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Abstract: The family Chenopodiaceae Vent. (Amaranthaceae s.l.) is known for its taxonomic complex-
ity, comprising species of significant economic and ecological importance. Despite its significance,
the availability of plastid genome data for this family remains limited. This study involved assem-
bling and characterizing the complete plastid genomes of four Caroxylon Thunb. species within the
tribe Salsoleae s.l., utilizing next-generation sequencing technology. We compared genome features,
nucleotide diversity, and repeat sequences and conducted a phylogenetic analysis of ten Salsoleae s.l.
species. The size of the plastid genome varied among four Caroxylon species, ranging from 150,777 bp
(C. nitrarium) to 151,307 bp (C. orientale). Each studied plastid genome encoded 133 genes, including
114 unique genes. This set of genes includes 80 protein-coding genes, 30 tRNA genes, and 4 rRNA
genes. Eight divergent regions (accD, atpF, matK, ndhF-ndhG, petB, rpl20-rpl22, rpoC2, and ycf3) were
identified in ten Salsoleae s.l. plastid genomes, which could be potential DNA-barcoding markers.
Additionally, 1106 repeat elements were detected, consisting of 814 simple sequence repeats, 92 tan-
dem repeats, 88 forward repeats, 111 palindromic repeats, and one reverse repeat. The phylogenetic
analysis provided robust support for the relationships within Caroxylon species. These data represent
a valuable resource for future phylogenetic studies within the genus.

Keywords: Caroxylon; plastid genome; genome comparison; variable regions; phylogenetic relation-
ships; next-generation sequencing

1. Introduction

Chenopodiaceae Vent. (Amaranthaceae s.l.) is one of the largest and most ancient plant
families inhabiting desert and semi-desert regions worldwide [1,2]. The Chenopodiaceae
family encompasses approximately 1700 species distributed among around 110 genera [3].
Ecologically, representatives of the Chenopodiaceae family play crucial roles in desert
ecosystems, serving as vital food sources for herbivores and contributing significantly to
soil stabilization [4]. One of the family’s largest and most important tribes is Salsoleae
s.l. [5,6]. The precise number of genera in Salsoleae s.l. worldwide remains uncertain, with
estimates ranging from 32 to 98 [5]. The species of Salsoleae s.l. are widely distributed
across desert and semi-desert regions spanning Central Asia, the Middle East, Africa, and
Europe [7,8]. Among these members is the genus Caroxylon Thunb., formerly classified as a
section within the Salsola L. before being reinstated as a distinct genus [9]. According to
POWO (Plants of the World Online) [10], the genus comprises 128 species globally, with
nine of them found in Kazakhstan. These species are economically significant as forage
plants and sources of medicinal compounds [4,7].

Numerous studies have been conducted to explore the taxonomy of the tribe, including
Caroxylon species, employing both morphological characteristics and molecular genetics
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methodologies [3,6,9,11–18]. However, despite these efforts, a precise taxonomy of the tribe
has yet to be established.

Akhani et al. [9] performed an extensive phylogenetic study on the Salsoleae s.l.
utilizing sequences from the nuclear ribosomal internal transcribed spacer and the plastid
psbB-psbH region. Certain representatives previously classified under Salsola s.l. have been
redistributed among reinstated or recently established genera [9]. For instance, Salsola
canescens (Moq.) Boiss., previously included in the Salsola sect. Belanthera Iljin under the
name S. boissieri Botsch. [19] was transferred to the genus Caroxylon as Caroxylon canescens
(Moq.) Akhani [9]. However, Sukhorukov et al. [20] indicated uncertainty regarding the
taxonomic transfer of S. canescens to the genus Caroxylon, and they established a new genus,
Akhania, for this species based on molecular phylogeny using ITS and psbB-psbH nucleotide
sequences. Furthermore, using three DNA barcodes, Wen and co-authors [6] suggested that
all species of tribe Salsoleae s.l. were composed of three monophyletic subunits: Salsolea
s.str., the Kali clade, and Caroxylonea. Despite the comprehensive phylogenetic study
conducted by Akhani et al. [9], not all species from Central Asia, including Kazakhstan,
were included in the analysis.

In addition to the numerous phylogenetic analyses conducted on Salsoleae s.l. species
utilizing nuclear and plastid genome markers, population genetics analysis was also
performed. The Amplified Length Polymorphism (AFLP) technique was employed to
identify and use AFLP markers to study genetic relationships in four Salsola species [21].
Inter simple sequence repeat (ISSR) and start codon targeted (SCoT) molecular markers
were used to analyze the genetic relationships between the different species of Salsola [22].
Seventeen simple sequence repeat (SSR) markers of Beta were employed in the cross-genera
amplification of five morphologically distinct invasive Salsola taxa [23]. However, only six of
them were successfully amplified within the studied Salsola taxa [23]. Additionally, several
studies were conducted to assess the cross-genera transferability of these SSR markers to
Salsola species [24,25]. However, there is a notable absence of population structure analyses
in representatives of Caroxylon.

The SSR markers are valuable genetic markers extensively employed in population
studies [26–29]. These markers, composed of tandemly repeated motifs, offer unique
advantages in elucidating genetic variation and evolutionary relationships within and
among species [30,31]. While SSRs are widespread across the genomes of diverse organ-
isms [32], cpSSRs specifically reside within the chloroplast genome, primarily found in
plant cells [26]. Despite the rising popularity of SSR markers in plant population studies,
there is a noticeable absence of research on economically significant Caroxylon species.

Plastid genome characterization studies of representatives from the tribe Salsoleae
s.l. have been limited, with only a few published investigations. Specifically, Li et al. [33]
examined Salsola abrotanoides, while Xie et al. [34] investigated Caroxylon passerinum. Com-
parative analysis of plastid genome data helps reconstruct phylogenetic trees and pro-
vides valuable information for understanding the evolutionary relationships among plant
species [35,36]. The rapid advancement of next-generation sequencing technology has
greatly improved the efficiency and accessibility of obtaining complete plastid genome
nucleotide sequences [37]. Sequencing plastid genomes in plants is crucial for advancing
various fields of research, including evolutionary biology [38], taxonomy [39], biogeogra-
phy [40], breeding [41], and conservation [42]. However, despite the widespread use of
plastid genome data for comparative analysis, no comparative studies have been conducted
on Caroxylon plastid genomes.

Using the nomenclature based on molecular evidence [6,9], we studied the sequenc-
ing, assembly, and annotation of plastid genomes of four Caroxylon species collected in
Kazakhstan: C. orientale, C. nitrarium, C. dzhungaricum, and C. laricinum. These species
thrive in rocky and clay soils, serving as essential forage for herbivores during autumn and
winter. C. orientale and C. nitrarium are widely distributed throughout Kazakhstan’s terri-
tory. Furthermore, we conducted a comparative analysis to characterize these plastomes,
comparing them with related taxa plastomes available in GenBank. The objectives of this
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study encompassed providing plastid genome data for four newly sequenced Caroxylon
species; comparing the structure of their plastid genomes and identifying variable regions
suitable as potential DNA barcoding markers for species identification and phylogenetic
analysis; exploring repeat elements, including simple sequence repeats, tandem repeats,
forward repeats, palindromic repeats, and reverse repeats within the analyzed plastomes;
and utilizing common protein-coding gene sequences for constructing a phylogenetic tree,
aiming to clarify the phylogenetic relationships among the studied species.

2. Results
2.1. Features of the Plastid Genome

In this study, we sequenced plastid genomes of four Caroxylon species (C. orientale, C.
nitrarium, C. dzhungaricum, and C. laricinum) that were collected in Kazakhstan. A total
of 27,353,686, 24,456,970, 21,851,266, and 24,687,480 paired-end reads were obtained, each
having a sequence length of 151 bp. Subsequently, 25,260,324, 21,693,212, 19,639,670, and
22,024,448 high-quality reads were used for mapping the plastid genome of C. orientale,
C. nitrarium, C. dzhungaricum, and C. laricinum, respectively. High-quality data with clean
reads totaling over 3.8, 3.5, 3.1, and 3.6 Gb were generated for C. orientale, C. nitrarium, C.
dzhungaricum, and C. laricinum, respectively. The sequencing quality values Q20 were deter-
mined to be 97.58%, 96.62%, 96.94%, and 96.8% for C. orientale, C. nitrarium, C. dzhungaricum,
and C. laricinum, respectively. The Q30 values were 92.11%, 90.07%, 90.76%, and 90.47%
for the same species. The newly sequenced plastomes have been submitted to GenBank
with the following accession numbers: OR551471 (C. orientale), OR552116 (C. nitrarium),
PP503423 (C. dzhungaricum), and PP503424 (C. laricinum). The complete plastid genome
in four Caroxylon species ranged in size from 150,777 bp in C. nitrarium to 151,307 bp in C.
orientale (Table 1). Each of the newly sequenced plastomes exhibited a typical quadripartite
structure consisting of four regions: a pair of inverted repeats (IRa and IRb), the large single-
copy region (LSC), and the small single-copy region (SSC) (Figure 1). The length of the
LSC region varied from 83,329 bp in C. nitrarium to 83,706 bp in C. dzhungaricum. The SSC
region ranged from 18,266 bp in C. orientale to 18,999 bp in C. laricinum. Additionally, the IR
region varied in size from 48,438 bp (C. laricinum) to 51,348 bp (C. orientale). In terms of GC
content, the IR regions displayed the highest GC content, ranging from 42.57% (C. orientale)
to 42.72% (C. laricinum). Following this, the LSC region showed GC content ranging from
34.67% (C. dzhungaricum) to 34.69% (C. laricinum). Conversely, the SSC region exhibited the
lowest GC content, varying from 29.68% (C. orientale) to 30.33% (C. nitrarium). The overall
GC content of the plastome sequences for C. orientale, C. nitrarium, C. dzhungaricum, and C.
laricinum was 36.69%, 36.84%, 36.68%, and 36.71%, respectively (Table 1).

Table 1. Summary of plastid genome characteristics of C. orientale, C. nitrarium, C. dzhungaricum, and
C. laricinum.

C. orientale C. nitrarium C. dzhungaricum C. laricinum

GenBank numbers OR551471 OR552116 PP503423 PP503424
Genome size (bp) 151,307 150,777 151,148 151,115
LSC (bp) 83,693 83,329 83,706 83,678
SSC (bp) 18,266 18,986 18,996 18,999
IR (bp) 51,348 48,462 48,446 48,438
Number of total genes 133 133 133 133
Protein-coding genes 80 80 80 80
tRNAs 30 30 30 30
rRNAs 4 4 4 4
Total GC content (%) 36.69 36.84 36.68 36.71
LSC GC content (%) 34.69 34.86 34.67 34.69
SSC GC content (%) 29.68 30.33 28.80 29.82
IR GC content (%) 42.57 42.60 42.70 42.72
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Figure 1. Plastid genome maps of the four Caroxylon species. (a) C. orientale, (b) C. nitrarium, (c) C.
dzhungaricum, and (d) C. laricinum. Genes from various functional categories are colorized accordingly.
The darker gray on the inner circle represents GC content, while the lighter gray denotes AT content.

Each of the C. orientale, C. nitrarium, C. dzhungaricum, and C. laricinum plastid genomes
encoded 133 genes; 114 of these genes were unique, including 80 protein-coding genes,
30 tRNA genes, and 4 rRNA genes (Table 1). Seven tRNA genes (trnA-UGC, trnI-CAU,
trnI-GAU, trnL-CAA, trnN-GUU, trnR-ACG, and trnV-GAC), eight protein-coding genes
(rps7, rps12, rpl2, rpl23, ndhB, ycf1, ycf2, and ycf15), and four rRNA genes (rrn4.5, rrn5, rrn16,
and rrn23) were identified as duplicated within IR regions. Among the 114 unique genes,
17 contain introns: 6 tRNA genes (trnA-UGC, trnG-GCC, trnI-GAU, trnK-UUU, trnL-UAA,
and trnV-UAC) and 11 protein-coding genes (rps12, rps16, rpl16, rpoC1, atpF, ndhA, ndhB,
petB, petD, clpP, and ycf3). Notably, clpP and ycf3 stand out as the only genes in this context
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with two introns each, while the other 15 genes are characterized by having a single intron
each (Table 2).

Table 2. Genes identified in plastomes of four Caroxylon species.

Category Group of Genes Name of Genes

Self-replication

Ribosomal RNA rrn4.5 (x2), rrn5 (x2), rrn16 (x2), rrn23 (x2)

Transfer RNA

trnA-UGC * (x2), trnC-GCA, trnD-GUC, trnE-UUC,
trnF-GAA, trnfM-CAU, trnG-GCC *, trnG-UCC,
trnH-GUG, trnI-CAU (x2), trnI-GAU * (x2),
trnK-UUU *, trnL-CAA (x2), trnL-UAA *, trnL-UAG,
trnM-CAU, trnN-GUU (x2), trnP-UGG, trnQ-UUG,
trnR-ACG (x2), trnR-UCU, trnS-GCU, trnS-GGA,
trnS-UGA, trnT-GGU, trnT-UGU, trnV-GAC (x2),
trnV-UAC *, trnW-CCA, trnY-GUA

Small subunit of ribosome rps2, rps3, rps4, rps7 (x2), rps8, rps11, rps12 * (x2),
rps14, rps15, rps16 *, rps18, rps19

Large subunit of ribosome rpl2 (x2), rpl14, rpl16 *, rpl20, rpl22, rpl23 (x2), rpl32,
rpl33, rpl36

RNA polymerase rpoA, rpoB, rpoC1 *, rpoC2

Translation initiation factor infA

Photosynthesis

ATP synthase atpA, atpB, atpE, atpF *, atpH, atpI

NADH dehydrogenase ndhA *, ndhB * (x2), ndhC, ndhD, ndhE, ndhF, ndhG,
ndhH, ndhI, ndhJ, ndhK

Subunits of cytochrome petA, petB *, petD *, petG, petL, petN

Photosystem I psaA, psaB, psaC, psaI, psaJ

Photosystem II psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ,
psbK, psbL, psbM, psbN, psbT, psbZ

Rubisco rbcL

Other genes

Maturase matK

Protease clpP **

Envelope membrane protein cemA

Subunit of acetyl-CoA-carboxylase accD

C-type cytochrome synthesis gene ccsA

Genes of unknown function Hypothetical chloroplast reading frames ycf1 (x2), ycf2 (x2), ycf3 **, ycf4, ycf15 (x2)

* One-intron-containing genes; ** two-intron-containing genes; (x2) duplicated genes.

2.2. Plastome Analysis by Sliding Window

We utilized DnaSP 6 software to perform a sliding window analysis aimed at deter-
mining the nucleotide diversity (Pi) value within the 80 protein-coding genes in plastid
genomes of the Caroxylon species. Based on the sequence alignment of common protein-
coding genes, we identified eight hypervariable regions: accD, atpF, matK, ndhF-ndhG, petB,
rpl20-rpl22, rpoC2, and ycf3. Seven of these regions (accD, atpF, matK, petB, rpl20-rpl22, rpoC2,
and ycf3) are situated within the LSC region, while only one region (ndhF-ndhG) is found in
the SSC region (Figure 2). Among the variable regions identified, rpl20-rpl22 exhibited the
highest Pi value at 0.05711 (Table 3).

The nonsynonymous (Ka) and synonymous (Ks) substitutions were calculated using
DNASP 6 between studied plastid genomes (Table 3). The results suggested that the ratios
of Ka/Ks in six out of ten genes listed in Table 3 were >1, indicating that they were under
positive selection.
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Table 3. Regions with highly variable sequences and Ka/Ks ratios of genes in plastid genomes of
Caroxylon species.

Variable
Region Length Variable Sites Parsimony

Informative Sites
Nucleotide
Diversity

Analysed
Genes Ka/Ks Ratio

accD 723 103 36 0.05063 accD 0.900
atpF 771 75 35 0.04170 atpF 1.308
matK 606 96 37 0.05111 matK 1.813

ndhF-ndhG 606 101 44 0.05459 ndhF
ndhG

0.600
0.476

petB 721 84 36 0.04252 petB 4.139

rpl20-rpl22 606 114 43 0.05711 rpl20
rpl22

1.099
2.425

rpoC2 606 78 32 0.04141 rpoC2 0.476
ycf3 672 77 34 0.04185 ycf3 1.104

2.3. IR and SC Regions Boundary Analysis

Our analysis investigated the boundaries of the IR-SSC and IR-LSC regions in the plas-
tomes of four Caroxylon species, comparing them with the reference sample, C. passerinum.
We observed that the gene rps19 flanked the junction between the LSC and IRb regions in
the four Caroxylon species, whereas in the reference sample C. passerinum, the rps19 gene,
including a pseudogene, was located within the LSC region. Conversely, the ndhF gene in
C. passerinum was positioned to flank the junction between the SSC and IRa regions, while
in the four Caroxylon samples, this gene was situated within the SSC region. The ycf1 gene
exhibited a consistent pattern across all five samples, spanning the boundaries of the SSC
and IRb regions. Additionally, a duplicated copy of the ycf1 gene was consistently observed
at the junction between the SSC and IRa regions in each sample (Figure 3).
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JLB (junctions between LSC and IRb regions), JSB (junctions between IRb–SSC regions), JSA (junctions
between SSC–IRa regions), and JLA (junctions between IRa–LSC regions).

2.4. Repeat Sequence Analysis

We identified 814 simple sequence repeats (SSRs) across the four Caroxylon plastomes
using the MISA tool. SSRs vary among the four Caroxylon plastomes, ranging from 198
in C. nitrarium to 208 in C. dzhungaricum. The analysis revealed that mononucleotide
repeats were the most abundant motifs, representing 72.97% of the total SSRs. Dinucleotide
repeats followed, accounting for 19.04%, while tetranucleotide repeats constituted 4.18%.
Hexanucleotide repeats, representing 0.25% of the total SSRs, were uniquely identified
within the C. laricinum plastome. The vast majority of mononucleotide repeats consisted
of A/T sequences (71.38%), with a minor portion (2.19%) comprising C/G sequences.
Regarding dinucleotide repeats, AT/AT repeats were predominant, representing 54.84%,
while AC/GT repeats constituted only 6.45%, and AG/CT repeats made up 38.71% (Table 4).
Most of the identified SSRs were located in the non-coding and LSC regions of Caroxylon
plastomes (Supplementary File S1).

Table 4. Types and numbers of simple sequence repeats in the plastomes of four Caroxylon species.

Type Repeat Unit C. orientale C. nitrarium C.dzhungaricum C. laricinum Total (%) %

Mono-
A/T 148 137 149 147 581 (97.81)

72.97C/G 3 4 3 3 13 (2.19)

Di-
AC/GT 2 4 2 2 10 (6.45)

19.04AG/CT 15 15 15 15 60 (38.71)
AT/AT 20 25 21 19 85 (54.84)

Tri-
AAG/CTT - 2 2 2 6 (24)

3.07AAT/ATT 5 4 5 5 19 (76.00)

Tetra-

AAAC/GTTT 1 1 1 1 4 (11.76)

4.18

AAAG/CTTT 3 - 3 2 8 (23.53)
AAAT/ATTT 1 1 1 1 4 (11.76)
AAGG/CCTT - 1 - - 1 (2.94)
AATC/ATTG - - 1 - 1 (2.94)
AATT/AATT 2 2 2 2 8 (23.53)
ACCT/AGGT 2 2 2 2 8 (23.53)

Penta-
AAAAG/CTTTT 1 - 1 1 3 (75.00)

0.49AAAGG/CCTTT 1 - - - 1 (25.00)
Hexa- AGCTCC/AGCTGG - - - 2 2 (100.00) 0.25
Total 204 198 208 204 814 (100) 100
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The lengths of the identified simple sequence repeats varied from 6 bp in C. laricinum
to 20 bp in C. dzhungaricum plastid genomes. The majority of SSRs were eight base pairs in
length, with 93, 97, 100, and 97 repeats identified in the plastid genomes of C. laricinum,
C. orientale, C. dzhungaricum, and C. nitrarium, respectively. The categorization of repeats
with different lengths is presented in Figure 4.
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Furthermore, our analysis identified tandem, forward, palindromic, and reverse repeat
types in the plastomes of the four Caroxylon species. A total of 292 repeats were detected,
comprising 92 tandem repeats, 88 forward repeats, 111 palindromic repeats, and just one
reverse repeat. The reverse repeat was found solely within the plastome of C. dzhungaricum
(Figure 5).
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2.5. Phylogenetic Analysis

To elucidate the phylogenetic relationships among the ten species from the Salsoleae
tribe, we reconstructed the phylogenetic tree using the Maximum Likelihood (ML) and
Bayesian Inference (BI) methods. We utilized nucleotide sequences of 80 protein-coding
genes, commonly found in 12 chloroplast genomes, including two outgroup species. Two
datasets, (1) nucleotide sequences derived from protein-coding genes and (2) nucleotide
sequences encompassing the entire plastid genome, were employed to construct the phy-
logenetic trees. The phylogenetic analyses based on the ML and BI methods grouped all
ten samples into a single clade with strong bootstrap support. The species examined in
this study (C. orientale, C. nitrarium, C. dzhungaricum, and C. laricinum) formed a distinct
subclade alongside species obtained from GenBank (C. passerinum), thus constituting a
subgroup within the Caroxylon clade (Figure 6).
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rior probability are given at each node. The species from Kazakhstan were highlighted with the
letters “KZ”.

The phylogenetic analyses performed on the entire plastid genome sequences revealed
results consistent with those obtained from the dataset of protein-coding gene sequences.
The ML and BI trees generated from the complete plastid genome sequences are included
in Supplementary File S2.

3. Discussion

Data from plastid genomes offer valuable insights for taxonomic studies aimed at
assessing evolutionary relationships and conducting comparative analyses across various
taxonomic levels [43–46]. In this investigation, we obtained and analyzed four Caroxylon
plastid genomes using Illumina sequencing technology. The comparative analysis revealed
consistent genome structure and gene count across these examined genomes. The study of
plastid genomes of C. orientale, C. nitrarium, C. dzhungaricum, and C. laricinum revealed a
consistent presence of 133 genes in each species, with 114 genes being unique, including
80 protein-coding genes, 30 tRNA genes, and 4 rRNA genes (Table 1).

Compared with the plastome annotation of C. passerinum [34], variations were ob-
served in the number of protein-coding and tRNA genes. Specifically, the total number
of protein-coding genes in the C. passerinum plastome was reported as 89, including du-
plicated genes. However, in the four newly sequenced plastomes, this count was 88, as
the pseudogene rps19 was not annotated due to its short length. Conversely, while the
trnG-GCC and trnK-UUU genes were not annotated in the C. passerinum plastome [34],
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these genes were identified in the four Caroxylon species analyzed in this study, resulting in
a total of 37 tRNA genes, including duplicated genes.

Our sliding window analysis investigation further identified eight relatively variable
regions, encompassing accD, atpF, matK, ndhF-ndhG, petB, rpl20-rpl22, rpoC2, and ycf3
(Figure 2), where six out of ten genes in those regions were under positive selection
(Table 3). Noteworthy among these findings is the recognition of the matK gene as a core
plant barcode by the CBOL Plant Working Group [47]. Moreover, our examination of
nucleotide diversity demonstrated similar variability in other species. For instance, Liu
et al. [48] and Almerekova et al. [49] identified variability in the accD region among Quercus
and Juniperus species, respectively. Rodda and Niissalo [50] observed variability in the
accD and ndhF regions within Hoya species plastomes. Additionally, variability in the rpl20
region among Aerides species’ plastid genome was noted by Chen et al. [51], while Ding
et al. [52] reported variability in the rpl22 region among the Clethra plastid genome. The
identified relatively variable regions have the potential to serve as molecular markers for
phylogenetic studies of Caroxylon species.

The boundaries between IR and SC regions are conserved in studied Caroxylon species
(Figure 3). The IRb/LSC boundary was consistently found within the rps19 gene among
the four newly sequenced species analyzed in this study. Similarly, the IRb/SSC boundary
was located within the ycf1 gene, while the IRa/SSC boundary was identified within the
duplicated copy of the ycf1 gene. These results are in accordance with previous studies
conducted on different species [53,54]. Notably, no major changes in the position of IR
regions were observed in the studied plastid genomes, suggesting the absence of substantial
structural rearrangements [55,56]. Among more closely related species, any observed shifts
in IR boundaries tended to be relatively minor [57].

SSRs are widespread throughout plastid genomes across different species and are
extensively employed in plant population studies [58–60]. In this study, the identified SSRs
varied in number, with counts ranging from 198 in C. nitrarium to 208 in C. dzhungaricum
plastomes, resulting in a total of 814 SSRs (Table 4). Similar to the previous studies [43,61],
mononucleotide repeats were the most prevalent motifs, comprising 594 of the total identi-
fied SSRs. Polyadenine (poly-A) or polythymine (poly-T) repeats were the most abundant
in the plastid genome of four Caroxylon species collected in Kazakhstan, a common phe-
nomenon observed in the plastid genomes of higher plants [62–64]. According to the
previous findings [65,66], most of the identified SSRs were located in the non-coding and
LSC regions of the four examined plastomes. The SSRs revealed in this analysis offer
valuable resources for investigating the population genetics of Caroxylon species, thereby
filling the gaps in population studies within this genus.

The plastid genome significantly conserves structure and gene composition [57], mak-
ing it a valuable resource for analyzing phylogenetic relationships across diverse taxonomic
levels [67]. Before this study, phylogenetic relationships within the tribe Salsoleae had
been assessed using only a limited number of genes, and the precise taxonomy of the tribe
remains unresolved. In this analysis, nucleotide sequences from common protein-coding
genes of ten representatives of the Salsoleae tribe were employed, comprising four newly
sequenced Caroxylon species. The phylogenetic tree was reconstructed using the Maximum
Likelihood (ML) method. The resulting phylogenetic tree exhibited a topology with high-
resolution values at the clades. Caroxylon was initially considered a section of the genus
Salsola [19,68,69], but later it was recognized as a separate genus [9,70]. The monophyly
of Caroxylon reported in previous studies [6,20] remained consistent with the findings of
this study. The assessment of the ML phylogenetic tree suggests that C. passerinum (syn.
C. gemmascens) is the oldest species in the five analyzed taxa. In the four Caraxylon species
reported in this study, C. laricinum, C. dzhungaricum, and C. orientale have formed a distinct
subclade with a high bootstrap value (Figure 6). The fourth species, C. nitrarium, seems
to have evolved from a common ancestor in the earlier stage of speciation, which is well
agreed with the results obtained based on using universal DNA barcodes [6,9].
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The robust support values obtained for the phylogenetic relationships inferred from
plastid genome data closely mirrored those derived from nuclear gene data, suggesting
the reliable resolution of phylogenetic relationships within this genus by plastid genome
data. However, further plastid genome data are needed to comprehensively assess the
phylogenetic relationships within the Caroxylon clade. This study represents the first
attempt to evaluate phylogenetic relationships using genomic data in this genus and may
serve as a valuable resource for future phylogenetic studies of the genus.

4. Materials and Methods
4.1. Plant Materials and DNA Extraction

Plant leaves of four Caoxylon species were collected from Kyzylorda (C. orientale and C.
nitrarium), Almaty (C. dzhungaricum), and West Kazakhstan (C. laricinum) regions of Kaza-
khstan (Table 5). The voucher herbarium specimens of C. orientale, C. nitrarium, C. dzhun-
garicum, and C. laricinum were deposited in the Herbarium (AA) of the Institute of Botany
and Phytointroduction under accession numbers AA0003263, AA0003264, AA0003265, and
AA0003266, respectively. The collected fresh leaves were preserved in silica gel and used
for DNA extraction. Total genomic DNA was extracted using the cetyltrimethylammonium
bromide (CTAB) protocol [71], and DNA samples were stored at −80 ◦C until sequencing.

Table 5. Information on collected places of four Caroxylon species.

Species Collected Place GPS Coordinates

C. orientale Kyzylorda region, Zhanakorgan district. 44.106111, 67.062778
150 m above sea level (m a. s. l.)

C. nitrarium Kyzylorda region, Zhanakorgan district. 44.110833, 67.061111
150 m a. s. l.

C. dzhungaricum Almaty region, Trans-Ili Alatau, left bank of the Charyn river. 43.249722, 78.898611
1210 m a. s. l.

C. laricinum West Kazakhstan region, Burlinsky district, Bestau village. 51.254444, 53.093611
120 m a. s. l.

4.2. Genome Sequencing, Assembly, and Annotation

The total genomic DNA that passed quality control analysis was used for library
preparation using the TruSeq Nano DNA Kit manufactured by Illumina Inc. (San Diego,
CA, USA). The plastomes of four Caroxylon species were sequenced using an Illumina
NovaSeq 6000 platform (Illumina Inc., USA), which was conducted at Macrogen Inc. (Seoul,
Republic of Korea). FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc,
accessed on 26 January 2024) was used to conduct initial quality control checks on raw
sequence data coming from high throughput sequencing pipelines. The Trimmomatic
0.36 software [72] removed adapter sequences from the raw reads. The reads with a
quality score over 20 were accepted as good-quality reads. Subsequently, the clean reads
were assembled using the NOVOPlasty 4.3.3 program [73]. Further annotation of the
assembled sequences was conducted using the published plastome of Caroxylon passerinum
(MW192441) as a reference. The annotation of protein-coding, rRNA, and tRNA genes
was performed using GeSeq [74] with manual corrections. The OrganellarGenomeDRAW
1.3.1 tool (OGDRAW) [75] generated a circular gene map of the four Caroxylon species.
Finally, the annotated plastome sequences of four Caroxylon species were deposited into
the GenBank.

4.3. Plastome Analysis by Sliding Window, Ka/Ks Calculation, IR Regions Contraction,
and Expansion

To evaluate the nucleotide diversity (Pi) of the plastome sequences, we conducted
sliding window analysis using DnaSP 6 software [76]. The window length was configured
to 600 bp, with a step size of 200 bp. The synonymous (Ka), nonsynonymous (Ks), and

http://www.bioinformatics.babraham.ac.uk/projects/fastqc
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Ka/Ks values of protein-coding genes in studied species were analyzed using DnaSP 6 soft-
ware [76]. The contraction and expansion of the inverted repeat (IR) boundaries in Caroxylon
species were visualized using IRscope software [77], with C. passerinum (MW192441) as
the reference.

4.4. Repeat Sequence Analysis

Simple sequence repeats (SSR) were identified in four studied plastome sequences
of Caroxylon species using the web-based simple sequence repeats finder MISA (https:
//webblast.ipk-gatersleben.de/misa/, accessed on 9 March 2024) tool [78]. The thresholds
used were 8 repeat units for mononucleotide, 4 for dinucleotide and trinucleotide, and
3 for tetranucleotide, pentanucleotide, and hexanucleotide SSRs. Analysis of long repeats,
including forward (F), reverse (R), and palindromic (P) repeats, was conducted using
the REPuter program [79], accessible at https://bibiserv.cebitec.uni-bielefeld.de/reputer,
accessed on 9 March 2024. This analysis utilized the following parameters: Hamming
distance = 3 and a minimum repeat size of 30 base pairs. The Tandem Repeats Finder 4.09
(https://tandem.bu.edu/trf/trf.html, accessed on 9 March 2024) tool [80] was utilized to
identify tandem repeats (T) with default settings.

4.5. Phylogenetic Analysis

Phylogenetic analysis was conducted using the newly sequenced four Caroxylon
species, along with six related species and two outgroup species (Suaeda glauca, MK867773,
and Atriplex prostrata, OR374024) obtained from GenBank. Phylogenetic trees were re-
constructed using two sets of data: (1) nucleotide sequences from protein-coding genes
and (2) nucleotide sequences of the entire plastid genome. Nucleotide sequences from
80 protein-coding genes were utilized, along with outgroups, to construct the phylogenetic
tree using the Maximum Likelihood (ML) and Bayesian Inference (BI) methods. The ML
phylogenetic tree was constructed using IQ-TREE 2.2.2.6 software [81], employing the
best-fit model TVM + F + I + R3, selected based on the Bayesian Information Criterion (BIC).
BI analysis was performed using MrBayes [82]. The generated trees were displayed using
FigTree 1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/, accessed on 10 March 2024).

5. Conclusions

The complete plastid genomes of four Caroxylon species were sequenced and annotated.
The size of the plastid genomes varied from 150,777 in C. nitrarium to 151,307 in C. orientale.
The comparative evaluation of the four plastid genomes indicated that they consisted of
133 genes in each species, including 80 protein-coding genes, 30 tRNA genes, and 4 rRNA
genes. The regions accD, atpF, matK, ndhF-ndhG, petB, rpl20-rpl22, rpoC2, and ycf3 were
identified as the most divergent regions, with six out of ten genes in those regions being
under positive selection. The analysis of four plastid genomes predicted the availability
of 814 SSRs, with counts ranging from 198 in C. nitrarium to 208 in C. dzhungaricum. The
ML phylogenetic tree confirmed the monophyletic origin of Caroxylon. The assessment
of the dendrogram suggested that three Caroxylon species (C. laricinum, C. dzhungaricum,
and C. orientale) have formed a distinct subclade with a robust genetic relationship. Thus,
assessing the complete sequences of four plastid genomes in the genus provided highly
informative data for future Caroxylon genetic studies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants13101332/s1, Supplementary File S1: SSRs list of Caroxylon
species. Supplementary File S2: Phylogenetic tree based on complete plastid genome data.
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