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Abstract: In the rapidly evolving realm of artificial intelligence (AI), black-box algorithms have
exhibited outstanding performance. However, their opaque nature poses challenges in fields like
medicine, where the clarity of the decision-making processes is crucial for ensuring trust. Addressing
this need, the study aimed to augment these algorithms with explainable AI (XAI) features to enhance
transparency. A novel approach was employed, contrasting the decision-making patterns of black-box
and white-box models. Where discrepancies were noted, training data were refined to align a white-
box model’s decisions closer to its black-box counterpart. Testing this methodology on three distinct
medical datasets revealed consistent correlations between the adapted white-box models and their
black-box analogs. Notably, integrating this strategy with established methods like local interpretable
model-agnostic explanations (LIMEs) and SHapley Additive exPlanations (SHAPs) further enhanced
transparency, underscoring the potential value of decision trees as a favored white-box algorithm in
medicine due to its inherent explanatory capabilities. The findings highlight a promising path for the
integration of the performance of black-box algorithms with the necessity for transparency in critical
decision-making domains.

Keywords: explainable artificial intelligence; XAI; machine learning; deep learning; white box;
black box

1. Introduction

Medicine and healthcare experts continually incorporate new artificial intelligence and
machine learning approaches, algorithms, and concepts into all facets of the fundamental
building blocks of their organizational structures [1–5] to provide the best possible care for
billions of patients worldwide. With the rapidly expanding knowledge base in the field
of medicine and the enormous amounts of patient data collected annually, there are not
enough professional human resources available to manage all the data, let alone make
proper use of it [6]. Machine learning algorithms can serve as invaluable decision support
systems and knowledge extraction tools for medical professionals. By leveraging these
technologies, healthcare providers can efficiently manage the vast quantities of data they
accumulate and attend to the continuous stream of patients with professionalism and equi-
tability [7]. Machine learning in medicine is being used in genetics [8], medical imaging [9],
radiology [10], cancer prediction [11], 2D echocardiology [12], and neurosurgical outcome
prediction [13], and the list goes on because everywhere where there are data created, there
is a potential to apply machine learning.

The black-box nature of a machine learning algorithm makes it extremely difficult for
their end users to interpret the results [14]. A black-box [15] algorithm is a computational
model or system for which its internal workings and processes are not readily accessible or
understandable to an observer. The underlying mechanisms or decision-making processes
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are hidden, but the input–output relationship is known. A white-box [16] algorithm is
a computational model or system that provides transparency and interpretability in its
internal workings and decision-making processes. Unlike black-box algorithms, white-box
algorithms are designed to be easily understandable and interpretable by humans. They
often have a clear and explicit representation of the logic and rules used to arrive at their
outputs. In certain areas of application, this creates a chasm between top-tier classification
algorithms and users demanding transparency since the algorithm’s results may be applied
in a life-or-death scenario [17]. Modern black-box deep learning algorithms reached a point
where they can accomplish complex decision-making tasks with unprecedented accuracy
on an enormous scale. This, however, presents a great dilemma: can those decisions
be trusted? On the other hand, the few white-box classifiers in use cannot measure up
to those black-box classifiers [18]. Medicine and autonomous vehicles [19,20] are two
fields of application where the ability to explain decisions presents a high-risk scenario.
Recently, a new research field has been gaining traction, explainable artificial intelligence
(XAI) [21–25], where the aim is to make black-box machine learning algorithms trustable
in terms of transparency and the ability to interpret their results. The thus far proposed
solutions, which are few and far between, are focused on adding a transparency layer via
attribute analysis in combination with the black-box classifier’s decision, which is the case
with SHapley Additive exPlanations (SHAPs) [26] or local interpretable model-agnostic
explanation (LIMEs) [27]. Those present two of the most prominent approaches in medicine,
but since no algorithm to date has been successful in presenting a realistic and complete
solution to the problems that were outlined by XAI, any novel approach that can provide a
glance into black-box models should be taken into consideration.

The foundational objective of XAI, as defined by the Defense Advanced Research
Projects Agency (DARPA) [28], is to bridge the divide between learning performance and
explainability in AI systems. Two polarities are presented in this context: neural networks,
representing the peak of learning performance, and decision trees, representing the pinnacle
of explainability. The space between these two paradigms embodies the core challenge
that XAI attempts to overcome, as seen in Figure 1 where the strengths and weaknesses
of both black-box and white-box algorithms clearly outline the gray area in the field of
artificial intelligence. This involves either harnessing enhanced performance to facilitate
greater accuracy or utilizing heightened explainability to increase usability and trustability.
The prioritization of these aspects varies across different application domains. Notably,
in the field of medicine, for an array of reasons [29], explainability is currently of greater
significance than plain performance.

In collaborative efforts with medical professionals in the data science field, a pro-
nounced demand was identified for elucidating the underlying rationale of decision-making
processes. Many experts were hesitant to adopt solutions in their domains that lacked clear
interpretative capabilities. In the course of developing a novel white-box machine learning
algorithm, termed “Data Canyons” [30], it was discerned that specific data instances obfus-
cated the clarity of the decision-making rationale. This obfuscation was identifiable when
contrasting the classification outcomes of different machine learning methodologies. Conse-
quently, an approach emerged: the isolation and relabeling of these ambiguous data entries.
This gave rise to the concept of knowledge transfer between a black-box model, which
possessed the capability to neglect certain instances, and a transparent white-box model.
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of XAI.

By stacking new methods to translate the black-box models or at least to interpret
them, it might be possible to “open” the black-box [31]. The primary emphasis of prevailing
XAI techniques lies in presenting the attributes that play a significant role in the decision-
making mechanism of a black-box algorithm [32]. However, the proposed methodology
goes beyond this by elucidating the rationale behind the decisions made. This study intro-
duces a pioneering methodology, believed to be the first of its kind, designed specifically for
application in the fields of medicine and healthcare. This approach can be synergistically
utilized alongside established methods such as LIME and SHAP to enhance transparency
and foster trust in the decision-making processes of black-box algorithms. In the domain
of medicine, the reasoning process holds greater importance compared to the mere iden-
tification of involved attributes [33]. Specifically, decision trees [34] garner considerable
attention in the medical and healthcare fields [35] due to their widespread adoption as a
machine learning approach, primarily owing to their inherent capacity for explanatory
visual representation. With the presented method, an effort has been made to transfer
part of the decision-making process of a black-box algorithm to a white-box decision-tree
algorithm by incorporating the differences in the initial decision-making process of both
algorithms into the learning phase of the white-box algorithm.

2. Materials and Methods

Using a machine learning test bench like Weka [36,37] allows for testing many algo-
rithms at the same time and finding the algorithms that give the most promising results.
Using this technique, it was observed that in certain data types or instance distributions
relating to the instance classes, there is a significant difference between how accurate those
algorithms perform and how accurately they perform for specific classes in the dataset.
This difference is, of course, vital because of the need to use the most stable and accurate
classification algorithm, but if the best results are given by an algorithm that is of the black-
box variety, this raises concerns with respect to trustability and interpretability. If there is a
vast difference between the preferred performance of the black-box model compared to
the results of the white-box model and the reason for this is the distribution of instances
relating to the class, then there might be a way to increase the performance of the white-box
algorithm by utilizing the black-box algorithms model, and with that, open a window
into the black box. This method is not applicable in every scenario; however, it could be
a staple in the toolbox of data science and machine learning. The same principle could
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be used utilizing the powers of any ensemble method or any voting-driven prediction
construct since the base idea utilizes the final result of the predictions of any approach.
The black-box classification results are introduced into the original data and used as the
basis for the white-box classifier learning process. If the distribution of data is right and
there is a need to correctly classify classes that are in the minority, this method could create
a white-box algorithm that includes the reasoning behind the decisions of the black-box
algorithm. The base principle, therefore, is the infusion of knowledge using the results of a
black-box algorithm, giving desirable outputs to a white-box algorithm that, in using the
results of the black-box algorithm, creates a better-performing model in the sense of the
desired outcome. The white-box classifier can then be interpreted using its visualization
method. The scenario used throughout this paper is a medical dataset where there is a vast
discrepancy between the distribution of classes presented in the train data. The assumption
is that most classification approaches will yield a satisfactory outcome but at the cost of
the misclassification of underrepresented classes. However, some algorithms will perform
better than others when it comes to those underrepresented classes and will, therefore,
present the entry point into the transference of learning between black-box and white-box
approaches. In medicine, these data imbalances are common, and more often than not, the
critical part of the classification emphasis lies on the underrepresented classes.

Weka, originating from the University of Waikato in New Zealand, is an open-source
software suite that offers a comprehensive collection of machine learning algorithms for
data mining tasks, encompassing classification, regression, clustering, association rules, and
data preprocessing. Implemented in Java [38,39], a high-level, object-oriented programming
language, this platform is employed in both educational and research contexts, providing
tools for data visualization, analysis, and predictive modeling. All selected datasets were
evaluated using Weka and all algorithms that were able to work with the presented data.
Moreover, for the sake of repeatability, the default settings were used for each algorithm.
The version of Weka used was 3.8.6, and the version of Java was 17.0.6. The data that were
used for testing were the data provided via the Weka installation, and they are medical in
nature. The used datasets were “breast-cancer.arff”, “diabetes.arff”, and “hypothyroid.arff”.
The breast cancer domain was obtained from the University Medical Centre, Institute of
Oncology, Ljubljana, Yugoslavia. We thank M. Zwitter and M. Soklic for providing the data.
The diabetes dataset is the Pima Indians diabetes dataset from the National Institute of
Diabetes and Digestive and Kidney Diseases. The thyroid disease records were supplied by
the Garavan Institute and J. Ross Quinlan, New South Wales Institute, Sydney, Australia.

All datasets were tested with all applicable algorithms, and all results were obtained
in order to find a deviation on which the presented theory could be applied. In all cases,
the best-performing machine learning model that detected the most minority instances
was selected to transfer its knowledge to the best-performing decision tree algorithm. In
the second part, the results of the algorithms without default visualization have been
used to create a new model using decision trees to try to transfer the decision process of
one algorithm to another. The base process is shown in Figure 2. To begin, the dataset
was loaded, and a black-box algorithm was utilized to construct an initial model. This
model generated predictions for each instance within the dataset. Subsequently, these
predictions were used to update the dataset by incorporating the predicted outcomes into
their respective instances. Following this, a white-box model was created by applying a
white-box algorithm to the newly modified dataset. The resulting model presents the final
knowledge-infused white-box model. In the final stage, the original output of the decision
tree algorithms was compared to the new output on the original dataset to evaluate the
change in performance.
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3. Results

Comprehensive testing was conducted on all three datasets using the available clas-
sifiers in Weka. However, certain classifiers were excluded from the analysis due to
incompatible datatypes within the datasets or dependencies of the classifiers. The primary
objective of testing multiple classifiers was to identify a black-box classifier that performed
favorably and a white-box classifier that exhibited suboptimal performance concerning the
desired output, specifically the accurate classification of the minority class in unbalanced
datasets. In the context of unbalanced datasets, where one class is significantly more preva-
lent than the others (e.g., one class appears significantly more frequently than the other),
classifiers tend to prioritize the more frequent class. However, in medical applications,
it is crucial to focus on the classes that occur less frequently due to the distribution of
positive and negative examples in medical datasets. Black-box algorithms often outperform
white-box algorithms in such scenarios, necessitating knowledge transfer from black-box
models to white-box models. The selection of appropriate black-box and white-box classi-
fiers is demonstrated through the presentation of complete testing results using the breast
cancer dataset. As significant performance discrepancies between black-box and white-box
classifiers were not exhibited by the other two datasets, the complete test results for all
classifiers have been omitted. Instead, focus has been placed on the selected classifiers for
each dataset to facilitate comparison and analysis.

The selection of the algorithm for knowledge transfer is contingent upon the desired
decision outcome and the appropriate decision outcomes of utilized black-box algorithms.
In situations where the dataset is imbalanced, the emphasis lies on accurately classifying
the minority classes. In the specific case of the breast cancer database, BayesNet was chosen
as it exhibited the highest proficiency in classifying “recurrence-events” while maintaining
overall accuracy. Similarly, for the diabetes dataset, NaiveBayes was selected due to its
superior performance in predicting the “tested_positive” class. In the case of the thyroid
dataset, NaiveBayes was again chosen because it demonstrated the effective detection of
the “secondary_hypothyroid” class.

3.1. Breast Cancer Dataset Results

There were 44 algorithms that were able to complete the classification process, as
can be seen in Table 1. In all cases, 10-fold cross-validation was used. However, for the
purpose of this paper, at the first testing stage, the method of division into the training
and testing sets was less critical as long as it stayed consistent throughout the whole first
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phase with every dataset used. As can be seen from the test results in Table 1, looking
only at the correctly classified instances, there is no significant deviation. On the other
hand, looking at the decisions in the confusion matrices, it can be seen that the correctly
classified instances of the recurrence events range from 0 to 37 out of the 85 that are
present in the dataset. Almost all algorithms struggle to identify the class represented in a
smaller number. Nine of these algorithms even disregard them altogether and classify all
instances as no-recurrence-events. If the emphasis was placed on identifying more of the
85 recurrence events, the nine algorithms would not be usable, at least not without further
adjustments. What can also be seen clearly from the results is that correctly classified
instances do not present an optimal measure of accuracy, especially if the focus is not the
overall classification but rather the detection of data “minorities”. To test this theory, an
algorithm had to be identified for which its confusion matrix captured the most results
from the minority instance group. While none of the algorithms produced particularly
satisfactory results, BayesNet was found to correctly classify 37 instances, whereas J48,
which includes a visualization layer, managed to classify only 23 of the 85 instances
of interest. Consequently, these two algorithms were selected to verify this hypothesis
regarding knowledge transference between algorithms. Both models created during the
test were preserved. Subsequently, to evaluate the change in accuracy, both models were
reloaded, and their performance was retested using the entire dataset as the test set. The
results of these tests can be found in Table 2. From the results, it is clearly seen that the
focus of the models of those algorithms is on different classes, while, interestingly, they
maintain the same percentage of correctly classified instances. To compare the change in
the decision tree model, the output decision tree was captured in Figure 3.

Table 1. Initial classification results for the breast cancer dataset.

Nr. Classifier
Correctly
Classified
Instances

Nr. Classifier
Correctly
Classified
Instances

1. Naïve Bayes 72.02% 23. Multiclass Classifier 68.88%

2. Bayes Net 71.67% 24. Multiclass Classifier
Updateable 69.93%

3. Naïve Bayes
Multinomial Text 70.27% 25. Multischeme 70.27%

4. Naïve Bayes
Updateable 71.67% 26. Random Committee 67.48%

5. Logistic 68.88% 27. Randomizable Filtered
Classifier 66.78%

6. Multilayer Perceptron 64.68% 28. Random Subspace 70.27%
7. SGD 69.93% 29. Stacking 70.27%
8. SGD Text 70.27% 30. Vote 70.27%

9. Simple Logistic 75.17% 31. Weighted Instances
Handler Wrapper 70.27%

10. SMO 69.58% 32. Input Mapped
Classifier 70.27%

11. Voted Perceptron 71.32% 33. Decision Table 73.42%
12. IBk 72.37% 34. JRip 70.97%
13. KStar 73.42% 35. OneR 65.73%
14. LWL 72.37% 36. PART 71.32%
15. Ada Boost M1 70.27% 37. ZeroR 70.27%

16. Attribute Selected
Classifier 73.07% 38. Decision Stump 68.53%

17. Bagging 69.23% 39. Hoeffding Tree 69.93%

18. Classification Via
Regression 71.32% 40. J48 75.52%

19. CV Parameter
Selection 70.27% 41. LMT 75.17%

20. Filtered Classifier 75.52% 42. Random Forest 69.58%

21. Iterative Classifier
Optimizer 74.82% 43. Random Tree 66.78%

22. Logit Boost 72.37% 44. REP Tree 70.62%
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Table 2. Results for the breast cancer dataset.

Classification Results

Execution Phases Classifier Correctly Classified
Instances

Confusion Matrix
a =
no-recurrence-events
b = recurrence-events

Initial phase
(accessing accuracy)

BayesNet
(10-fold
cross-validation)

71.67%
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Now that the two models were available, the transference of knowledge was to be
applied, necessitating the creation of a new column to replace the old class column of the
breast cancer dataset. The knowledge from the BayesNet model was chosen for transfer,
and the Weka API was utilized within a Java program to gather all decisions made by the
BayesNet model based on the original data. This process yielded all the mappings of the
decision making from the actual instance class value to the BayesNet model prediction.
Subsequently, the original class values were replaced with the newly gathered values, and
the result was saved as a new dataset. This new dataset was then used to create a new
model using Weka and the J48 algorithm. It was anticipated that the new model would
perform similarly to the BayesNet model; thus, both models were used on the original
dataset to assess any changes in performance. The results can be seen in Table 2 under the
final phase. It can clearly be seen that the new J48 model behaves differently and that its
confusion matrix is more closely related to the model of BayesNet than to the confusion
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matrix of the base J48 model. Additionally, the decision tree output was compared to the
output of the new J48 model, and it was naturally found that the decision tree has changed
substantially, as seen in Figure 4. In the last testing step, the correlation of the output of the
new J48 model to both the results of BayesNet and the base J48 models was checked. The
correlation between the BayesNet results and the base J48 model was 0.563884331, while
the correlation between the BayesNet model and the knowledge-infused model J48 was
0.841531005, so the new model has a much higher correlation to the BayesNet model.
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3.2. Diabetes Dataset Results

To validate the results, the diabetes dataset was employed, and the entire process
was repeated. A total of 46 algorithms were run. Notably, nine algorithms misclassified
one class and consequently failed to detect any instances of the class “tested_positive”.
It is important to highlight that among all three datasets, this one exhibited the smallest
imbalance. Bayes classifiers and tree classifiers were selected to compare the results with
previous and subsequent testing outcomes. Consequently, in Table 3, under the initial phase,
the results of two applicable classifiers are presented. In this scenario, the performance
of the J48 classifier was found to be similar to that of the NaiveBayes classifier. However,
when both algorithms were further tested against the whole original dataset, a slight shift in
performance was observed, as documented in Table 3 under the second phase. At this stage,
the outputs of the NaiveBayes model were combined with the whole dataset to create a new
J48 model using this dataset. This new model was then tested against the original data, and
a change in the results was again noted, as shown in Table 3 under the final phase. With
all results accounted for, the correlation was checked, and a strong correlation was again
expected between the NaiveBayes results and the NaiveBayes-infused J48 results. A less
pronounced correlation was expected between the NaiveBayes and the base J48 model. As
anticipated, the correlation between the base NaiveBayes and J48 model was 0.691951407,
significantly lower than the correlation between the results of the NaiveBayes model and
the knowledge-infused J48 model, which was 0.946443719. This example demonstrated
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that although the differences in correctly classified instances and the distribution of the
confusion matrix were not as marked as in the breast cancer dataset, the decision structure
of the J48 model was still significantly reshaped to achieve a strong correlation between
the black-box model and the white-box model. The differences in model visualization are
clearly evident in Figures 5 and 6.

Table 3. Results for the diabetes dataset.

Classification Results

Execution Phases Classifier
Correctly
Classified
Instances

Confusion Matrix
a = tested_negative
b = tested_positive

Initial phase
(accessing accuracy)

NaiveBayes
(10-fold cross-validation) 76.30%
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3.3. Thyroid Disease Dataset Results

With the final tested dataset, tests were performed with 41 classifiers from the Weka
collection. Similarly to previous findings, some classifiers performed poorly on data present
in the minority, as this dataset is also highly unbalanced. Eight classifiers classified all
instances as “negative” and misclassified all other instances. This dataset, having the
highest imbalance and consisting of four classes unlike the previous datasets, which had
only two, presented unique challenges. In the testing process, decision tree classifiers
performed very well compared to other classifiers, although the Bayes classifiers were not
far behind. Ultimately, the NaiveBayes and J48 classifiers were chosen, with expectations
that the transfer of knowledge would not be as significant since the performance differences
were not severe, as depicted in Table 4 under the initial phase. In Table 4, under the second
phase, it is noted that when the selected models were tested on the original dataset to
compare the result of the knowledge-infused model, there was no significant change in the
results. Weka API was again used to obtain all classification results for the NaiveBayes
classifier, which were then mapped to the original dataset. This newly created dataset was
used to develop a new J48 model, the performance of which was tested on the original
dataset. As shown in Table 4 under the final phase, the performance of this model changed
compared to the original J48 model, as did the decision trees, which are depicted in Figures 7
and 8. It appeared that the performance of the infused model was brought closer to that of
the NaiveBayes model, prompting another test of the correlation between the NaiveBayes
classification results and the original J48 model results, which yielded a score of 0.73364276,
and a value of 0.913280661 was obtained for the correlation between the NaiveBayes model
classification results and the knowledge-infused J48 model classification results. These
results suggest a much higher correlation between the results of the black-box models and
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the infused J48 models, indicating that although the differences in the base models did
not seem significant, a substantial portion of the decision-making process was successfully
transferred from one model to another.

Table 4. Results for the hypothyroid dataset.

Classification Results

Execution Phases Classifier
Correctly
Classified
Instances

Confusion Matrix
a = negative
b = compensated_hypothyroid
c = primary_hypothyroid
d = secondary_hypothyroid

Initial phase
(accessing
accuracy)

NaiveBayes
(10-fold
cross-validation)

95.28%
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4. Discussion

This study utilized three distinct medical databases to explore the adaptation of the
decision-making process in white-box models through knowledge infusion from black-box
models. The results from each dataset illustrated how the decision-making processes could
be altered to enhance transparency and performance.

In the breast cancer dataset, significant improvements in classification accuracy were
achieved for the “recurrence-events” class through knowledge infusion, increasing the
correctly classified instances by 16 or 18.8%. However, this was offset by a 12.4% decrease in
correctly classified instances for the “no-recurrence-events” class. The differences between
the outcomes of the black-box and the modified white-box models were minimal for the “no-
recurrence-events” but showed a slight decline for “recurrence-events.” The integration of
the “inv-nodes” parameter markedly altered the visualization of decision-making processes,
emphasizing the shift in the underlying mechanisms.

The diabetes dataset provided interesting insights during the cross-validation phase,
where the black-box model was preferred, whereas the full dataset favored the white-box
model. The knowledge-infused white-box model, though underperforming compared to the
baseline white-box model on the complete dataset, showed improvements over the initial
white-box model. Minor deviations of 1% in both the “tested_negative” and “tested_positive”
classes were observed from the baseline black-box model, and a complete transformation in
the decision-making process was evidenced by the changes in the decision trees.

For the hypothyroid dataset, the white-box algorithm unexpectedly outperformed
all black-box counterparts, challenging the initial assumption of superior black-box per-
formance. The knowledge transfer resulted in negligible deviations between the infused
white-box and black-box models, demonstrating effective knowledge exchange as reflected
by slight discrepancies in class values and notable changes in decision tree structures.

These findings underscore the potential of knowledge infusion in enhancing the
explanatory depth and trustworthiness of decision-support systems in medicine—a field
where the clarity and reliability of decision making are critical. The process of infusing
knowledge from black-box to white-box models proves particularly valuable in handling
imbalanced datasets where conventional white-box classifiers may yield unsatisfactory
results. Notably, this methodology holds relevance even when the performance of black-
box and white-box classifiers is comparable. However, it is crucial to rigorously assess
the explanation layers of white-box models post-infusion to prevent misinterpretations
in clinical decision making. The addition of black-box-infused visualization layers could
offer novel insights, extending beyond traditional white-box explanations. The correlation
observed between the decision-making processes of the black-box models and the infused
white-box models indicates successful translation of decision-making elements into the
white-box frameworks. This approach, by leveraging white-box algorithm visualizations to
elucidate black-box decision making, provides medical professionals with the opportunity
to assess the reasoning behind AI decisions critically. This insight not only highlights
potential flaws in the decision-making process but also enables the re-evaluation and
adoption of new and more effective solutions within clinical settings.

Nevertheless, this study identifies critical limitations. Knowledge infusion is a tech-
nique used to improve the interpretability of a white-box model by integrating insights
from a black-box model. This process involves transferring patterns, decision-making cues,
and other relevant information from the black-box model to the white-box model. The
goal is to make the white-box model’s decisions more understandable while maintaining
or improving its accuracy. However, if a black-box model already performs perfectly,
this means that for the given dataset and task, the model is making decisions with the
maximum possible accuracy. This leaves no room for improvement in terms of accuracy or
performance. Consequently, there is no variance or error in the model’s predictions that
can be analyzed and used to enhance the white-box model. Variance in this context refers
to the differences or errors between the predicted outcomes by the model and the actual
outcomes, which are used as learning points to improve another model’s performance or
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interpretability. Furthermore, this methodology currently applies only to structured data,
limiting its broader applicability.

Future research should aim to automate the testing of knowledge-infused models to
systematically assess their impact, enabling practitioners to pinpoint the most effective
interpretation layers for use with high-performing black-box models. While this methodol-
ogy is showcased in medical contexts, its principles may be applicable in other high-stakes
environments, complementing existing XAI solutions to boost transparency. Additionally,
alternative methods that mimic decision-making processes, such as instance weighting,
should be explored for potential synergies with this approach, broadening the scope and
effectiveness of model transparency and interpretability in critical applications. Further
testing is essential to fully elaborate on the reasoning behind and the feasibility of knowl-
edge transfer in the presented methodology. Exploring alternative directions for knowledge
transfer, such as reversing the flow between models or establishing a chain of transfers,
could provide deeper insights into the inner workings and enhance the effectiveness of
the proposed method. Such investigations could help refine this approach, ensuring a
more robust framework for understanding and applying knowledge transfer in complex
decision-making environments.

Beyond this knowledge-infusion approach, other notable XAI methodologies con-
tribute to enhancing the transparency and interpretability of machine learning models,
particularly in complex fields like medicine. For instance, Counterfactual Explanations,
which highlight minimal changes needed to alter a model’s decision, offer practical insights
into decision boundaries [40]. Similarly, Feature Importance methods, exemplified by
techniques like Gradient-based Feature Attribution (Grad-CAM) and Integrated Gradients,
provide a granular understanding of input features that influence model outputs [41,42].
These methods complement the presented knowledge-infusion approach by enabling users
to understand model reasoning from different perspectives, which can be critical in clinical
settings where understanding the why behind a model’s decision can be as important as
the decision itself [43]. Combining these techniques with the presented approach could
potentially yield a more robust framework for XAI in medicine, accommodating a broader
range of clinical applications and ensuring that AI-driven decisions are both transparent
and trustworthy [44].

5. Conclusions

This study explored the integration of black-box and white-box models in a medical
context to enhance the interpretability of machine learning decisions without sacrificing
performance. This research presented a novel approach to knowledge transfer between
disparate models, focusing on the use of decision trees as a mechanism for introducing
transparency into the inherently opaque processes of black-box algorithms. The findings
from the three medical datasets, breast cancer, diabetes, and thyroid disease, underscore the
viability of the presented methodology. By infusing decision-making insights from black-
box models into white-box models, we effectively aligned the decision processes of white-
box models with their black-box counterparts. The adapted white-box models exhibited
significant correlations with the original black-box models, highlighting the effectiveness of
this approach in maintaining accuracy while enhancing transparency. This was particularly
evident in the models’ ability to handle minority class instances more effectively, a crucial
aspect in medical applications where accurate classification can be lifesaving.

The practical implications of this study are substantial. In medical settings where
decision clarity is paramount, this approach not only facilitates a deeper understanding
of AI-driven decisions but also builds trust among medical professionals and patients.
Furthermore, the method allows for a nuanced exploration of the decision-making criteria
employed in black-box models, providing insights that could lead to more informed and
ethical AI implementations in healthcare. Despite the successes reported, the journey
towards fully interpretable AI systems in high-stakes environments remains challenging.
Future work will need to focus on refining these methods, possibly integrating more
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advanced forms of explainable AI techniques, and testing the approach in other complex
datasets. Moreover, the broader application of these methods across different domains
could be explored to validate the adaptability and robustness of the proposed methodology.

In conclusion, this study marks a significant step toward bridging the gap between
the high performance of black-box models and the necessity for transparency in critical
decision-making processes. By enhancing the interpretability of AI without undermining
its effectiveness, we move closer to a future where AI can be trusted and utilized to its
fullest potential in sensitive fields such as medicine.
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