A proxy domain variable is introduced to enrich the causal graph based on the data
generation process in the natural environment to visualize the domain shift and explain
the generalization bias. In this regard, we point out that even though the domain changes,
the semantics of the input would remain consistent as long as the object is unchanged. In
generalization tasks, the model aims to learn high-level causal semantic representations that
remain invariant under different disturbances. Inspired by the above, we further propose
causal semantic representation learning with domain intervention (CSRDN), which learns
causal representations by applying generative interventions, so as to train a robust model
that can resist the domain changes caused by various disturbances. Based on the display
of our causal graph and the concept of the causal do-calculus [19], we regard the change
of domains as the interventional method to fit the domain shift. To remove confounding
effects, we take perturbed control of the proxy domain variable and implement the cutoff
for lifting the prejudicial restriction. Different from relatively plain image transformation
about simple rotation and cropping, we utilize a novel domain intervention method to
intervene on non-causal information to increase the randomness of the simulated natural
world changes. We rely on the idea of counterfactual inference [24,25] to generate the
counterfactual representations so as to simulate the different changes to the domain. With
the help of this kind of intervention, stable causal representation learning is performed. The
causal DAG gives us the hint, and the label of the image and random Gaussian noise serve
as input to construct the training of our counterfactual representation generator. Due to the
reverse generation from the latent distribution and the maximum preservation of object
classification properties, the semantic traits of ideal counterfactual representations will
remain unchanged while including the different domain changes. As the similarity between
the distributions of the counterfactual representation and the original causal representation
continues to approach, this model can learn the invariant causal mechanism across domains
by seeking the Pareto optimal solution, thereby improving the OOD generalization ability.
Our contributions are summarized as follows:

1. We view domain generalization through a causal lens derived from the intuitive
core of human intelligence. Based on the data generation mechanism in natural
environments for causal modeling, the Structural Causal Model (SCM) [18] is injected
to construct the causal DAG that is inclusive of various DG tasks in CV.

2. A novel stable framework CSRDN for causal semantic representation learning is
proposed. According to the presentation of our causal DAG, we conduct the domain
intervention in the learning process based on counterfactual inference, which is
achieved by the generation of counterfactual representations to change non-causal
information. The model seeks the Pareto optimal solution based on the loss function
in the optimization process. Our work is able to exploit causal invariance to improve
OOD generalization.

3. Extensive experiments are conducted and sequentially analyzed on three widely used
datasets, including the synthetic dataset Rotated MNIST [26], the dataset PACS [27] with
significant differences in style, and the real-world dataset VLCS [28]. The effectiveness
and superiority of our method are proved by the detailed experimental results.

This paper is organized as follows. Section 2 describes related work corresponding
to the content of this paper. In Section 3, the analysis of the causal DAG and the method-
ological details of the CSRDN framework are presented. The experimental setup and the
analysis and discussion of the experimental results are presented in Section 4. Finally, we
summarize our work and put forward prospects for future research in Section 5.
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2. Related Work
2.1. Domain Generalization

Domain generalization aims to generalize the knowledge learned from source domains
to the unseen target domain [11]. Through nearly ten years of development, researchers
have explored plenty of methods. Domain alignment [9,12,13] is applied to many DG
tasks, and the core is to minimize the difference between source domains to learn domain
invariant representations, improving the generalization ability. These include minimizing
moments [29], minimizing contrastive loss [30], domain-adversarial learning [12,13], etc.,
which are used for distribution alignments. Data augmentation [16,17] increases the diver-
sity of source domains at the data level to improve the robust generalization of the system.
These include traditional image translation [16], the perturbative change of input images
using adversarial gradients obtained by task classifiers [17], and synthesizing domain-
agnostic images by using domain adversarial gradients [31]. Learnable augmentation
networks [32] are also introduced to generate new data with augmentation neural networks
to synthesize new domains. Meta-learning [14,15] is also popularly applied in DG as a
fast-growing field of DL, which aims to learn from events sampled from related tasks to
benefit future learning. The most relevant paper is MAML [33], which divides the training
data into two sets for meta-training and meta-testing, and the model is trained on the
meta-training data to improve the performance of meta-testing data. Our method applies
a novel causality-based lens to the analysis of domain generalization, focusing on the
learning of causal semantic representations to effectively improve the generalization ability.

2.2. Causal Representation Learning

Causal inference focuses on the mining of the causal mechanism, which is different
from statistical correlation modeling. Statistical learning cannot be reliably applied to
OOD generalization tasks, inaccurately responding to counterfactual input. Causal models
have more important information in substance compared to statistical models [18,19].
Causality cannot be defined simply and directly in terms of Boolean logic language [34] or
probabilistic inference [35]. It needs to take the concept of intervention into account [19],
which can be regarded as a component of the chain of inference. The core of combining
artificial intelligence and causal learning is causal representation learning, which can extract
structured variables that can be used for causal inference from unstructured data [35]. Shalit
et al. [36] propose generalization error bounds and corresponding algorithms for predicting
Individual Treatment Effects (ITE), which can learn a balanced representation by making
the distributions of treatment and control groups similar. Hassanpour and Greiner [37]
propose to utilize context-aware importance sampling to balance the selection bias, thereby
replacing fixed weights and learning reasonable representations. Kallus and Nathan [38]
put forward a new approach based on adversarial training of weighted and discriminative
networks. In cases where there are multiple covariates and complex relationships among
them, this method achieves excellent covariate balance, enabling robust causal analysis.
CausalVAE [39] adds a causal layer on the basis of the traditional variational autoencoder
model. The causal layer converts independent exogenous factors into endogenous factors
of the causal graph, and then the mask mechanism transmits the representation generated
by the causal intervention and finally decodes the representation.

3. Method

An inclusive causal DAG is first created on the basis of the data generation process
combined with SCM. This causal graph can cover most of the DG tasks in the CV field,
having a certain degree of universality, and can show the essential causal mechanism.
Secondly, we propose causal semantic representation learning with domain intervention
(CSRDN) based on the structure of the proposed causal DAG by regarding domain changes
as interventions. Counterfactual inference is utilized in CSRDN with pointing out three
basic requirements that need to be met. We train counterfactual representation generators
based on adversarial learning with Generative Adversarial Network (GAN) [40] architec-
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ture. Finally, the robust model is continuously optimized by the Pareto optimal solution of
the loss function from the goals and is able to obtain stable generalization from the source
domain to the invisible target domain.

3.1. Causal Graph Modeling via SCM

In the DL field, it is assumed that there is a causal relationship between two variables,
and if one is the cause, the other must be the effect (cause → effect). According to the
data generation in a natural environment, we introduce SCM for causal modeling. Some
methods [41,42] associate label Y directly with a subset of covariates of X, which we believe
is conceptually unreasonable at a semantic level, as pixel-wise covariates of X cannot
contain semantic information.

For input X (X ∈ Rd) and output label Y (Y ∈ R) from M (M > 1) domains, a joint space
X×Y is generated. Observable input X is composed of two parts, causal semantic factors
C and unconcerned factors U, X ← (C, U) , and only the former can effect the output label
Y, Y ← C , as shown in Figure 1a. Causal semantic factors contain a series of information
that determines the output. For instance, in object recognition, the shape information is the
causal factor that contains object discrimination, while the photo background or shooting
angle is the unconcerned factor, which is independent of the classification label. At the
same time, we have an in-depth understanding of domain shifts and consider that they are
attributed to two aspects.
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Figure 1. An inclusive causal graph for most DG tasks in the CV area. (a) Input X is composed of
causal semantic factors C and unconcerned factors U, and only C points to output label Y through the
causal solid line arrow. C and U are connected by a dashed line without an arrow, representing the
spurious correlation. (b) The proxy domain variable D is introduced to enrich (a), pointing to both
object variable O and U, replacing the dashed line between C and U. The hammer pattern represents
the cutoff when controlling D as the intervention. Finally, a complete causal graph is presented.

Shifted unconcerned factors. Unconcerned features are not independent of the domain,
which includes the style of the image, background, perspective, etc. They vary across
domains, resulting in a changing distribution. Statistical models may pay too much
attention to these factors due to probability, which is far from human cognitive classification
ability. People can keenly discover the object related to the label in multiple images and
automatically ignore irrelevant background elements. We hope that the model can learn
the generalization ability like humans to the greatest extent.

Shifted C–U spurious correlation effect. There is an undeniable spurious correlation
between causal factors and unconcerned factors, which is not true causality. In most
cases, data sampling preference leads to the existence of confounding effects between
the two factors. For example, since the camera prefers to capture images of boats sailing
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in water, this sampling preference leads to a high correlation between discriminating
lines of boats and water, which is often detrimental to model predictions when domain
shifting. When shifting, non-causal objects in the background may disappear, or this
unstable spurious correlation may change, and a series of decisions based on probabilistic
correlation may break into different domains.

Due to the above aspects, C and U are connected by a dashed line without an arrow,
which is different from the causal solid line with an arrow, as shown in Figure 1a. Taking
into account the data generalization in the natural environment, we introduce the proxy
domain variable D for explaining the limitations of generalization performance, adding
D → O→ C and D → U to replace the correlation linkage between C and U, as shown in
Figure 1b. An example is given to illustrate this enhanced causal graph. For example, in
nature pictures, unique animals survive in specific environments, and we can infer from an
Arctic environment D that object O is the Arctic fox adapted to the ice in the subdivision of
fox classification, and thus D → O . It is a precarious one-way line of reasoning. The object
provides a range of causal information for predicting the label, with O→ C . Object O can
be considered an interpretable bridge. However, the presence of Arctic foxes alone cannot
infer that the current environment is the North Pole. D simultaneously provides a set of
unconcerned factors that would interfere in predicting Y; D → U . We do not simply define
domains as distributions of variation [22,41] but present it as a separate proxy variable,
which can simply and clearly show the impact of domain shift. This enhanced causal DAG
can make it easier for people to understand the mechanism of DG, which has a certain
degree of intuition.

In our causal DAG, SCM is introduced. The SCM views a set of variables X1, . . ., Xn
associated with the vertices of a DAG. It is assumed that each variable can be represented
by a deterministic function that depends on Xi’s parents in the graph (denoted by PAi) and
an unexplained random variable Vi.

Xi = fi(PAi, Vi), (i = 1, 2, . . . , n) (1)

where random noise variables V1, . . ., Vn are joint independent. In SCM, the intervention
can be seen as an operation to modify the formula, such as changing the random noise Vi
or changing the form of the function fi. According to Equation (1) and Figure 1, we can
formalize general DG tasks as follows:

X = f (C, U, V1)
Y = h(C, V2) = h(Φ(X), V2)

(2)

where f , h, and Φ are unknown structure functions. In light of the causal invariant
mechanism, if C is known, for any distribution P(X, Y), we can train the optimal predictor
according to the naive Empirical Risk Minimization (ERM).

h∗ = argminhEP(X,Y)[L(Y, h(C))] = argminhEP(X,Y)[L(Y, h(Φ(X)))] (3)

where L(, ) denotes the cross entropy loss. However, it is an overly shallow idea. In actual
situations, we cannot accurately obtain unobservable causal factors C while all we have is
the observable input X. Meanwhile, although a large number of priori hypotheses can be
placed again, it is difficult to directly construct ambiguous causal factors from the input.
Therefore, from the perspective of causal semantic stability, we simulate the mining of
causal factors to the greatest extent through causal semantic representation learning. In the
process, we rely on the idea of counterfactual inference to achieve domain intervention to
learn the robust predictive model. We expand the details of our proposed method in the
following section.
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3.2. Causal Semantic Representation Learning with Domain Intervention

In this section, we introduce CSRDN in detail. We consider the change of domain as
an intervention that occurs more commonly in real life than in image transformation. In
the causal graph in the previous subsection, D is a confounder for learning causal effects
from inputs to outputs and imposes limitations on prediction tasks, so we need to control
domain variable D to remove confounding effects. At the same time, D → O is pruned due
to unstable bias, blocking the information flow, as shown in Figure 1b. By implementing
the domain intervention, do(D), theoretically, P(Y|C, do(D)) is invariant across different
domains. In the process of exploring causal effects, the model can better learn stable causal
semantic representations. We start from the stability of causal semantics and randomization
of interventions and propose a novel domain intervention method by generating coun-
terfactual representations. The causal direction O→ C → Y gives us the hint, the inputs
of the counterfactual representation generator are label Y and random Gaussian noise,
and the output is the counterfactual representation whose semantic characteristics are
consistent with the original input. It is worth noting that we perform inference operations
at the representation level, focusing on generating counterfactual representations rather
than counterfactual images in order to directly pull in the similarity with the original
causal representation. Inspired by counterfactual inference [24], we need to achieve the
following three goals as much as possible and make effective trade-offs between each
other in CSRDN: (1) using original causal representations to make accurate predictions for
estimating good facts, (2) achieving low-error generation of counterfactual representations
for effectively estimating good counter-facts, and (3) balancing the distributional similarity
of representations under different interventions.

Based on the above three basic goals, we design the overall framework, as shown in
Figure 2. It mainly includes three modules, namely, representation extractor r, predictor h,
and counterfactual representation generator cg. For the input data from source domains,
we need to train the representation extractor r, inputting raw X from source domains to
extract the original causal representation containing causal information. As the domain
intervention, corresponding ground-truth label Y and random Gaussian noise are input to
cg for extracting counterfactual representations. We take the original causal representation
and the counterfactual representation as input to jointly train the predictor h. During
the training process of these three modules, it is necessary to constantly weigh the above
three goals and perform loss approximation. In other words, the similarity between the
counterfactual representation and the original causal representation is continuously pulled
in, which is also the process of mining causal invariance. Learning the underlying causal
invariance mechanism can help the model achieve successful generalization in different
environments.
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3.2.1. Counterfactual Representation Generator

In this subsection, we specifically introduce the training process of the counterfactual
representation generator cg. In the learning process of CSRDN, an important part is the
generation of counterfactual representations. We need to complete the operation in the
latent space. First, we encode X classified as the intervention into the latent space to
obtain the corresponding distribution. Secondly, to generate higher-quality counterfactual
representations, we make the latent-variable distributions close to each other through an
adversarial game between the counterfactual representation generator and the discrimina-
tor. We introduce an encoder E, a decoder D, and a discriminator S to assist the training of
cg. The training framework is shown in Figure 3.
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three modules, namely, encoder E, decoder D, and discriminator S.

Since the target domain is not visible in the domain generalization task, we cannot
obtain samples of the target domain. In order to simplify the calculation process, when
there are existing M groups of source domains, we randomly fix one of the domains
and treat the remaining M-1 sets of domains as interventions. In actual training, M-1
counterfactual representation generators are created. Specifically, the training of each cg
requires the involvement of sets of encoder E and the corresponding decoder D, as well as
discriminator S.

Step 1: We generate counterfactual representations via cg, which needs to be manipu-
lated in the latent space. By using the technology of β−VAE [43] (Variational Autoencoder,
VAE), input X from M-1 source domains as the intervention is sequentially encoded into
the latent space, and the corresponding distributions are obtained, respectively. The latent
space needs to contain high-level semantic information and be able to reconstruct the origi-
nal input through a matching decoder, providing prior guarantees for the formal training
of cg. Below, the training process from the perspective of one counterfactual representation
generator is introduced. β − VAE is utilized to approximate the posterior distribution
p(z|x) , which is a certain extension of VAE, having training stability and stronger decou-
pling performance. After the latent variable z = E(x) ∼ q(z|x) is obtained through E with
the latent space, D reconstructs the image to obtain x′ = D(E(x)) = D(z) ∼ p(x|z) . E
and D are trained by maximizing the Evidence Lower Bound (ELBO) loss with added
coefficient β (β > 1).

maxE,DELBO = Eq(z|x)[log p(x|z)]− βKL[q(z|x)||p(z)] (4)
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where KL() denotes Kullback–Leibler (KL) divergence [44]. By training the set of E− D
well, we can optimize the latent space with superior decoding operations.

Step 2: We choose the encoder E that was trained through Step 1 and fix it, and
additionally introduce a discriminator S. The decoder D is muted. At this point, the
training of cg is formally started. The input to E is the image of the current source domain
treated as the intervention, which can be well encoded into the latent space. Relying on
the intervention guarantee of causal semantic consistency, the distribution of semantically
consistent Y from the previous fixed single domain that corresponds to the label consistency
of the current input of E and random Gaussian noise are simultaneously input to cg, which
is utilized to obtain counterfactual representations. Since it is desirable that the distribution
of the output of E and the corresponding output of cg can be as close as possible in the
latent space to obtain more realistic and comprehensive counterfactual representations, the
discriminator S is introduced to conduct an adversarial game (min–max) with cg. Unlike
receiving the original image and the generated image, our discriminator discriminates
representations according to the distribution. Finally, after the adversarial game, S will
be in a chaotic state and cannot effectively distinguish. The technology of Wasserstein
GAN (WGAN) [40] is utilized, which uses Wasserstein distance to calculate the difference
between generated data and real data, effectively solving the problem of unstable training.
We achieve the goal of stably training the optimal generator by min–maximizing the loss.

mincgmaxS,∥S∥L≤1LWGAN = Ex∼p(x)[S(E(x))]− E(y,u)∼(p(y)∼p(u))[S(cg(y, u))] (5)

where p(x) and p(y) represent the distribution of input X from this intervention and
semantically consistent label Y from the fixed single source domain, respectively, and
p(u) represents the Gaussian distribution of noise. WGAN explicitly adds the Lipschitz
constraint to the discriminator and requires the Lipschitz constant not to exceed 1. Through
this min–max game, a delicate balance is obtained between cg and S. cg is effectively trained
to generate counterfactual representations that are sufficiently realistic and comprehensive.

Based on the above steps, M-1 counterfactual representation generators are trained step
by step according to M-1 interventions, capable of generating counterfactual representations
directly from semantic labels and random noise to simulate interventions in the domain,
thus contributing to the learning of the causal invariant mechanism. The trained cg will be
involved in the training of the representation extractor r and the predictor h to implement
causal semantic representation learning by counterfactual inference, promoting stable
generalization of the model.

3.2.2. Joint Learning Procedure

As shown in Figure 2, we summarize the overall training process following the
CSRDN framework. Firstly, we need to train the counterfactual representation generator
cg. Through the two steps mentioned above, we train a total of M-1 cg according to the
number of source domains. Secondly, trained M-1 cg participates in the training of the
representation extractor r and the predictive classifier h in the main module. The input
of r is all raw X in source domains, and the output is the original causal representation.
The input of the current M-1 counterfactual representation generator is the corresponding
ground-truth label Y from the input of the current r and random Gaussian noise, which
can generate M-1 sets of counterfactual representations successively. These counterfactual
representations are semantically consistent with the input but have different interventions
on the domain to mitigate confounding effects, which can provide assistance for stable
causal semantic representation learning in OOD situations. The input of h is all the original
causal representations and counterfactual representations and the output is the predicted
labels and predicted counterfactual labels, respectively. Through utilizing the technology of
counterfactual inference [24], we always pursue the above three goals during the training
process and are able to propose the final loss function for the training of r and h to optimize
the model. The first goal corresponds to the original prediction loss L1, and the second
goal corresponds to the counterfactual prediction loss L2. The third goal corresponds to
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the distributional discrepancy distance loss L3. For training the representation extractor r
and predictor h, the overall optimization objective of our proposed CSRDN is summarized
as follows:

minr,hLall = E(x,y,u)∼(p(x),p(y),p(u))L1(y, h(r(x))) + λ1
1

M−1 ∑M−1
m L2(y, h(cgm(y, u)))

+λ2
1

M−1 ∑M−1
m L3(r(x), cgm(y, u))

(6)

where λ1 and λ2 denote weighting parameters that are utilized to balance the overall loss.
We choose L1 and L2 as the cross-entropy loss, and L3 as the KL divergence. During training,
CSRDN is able to learn the invariant causal mechanism that enables stable generalization
from source to target domains.

4. Experiments

This section describes the experimental part in detail. We conduct experiments and
analyze several benchmark datasets to verify the feasibility and superiority of the method
and compare CSRDN with a set of other DG methods. Specifically, we set the weighting
parameters of the loss function to be dynamic and learnable, which means that we seek
Pareto optimality in the training process of the model. We also conduct the experiment to
show that adding interventions can improve the learning effect of CSRDN. Meanwhile,
we discuss the improvement effect of each goal of CSRDN in the overall learning through
ablation experiments and exhibit the results of the visualization.

4.1. Datasets

Rotated MNIST [26] is a synthetic dataset constructed from the MNIST handwritten
digit dataset, which is a variant of it. Rotated MNIST is originated from grayscale MNIST
handwritten digits performed with six different rotation angles, individually: 0◦, 15◦,
30◦, 45◦, 60◦, and 75◦. These six different rotation angles can also be regarded as six
different domains. The images of Rotated MNIST are artificially rotated to achieve domain
transformation.

PACS [27] is a widely used dataset of DG, with a total of 9991 images. These images
are drawn from four different fields, namely, painting, cartoon, photo, and sketch, and
contain seven categories, namely, dog, elephant, giraffe, guitar, house, horse, and person.
PACS is considered to have a significant dataset shift, with large differences in image style.

VLCS [28] is a classic dataset of DG, with a total of 10,729 images. These images are
drawn from four datasets, namely, PASCAL VOC2007 (V), LabelMe (L), Caltech(C), and
SUN09 (S), which can also be regarded as four different domains. These images contain
five classes, namely, bird, car, chair, dog, and person. It is worth noting that the images of
VLCS are all derived from the real world and have a more realistic domain shift, which is
also more challenging in DG tasks.

4.2. Implement Details

In the experimental setup, we follow the commonly used leave-one-domain-out
protocol, designating one of the domains as the invisible target domain, while the rest
are used as source domains for model training. For instance, for the PACS dataset, we
regard cartoon-style images as the unavailable target domain and conduct training on
painting, photo, and sketch images. Finally, the trained model is applied in the cartoon
domain to obtain prediction results. Briefly, our experiments are performed on three widely
used datasets, Rotated MNIST, PACS, and VLCS. By treating each domain of each dataset
as an unseen target domain, in turn, the model is trained and tested, and the results are
compared with the ERM baseline and a series of DG methods, which are presented in
Section 4.3 below. The related analysis experiment on the number of domain interventions
is performed on the Rotated MNIST dataset, which is presented in Section 4.4 below.
The ablation experiment and visualization results of the PACS dataset are introduced in
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Sections 4.6 and 4.7, respectively. Our basic settings follow DomainBed [45]. For the PACS
and VLCS datasets, we use ResNet50 [1] as the backbone and MNIST ConvNet [45] based
on the smaller Convolutional Neural Networks (CNN) architecture for Rotated MNIST. We
resize PACS and VLCS datasets to 224 × 224 pixels and Rotated MNIST to 28 × 28 pixels.
CSRDN is implemented by Python 3.6 and PyTorch 1.10.0 and we use 4 NVIDIA GEFORCE
GTX 1080Ti 11G graphics cards (manufacturer: ASUS, location: Shanghai, China) for
training and testing on Ubuntu 20.04. The model is trained by using an SGD optimizer with
a momentum of 0.9 and a weight decay of 5 × 10−4. The batch size is 64 for the Rotated
MNIST dataset and 32 for the PACS and VLCS datasets, and the training epoch is set to 50
with a 0.001 initial learning rate. Accuracy is the main evaluation indicator being compared
for this part of the experiment. We run experiments on each dataset three times, and all
results are represented according to the average accuracy of three runs. Specifically, the
higher prediction accuracy obtained when testing in the target domain means that the
model trained only from the source domains can better resist the challenges brought by
domain shift, representing better OOD generalization performance of the model.

4.3. Experimental Results

We compare CSRDN with a large number of other methods for DG, including the base-
line Empirical Risk Minimization (ERM) [46], Invariant Risk Minimization (IRM) [47], Inter-
domain Mixup (Mixup) [48], Maximum Mean Discrepancy (MMD) [9], Marginal Transfer
Learning (MTL) [49], Meta-Learning Domain Generalization (MLDG) [14], Domain Adver-
sarial Neural Network(DANN) [50], Deep CORAL (CORAL) [51], Group Distributionally
Robust Optimization (GroupDRO) [52], the causality-related method (MatchDG) [20], the
regularization-related method for invariant gradient variances (Fishr) [53], Representation
Self-Challenging (RSC) [54], Style Agnostic Networks (SagNet) [55], and Exact Feature
Distribution Mixing (EFDMix) [56].

4.3.1. Results of the Rotated MNIST Dataset

The results of the Rotated MNIST dataset are presented in Table 1. As shown in Table 1,
the average accuracy of our proposed method is 98.4%, beating all other methods, and is
0.3% higher than the second place and 0.4% higher than baseline. At the same time, we
also achieve optimal generalization performance at 45◦, 60◦, and 75◦ test domains, which
are 0.2%, 0.2%, and 0.6% higher than the baseline, respectively. Since Rotated MNIST is a
synthetic dataset, the domain shift is caused by artificial rotation, so there is no significant
style difference in domain changes. In this case, no matter which domain is chosen as the
target domain, the average accuracy of all methods is higher than 95%. CSRDN pursues
stable causal representation learning, which can tap into the core causal mechanism as
much as possible and resist artificially brought rotational changes.

Table 1. Leave-one-domain-out results of the Rotated MNIST dataset from 0◦ to 75◦ (accuracy in %).
Each column name indicates the target domain. The best results are expressed in bold.

Methods 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ Avg

ERM 95.6 99.0 98.9 99.1 99.0 96.7 98.0
IRM 95.9 98.9 99.0 98.9 98.9 95.6 97.9

Mixup 96.1 99.1 98.9 99.0 99.0 96.6 98.1
MMD 96.6 98.9 98.9 99.1 99.0 96.2 98.1
MLDG 95.9 98.9 99.0 99.1 99.0 96.0 98.0
DANN 95.6 98.9 98.9 99.0 98.9 95.9 97.9
CORAL 95.7 99.0 99.1 99.1 99.0 96.7 98.1

GroupDRO 95.9 98.9 99.0 99.0 99.0 96.9 98.1
MatchDG 95.9 98.4 98.6 98.9 98.7 95.1 97.6

Fishr 95.0 98.5 99.2 98.9 98.9 96.5 97.8
CSRDN (ours) 96.5 98.8 99.1 99.3 99.2 97.3 98.4
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4.3.2. Results of the PACS Dataset

The results of the PACS dataset are presented in Table 2. As shown in Table 2, the
average accuracy of CSRDN is 88.8%, which outperforms all other methods and is 0.9%
higher than suboptimal RSC, far superior to the ERM baseline by 3.3%. Not only does it
achieve the best result in overall accuracy, but CSRDN also achieves the highest prediction
accuracy when testing the cartoon and sketch domains. Sketch’s style is very different
from the other three datasets, which makes it more of a challenge to test, yet CSRDN
leads the way with 84.9% accuracy, well ahead of the baseline of 5.6%. The difference
between domains of PACS is mainly presented as the style transfer, which means that the
domain shift is more significant than that of the synthetic dataset, and the accuracy of all
methods is relatively low. At this challenging moment, the core superiority of our method is
revealed compared to others. CSRDN has superior stable generalization capabilities based
on learned invariant causal mechanisms that can be resistant to different stylistic variations.

Table 2. Leave-one-domain-out results of the PACS dataset (accuracy in %). Each column name
indicates the target domain. The best results are expressed in bold.

Methods P A C S Avg

ERM 97.2 84.7 80.8 79.3 85.5
IRM 96.7 84.8 76.4 76.1 83.5

Mixup 97.6 86.1 78.9 75.8 84.6
Fishr 97.0 88.4 78.7 77.8 85.5

SagNet 97.1 87.4 80.7 80.0 86.3
RSC 97.9 87.8 82.1 83.8 87.9

MMD 96.6 86.1 79.4 76.5 84.6
MLDG 97.4 85.5 80.1 76.6 84.9
DANN 97.3 86.4 77.4 73.5 83.6
CORAL 97.5 88.3 80.0 78.8 86.2

GroupDRO 96.7 83.5 79.1 78.3 84.4
EFDMix 98.1 90.6 82.5 76.4 86.9

MatchDG 97.9 85.6 82.1 78.8 86.1
CSRDN (ours) 97.5 88.3 84.5 84.9 88.8

4.3.3. Results of the VLCS Dataset

The results of the VLCS dataset are presented in Table 3. As shown in Table 3, CSRDN
achieves an average accuracy of 79.3%, which shows the best performance and far exceeds
the ERM baseline by 1.8%. Especially, when LabelMe is tested as the unseen domain, the
prediction accuracy of all methods does not exceed 70%, but CSRDN still outperforms
the second place CORAL by 0.9%. It fully demonstrates the superiority of CSRDN in the
face of real and diverse domain changes. Since our method can create generative domain
interventions through counterfactual inference, it can excavate stable causal representations
and adapt to complex environmental disturbances.

Table 3. Leave-one-domain-out results of the VLCS dataset (accuracy in %). Each column name
indicates the target domain. The best results are expressed in bold.

Methods V L C S Avg

ERM 74.6 64.3 97.7 73.4 77.5
IRM 77.3 64.9 98.6 73.4 78.5
RSC 75.6 62.5 97.9 72.3 77.1

SagNet 77.5 64.5 97.9 71.4 77.8
Fishr 76.8 64.0 98.9 71.5 77.8

Mixup 74.3 64.8 98.3 72.1 77.4
MMD 75.3 64.0 97.7 72.8 77.5
MLDG 75.3 65.2 97.4 71.0 77.2
DANN 77.2 65.1 99.0 73.1 78.6
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Table 3. Cont.

Methods V L C S Avg

CORAL 77.5 66.1 98.3 73.4 78.8
GroupDRO 76.7 63.4 97.3 69.5 76.7

CSRDN (ours) 77.1 67.0 98.8 74.2 79.3

4.4. Results of the Number of Interventions

On the basis of the above, we conduct another interesting experiment. When the
number of interventions increases, the training effect of the model is better, and the results
are shown in Table 4. We fix the 75◦ domain of Rotated MNIST as the unseen target
domain to test the generalization ability, while the 0◦ and 15◦ domains are the initial
source domains and sequentially increase the number of source domains for model training.
For the intuitiveness of the experiment, we define the 0◦ domain as the fixed domain for
training counterfactual representation generators. Increasing the number of source domains
can be seen as a means of increasing interventions. According to Table 4, every time an
intervention is added, the average accuracy in the target domain is relatively improved,
and the OOD generalization ability of the model is enhanced. When there is only one
intervention, we train only one counterfactual representation generator, CSRDN achieves
an average accuracy of 95.9%, but as the intervention increases to 4, the accuracy improves
to 97.3%. It demonstrates the importance of source domain diversity. The more source
domains, the more interventions we can implement, and the model can better focus on
stable causal semantic representations with stronger learning ability.

Table 4. Results of the Rotated MNIST dataset for the number of interventions (accuracy in %). “
√

”
indicates that the current domain is the available source domain. The 75◦ domain is the target domain
(TD). The best result is expressed in bold.

Methods 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ (TD)

Variant 1
√ √

95.9
Variant 2

√ √ √
96.5

Variant 3
√ √ √ √

97.1
Variant 4

√ √ √ √ √
97.3

4.5. Pareto Optimality

Our total loss function consists of three loss functions, and during the training process
of the model, it is necessary to seek parameter optimization by continuously minimizing
the total loss function. Inspired by Ref. [57], for CSRDN, we view it as a multi-objective
optimization problem, not fixing the weighting parameters λ1 and λ2 but viewing them as
dynamic and learnable. During the training process of the model, there is a high chance that
the three loss functions will conflict and have a competitive relationship. Instead of choosing
a weighted linear combination of the loss functions, we pursue Pareto optimization with
the help of convex optimization to maximize the optimization performance of the activated
model. Our approach utilizes MGDA-UB to reduce the expensive computational cost and
seeks the upper bound of MGDA for model optimization during training. With Pareto
optimization, the performance of our model is further improved, and optimal results are
achieved on all three datasets.

4.6. Ablation Experiment

Based on the above experimental results, we further explored the effect of each loss
of CSRDN on the entire training process. The results of CSRDN ablation experiments on
the PACS dataset are shown in Figure 4. When the trained model only utilizes the original
prediction loss L1, the generative domain interventions do not participate in the overall
optimization, which is not different from the common ERM method, and the average
accuracy is 85.5%, the lowest among all variants. When loss L1 and loss L3 are involved
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in model training at the same time, as shown in Variant 3, the average accuracy is 88.0%,
which is 1.5% higher than the combination of L1 and L2, as shown in Variant 2. This
suggests that only guaranteed generation of counterfactual representations on the basis
of L1 is insufficient to compete with Variant 3, which includes mining its intrinsic causal
semantic invariance. L3 focuses on balancing the distribution similarity of representations
under different interventions, which is the core guarantee link for OOD generalization
in the process of model training. When L2 is combined with L3 as seen in Variant 4, the
average accuracy is 0.7% lower than that of Variant 3, which means that including L3 in
the overall training can guarantee a certain performance improvement under the premise
that the counterfactual representation generator is well trained. Importantly, when L1,
L2, and L3 all participate in model training, CSRDN achieves the best performance, with
an accuracy of 88.8%. It can be seen that every part of the loss for each counterfactual
inference goal is crucial to the performance improvement of the model, and all three are
indispensable. These three modules of the loss complement and promote each other, jointly
improving the performance.

Electronics 2024, 13, x FOR PEER REVIEW 15 of 19 
 

counterfactual representation generator is well trained. Importantly, when 𝐿 , 𝐿 , and 𝐿  
all participate in model training, CSRDN achieves the best performance, with an accuracy 
of 88.8%. It can be seen that every part of the loss for each counterfactual inference goal is 
crucial to the performance improvement of the model, and all three are indispensable. 
These three modules of the loss complement and promote each other, jointly improving 
the performance. 

 
Figure 4. Ablation experiment of CSRDN on the PACS dataset. Variant 1: 𝐿 ; Variant 2: 𝐿  + 𝐿 ; Var-
iant 3: 𝐿  + 𝐿 ; Variant 4: 𝐿  + 𝐿 ; CSRDN: 𝐿  + 𝐿  + 𝐿 . 

4.7. Visualization for Class Activation Map 
To further visualize the superiority of CSRDN, we use the visualization technique of 

Gradient-weighted Class Activation Mapping (GradCAM) [58] to generate a set of atten-
tion maps for the ERM baseline and CSRDN, respectively. We select the cartoon domain 
on the PACS dataset as the test dataset for visualization generation. The results of the 
visualization are shown in Figure 5. The attention range of the causal semantics of the 
image is used as our evaluation indicator. It can be clearly seen that our method imple-
ments stable causal representation learning through different causal interventions based 
on counterfactual inference, and is able to seek true semantics in generalization tasks. For 
instance, in the classification of “person”, the CSRDN’s attention is focused on the faces 
of people with causal semantics, which provides stable discriminative information for the 
classification task. The ERM baseline, on the other hand, focuses on irrelevant factors, such 
as the background and texture of the image, which adversely affects the classification task. 
It suggests that CSRDN can help the model learn the core causal mechanism and extract 
stable causal semantic representations, giving it superior OOD generalization capabilities 
against perturbations brought by different domains. 

Figure 4. Ablation experiment of CSRDN on the PACS dataset. Variant 1: L1; Variant 2: L1 + L2;
Variant 3: L1 + L3; Variant 4: L2 + L3; CSRDN: L1 + L2 + L3.

4.7. Visualization for Class Activation Map

To further visualize the superiority of CSRDN, we use the visualization technique of
Gradient-weighted Class Activation Mapping (GradCAM) [58] to generate a set of attention
maps for the ERM baseline and CSRDN, respectively. We select the cartoon domain on the
PACS dataset as the test dataset for visualization generation. The results of the visualization
are shown in Figure 5. The attention range of the causal semantics of the image is used as
our evaluation indicator. It can be clearly seen that our method implements stable causal
representation learning through different causal interventions based on counterfactual
inference, and is able to seek true semantics in generalization tasks. For instance, in the
classification of “person”, the CSRDN’s attention is focused on the faces of people with
causal semantics, which provides stable discriminative information for the classification
task. The ERM baseline, on the other hand, focuses on irrelevant factors, such as the
background and texture of the image, which adversely affects the classification task. It
suggests that CSRDN can help the model learn the core causal mechanism and extract
stable causal semantic representations, giving it superior OOD generalization capabilities
against perturbations brought by different domains.
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Figure 5. Visualization of attention maps using GradCAM in the PACS dataset. The first row
represents original images with true labels dog, elephant, giraffe, guitar, horse, house and person
(from left to right), while the second row corresponds to the baseline and the third row corresponds
to our CSRDN.

5. Conclusions

In this paper, we shed light on the shortcomings of statistical models relying on spuri-
ous correlations in dealing with OOD problems and present a novel causal perspective on
domain generalization, and the purpose and task are to improve the stable generalization
ability of the DG model by implementing causal semantic representation learning through
domain intervention. Based on the data generation process in natural environments, we
construct the inclusive causal graph via SCM, which can be adapted to a variety of DG
tasks. We point out that causal semantics are invariant across domains, and the core lies
in mining the intrinsic causal invariance mechanism. A novel framework of CSRDN is
proposed, utilizing generated counterfactual representations for different domain interven-
tions, which can help the model learn cross-domain causal relationships and achieve robust
generalization. Comprehensive experiments demonstrate the effectiveness and superiority
of CSRDN. The proposed method can inject the prospective mind of causal learning into
domain generalization and break the deadlock of the insufficient generalization ability of
statistical modeling. Our CSRDN focuses on the standard domain generalization problem,
that is, the multi-source domain setting. The generation of counterfactual representations
of our method benefits from the diversity of data in source domains, which enables the
corresponding interventions to be defined. In future work, we will consider the special
single-source domain setting, that is, only one source domain can be obtained during
model training. In this setting, the training of the counterfactual representation generator
in the current method will be limited. Based on the pursuit of future development, we
will consider extending the data distribution of a single source domain through a series
of effective data augmentation methods that can safely preserve semantics to leverage
counterfactual representations as domain interventions for counterfactual inference. Based
on the proposed inclusive causal graph, under this special setting and with a positive
outlook, the model will still perform causal semantic representation learning and pursue
stable causal invariance.
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