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Abstract: Accurate traffic flow prediction plays a crucial role in the development of intelligent
traffic management. Despite numerous investigations into spatio-temporal methods, achieving high
accuracy in traffic flow prediction remains challenging. This challenge arises from the complex
dynamic spatio-temporal correlations within the traffic road network and the limitations imposed
by the selection of hyperparameters based on experiments and manual experience, which can affect
the performance of the network architecture. This paper introduces a novel transformer-based
adaptive graph convolutional recurrent network. The proposed network automatically infers the
interdependencies among different traffic sequences and incorporates the capability to capture
global spatio-temporal correlations. This enables the dynamic capture of long-range temporal
correlations. Furthermore, the whale optimization algorithm is employed to efficiently design an
optimal network structure that aligns with the requirements of the traffic domain and maximizes
the utilization of limited computational resources. This design approach significantly enhances the
model’s performance and improves the accuracy of traffic flow prediction. The experimental results
on four real datasets demonstrate the efficacy of our approach. In PEMS03, it improves MAE by 2.6%
and RMSE by 1.4%. In PEMS04, improvements are 1.6% in MAE and 1.4% in RMSE, with a similar
MAPE score to the best baseline. For PEMS07, our approach shows a 4.1% improvement in MAE
and 2.2% in RMSE. On PEMS08, it surpasses the current best baseline with a 3.4% improvement in
MAE and 1.6% in RMSE. These results confirm the good performance of our model in traffic flow
prediction across multiple datasets.

Keywords: spatio-temporal correlation; adaptive graph convolutional recurrent network; transformer;
whale optimization algorithm; traffic prediction

MSC: 68U01

1. Introduction

The transportation system is a crucial type of infrastructure in modern cities. As
urbanization progresses, the growing urban population and the number of vehicles on the
transportation network contribute to the increasing complexity of the traffic system. Conse-
quently, there is an urgent need that lies in the development of Intelligent Transportation
Systems (ITS). Early intervention based on traffic flow prediction is a crucial prerequisite
for implementing ITS as it improves the efficiency of a transportation system, mitigates
traffic-related problems, and facilitates the development of smart cities [1]. By analyzing the
past data on traffic flow, it can help with accurate traffic flow prediction attempts that can
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anticipate the future circumstances of traffic on road networks. The intelligent management
of road networks in metropolitan areas is made possible by accurate and prompt traffic flow
forecasts, which also decrease traffic congestion and improve traffic efficiency. To acquire
the traffic flow status of a city, various sources of information can be utilized, including a
transportation network, private vehicle movements, taxi tracks, and public transportation
transaction records that are captured by sensors [2].

Nonetheless, achieving accurate traffic prediction has become progressively more
challenging. On the one hand, traffic data are intrinsically a time series characterized by
intricate temporal dependencies, exhibiting periodicity, volatility, uncertainty, and non-
linearity along the time dimension. Traffic data at a specific location exhibit nonlinear
variations at distinct points in time, rendering the long-term prediction of traffic flow
challenging. On the other hand, traffic data exhibit intricate dynamic spatial correlations,
and the variability of traffic flows across different regional patterns is significant. Figure 1
illustrates an actual road network in a given region, thereby showing the dynamic corre-
lation of traffic flows across geography. The complex spatial and temporal relationships
in a road traffic network can have a significant impact on the accuracy of a traffic flow
prediction system. In reality, traffic flow can show significant differences in different areas
and time periods, with frequent congestion in office areas (such as from business districts)
and residential areas (such as from dwelling districts) during morning and evening peak
hours. In addition, traffic flows in commercial areas increase significantly during holidays.
In addition, the intricate relationship between vehicles and roads in the spatial dimension
complicates the accurate prediction of traffic flow. For example, disruptions in traffic flow
due to temporary road closures for maintenance and unpredictable traffic accidents over a
period of time can have an impact on distant roads. In addition, the complexity of roadway
intersections poses additional challenges for the accurate prediction of traffic flow.
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To tackle the aforementioned challenges, researchers have extensively investigated
the issue. The currently available methods may be roughly divided into four categories:
conventional methods of statistical analysis, methods of machine learning, methods of deep
learning, and graphical neural network methods. The predominant statistical methods
employed include Autoregressive Integrated Moving Average (ARIMA) [3] and Vector
Autoregression (VAR) [4], both of which rely on the assumption of ideal smoothness [5].
However, traffic road networks display dynamic and complicated behaviors, and statis-
tically based approaches fall short in capturing nonlinear correlations, leading to large
inaccuracies when forecasting enormous volumes of traffic data defined by complex spatio-
temporal properties. However, machine learning techniques excel in capturing nonlinear
relationships, leading to the application of classical methods such as Support Vector Re-
gression (SVR) [6] and K-Nearest Neighbor [7] in traffic flow prediction. Nonetheless, these
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models still exhibit limited performance when mining intricate spatio-temporal correlations.
Deep learning methods effectively extract abstract features from raw data using multilayer
neural networks. Deep learning methods excel in deriving traffic flow information from
past data and producing precise forecasts, which is in contrast to machine learning methods
that depend on features that are manually generated. Consequently, methods based on
deep learning for predicting traffic flow have become more popular recently. Notably,
Recurrent Neural Networks (RNNs), encompassing Long Short-Term Memory (LSTM) [8]
and Gated Recurrent Unit (GRU) [9], effectively capture the temporal correlation within
traffic data. Nevertheless, these RNN models ignore the spatial correlations present in
spatio-temporal data and interpret traffic sequences from different roadways as separate
data streams. While convolutional neural networks (CNNs) [10] excel in capturing spatial
correlations within regular spatial grids, traffic road networks pose a challenge as they
possess a topologically complex non-Euclidean data structure. On the other hand, graph
neural networks (GNNs) [11] have the capability to directly model non-Euclidean data; as
such, graph convolutional networks (GCNs) [12] and graph attention networks (GATs) [13]
are employed to capture the spatial correlations present in traffic road networks.

Due to the inherent temporal and spatial correlations contained in traffic flow data,
focusing exclusively on modeling time or space is inadequate for traffic flow prediction.
Temporal modeling ignores the influence of geographical location on traffic flow and only
concentrates on the temporal patterns of traffic flow. For instance, during specific morning
peak hours, the traffic flow on residential roads might be influenced by nearby office clus-
ters, an aspect that temporal modeling fails to capture. In contrast, spatial modeling solely
concentrates on capturing the variation pattern of traffic flow in the spatial dimension while
disregarding the influence of time on traffic flow. For example, within a commercial area,
traffic flow exhibits fluctuations during particular time periods, such as holidays, resulting
in a significant surge in traffic. This phenomenon cannot be sufficiently captured through
spatial modeling alone. Consequently, it is essential to take into account both temporal and
spatial correlations in order to improve the accuracy of traffic flow forecasts. Hence, several
studies ([14–18]) in the field of spatio-temporal modeling commonly employ a combination
of RNNs and GNNs to capture the intricate spatio-temporal relationships within traffic data.
The network model’s accuracy is increased by the attention mechanism, which enables the
model to concentrate more on the data that are pertinent to the current issue. Therefore,
the attention mechanism is widely employed in spatio-temporal methods for traffic flow
prediction. By utilizing the attention mechanism, the model can prioritize the significant
locations and time points associated with traffic flow changes, thereby furnishing addi-
tional information to elucidate the prediction results of the model. To effectively capture
the spatio-temporal correlations in traffic data, several studies have included attention
processes together with independent modules. This is demonstrated by models such as
Spatio-Temporal Graph Convolutional Network (STGCN) [18] and Attention-Based Spatio-
Temporal Graph Convolutional Network (ASTGCN) [19]. Initially, these models capture
temporal correlations through a dedicated module, and this is followed by forwarding the
extracted temporal features to a module responsible for capturing spatial correlations and
incorporating an attention mechanism. However, this approach diminishes the captured
spatio-temporal dependence. Consequently, certain models strive to devise novel graph
structures to address the challenging problem of spatio-temporal correlation in traffic data.
Spatio-Temporal Synchronous Graph Convolutional Network (STSGCN) [20] addresses the
challenge of capturing spatio-temporal correlations synchronously by constructing local
spatio-temporal maps. Spatial Temporal Graph Neural Network (STGNN) [21] integrates
GRU and transformer [22] models to capture both local and global temporal dependen-
cies, thereby demonstrating the effectiveness of the attention mechanism in capturing
the long-term temporal relationships of Spatio-Temporal Fusion Graph Neural Networks
(STFGNN) [23], which achieves the simultaneous capture of spatio-temporal correlations
by generating spatio-temporal maps and fusing features. However, these models do not
account for the dynamic spatio-temporal dependencies among the nodes in the traffic road
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network. To capture dynamic spatio-temporal correlations, adaptive graph convolutional
recurrent network (AGCRN) [24] automatically infers the interdependencies among dif-
ferent traffic sequences through two adaptive modules and a learnable node embedding
matrix. However, it lacks the inclusion of attention mechanisms to capture both short-term
and long-term temporal correlations. Graph Convolutional Dynamic Recurrent Network
with Attention [25] integrates the attention mechanism into the graph convolution and
dynamic GRU to capture the long-term temporal dependencies in traffic flow. However, its
performance is highly dependent on the K-value in the k-hopGC module, which employs a
k-hop neighbor matrix to extend the receptive field of the GCN; thus, it requires several
manual tests to determine the optimal K-value. Multi-Attention Predictive Recurrent Neu-
ral Network [26] combines convolutional neural networks and predictive recursive neural
networks to extract spatio-temporal information from traffic flow data. However, it still
lacks sufficient focus on the correlation between global information and comprehensive
features of traffic flow.

To address the above challenges, this paper introduces a novel deep learning frame-
work, named Adaptive Graph Convolutional Recurrent Network with Transformer and
Whale Optimization Algorithm (WOA-AGCRTN), which combines the transformer algo-
rithm and WOA. The proposed network model has the capability to automatically infer
the interdependencies among various traffic sequences while capturing both short-range
and long-range spatio-temporal correlations within traffic road networks. This enhanced
capability enables the model to effectively capture global spatio-temporal correlations. In
summary, the key contributions of this paper can be summarized as follows:

• We propose an adaptive graph convolutional recurrent network with the transformer
algorithm. This network infers the interdependencies between traffic sequences and
integrates the transformer technique to capture both long and short-term temporal
dependencies.

• We propose utilizing whale optimization algorithms to design an optimal network
structure that aligns with the transportation domain, thereby aiming to significantly
enhance the accuracy of traffic flow prediction.

• The feasibility and advantages of the proposed network model are validated using four
real datasets. The results from experiments on these datasets affirm the effectiveness
of our method. In PEMS03, our model reduces MAE by 2.6% and RMSE by 1.4%.
In PEMS04, improvements are 1.6% in MAE and 1.4% in RMSE. In PEMS07, a 4.1%
MAE improvement and 2.2% in RMSE is exhibited. Moreover, in PEMS08, our model
surpasses the baseline with a 3.4% MAE improvement and 1.6% in RMSE.

• We effectively address the challenge of long-range time dependence and significantly
improve the performance of the network model compared to several baseline methods,
including the most recent state-of-the-art approaches.

The remaining parts of this article are structured as follows: Section 2 presents
some work related to traffic prediction and the swarm intelligence optimization algo-
rithm. Section 3 presents the methodology of the proposed WOA-AGCRTN, and Section 4
presents and analyzes the experiment results. Finally, Section 5 details the conclusions and
the prospects of our research.

2. Related Work

This section provides an overview of the existing literature for traffic flow prediction,
categorizing it into two main areas: spatio-temporal data prediction methods and graph
convolutional neural network methods. And swarm intelligence optimization algorithm-
aided methods are analyzed for traffic flow prediction.

2.1. Spatio-Temporal Prediction

Traffic flow prediction is a subset of the broader field of spatio-temporal data predic-
tion, which has garnered significant research attention over the past few decades. Among
the available research methods for traffic flow prediction, the earliest models can be clas-
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sified as either statistical-based or neural network-based. Statistical models, including
ARIMA and VAR, capture spatial correlations in a probabilistic manner and aid in ana-
lyzing uncertainties within traffic flows. However, since these models rely on linear time
series methods and assume ideal smoothness [5], they often fail to accurately predict actual
complex nonlinear traffic data, thus rendering them less effective. To capture the intricate
nonlinear relationships in traffic data, researchers have employed SVR, KNN, and neural
network models to traffic prediction for traffic prediction. However, their fully connected
structures impose significant computational and storage costs.

Compared with traditional methods, deep learning is effective in automatically cap-
turing features in representational learning. For example, while overcoming the gradient
vanishing and explosion issues of conventional recurrent neural networks, LSTM enhances
the modeling of long sequence correlations and applies LSTM to traffic flow prediction.
The proposed GRU simplifies model construction, decreases the parameter count, enhances
computational efficiency, and mitigates the risk of overfitting. However, these RNN models
(including RNN, LSTM, and GRU) consider traffic sequences from several roadways as
separate data streams, which can only extract temporal information but cannot capture
spatial information from the traffic sequences. Deep Spatio-Temporal Residual Networks
(ST-ResNets) [10], which leverage CNNs to extract spatial features and capture spatial
correlations by treating the traffic road network as Euclidean data. However, the intricate
and irregular topology of the traffic road network severely limits the spatial correlations
captured by CNNs.

GNNs were subsequently proposed. GNNs are capable of modeling non-Euclidean
data and have demonstrated strong performance in various forecasting tasks at the node,
edge, and graph levels [2]. Recently, numerous baseline methods have utilized GNNs,
underscoring their prominent position in deep learning-based traffic flow prediction re-
search. For instance, Diffusion Convolutional Recurrent Neural Network (DCRNN) [14]
employs diffusion processes on directed graphs to capture the spatial correlations of traffic
road networks. By combining GRU with diffusion GCNs, DCRNN achieves enhanced
performance in traffic prediction. Nevertheless, traffic road networks possess intricate
and dynamic topological structures, thus rendering the fixed graph structure and static
adjacency matrix utilized by DCRNNs and STGCNs to be inadequate in representing
these dynamic changes, such as morning and evening peak periods or traffic accidents. To
address this, Graph WaveNet [27] introduces an adaptive adjacency matrix that models
dynamic spatial correlations through GCNs. However, the adaptive matrix employed in
Graph WaveNet remains fixed after training, thus impeding its adaptability to diverse
traffic road networks. ASTGCN captures temporal and spatial correlations independently
through dedicated temporal and spatial attention mechanisms. AGCRN leverages two
adaptive modules and a learnable node embedding matrix to infer the interdependencies
among different traffic sequences. Dynamic Spatial–Temporal Aware Graph Neural Net-
work (DSTAGNN) [28] introduces a novel spatio-temporal attention module to capture
the dynamic spatio-temporal dependencies among nodes along with a gated convolution
module for improving the capture of temporal dynamics in traffic data.

In contrast to the aforementioned approaches, some models aim to develop novel
graph structures. STSGCN addresses the challenge of capturing synchronous spatio-
temporal correlations through the construction of local spatio-temporal graphs. STFGNN
achieves the concurrent capture of spatio-temporal correlations by generating spatio-
temporal graphs and fusing features. Spatio-Temporal Graph Convolutional Ordinary
Differential Equation (STGODE) [29] enhances GCNs by incorporating ordinary differential
equations (ODEs) using a combination of semantic and static spatial adjacency matrices,
which results in improved performance. However, these models neglect the dynamic
spatio-temporal dependencies among nodes in the traffic road network.



Mathematics 2024, 12, 1493 6 of 25

2.2. Graph Convolution Networks

GCNs extend classical convolutional methods to graph structures, enabling the cap-
ture of information pertaining to the neighbors of nodes and edges. GCNs, which are
widely employed in various tasks, are primarily categorized into two approaches: spectral
GCNs. Bruna et al. [6] employed the Laplacian matrix in the spectral domain to enable
graph expansions for convolutional operations. However, the computation involved is com-
putationally expensive. Defferrard et al. [30] enhanced the traditional GCN by introducing
ChebNet, which employs a Chebyshev polynomial expansion of the diagonal matrix based
on eigenvalues. With the help of this approximation method, graph convolution becomes
less computationally demanding. With the classical GCN, Kip and Welling [31] simplified
ChebNet and utilized it in a CNN-like deep network architecture for effectively embedding
graph structure and node attributes. Another approach is the spatial GCN, with which
Micheli and Alessio [32] captured node representations by convolving information from the
aggregated features of their neighbors, as demonstrated in methods like GraphSAGE [33].
Velickovic et al. proposed the GAT [13], which incorporates an attention mechanism into
graph convolution to dynamically adjust the connections between neighboring nodes and
measure node importance based on the magnitude of the weights.

2.3. Swarm Intelligence Optimization Algorithm

Although graph convolution networks have powerful automatic feature extraction
capability for unstructured data, the design of network architecture models relies heav-
ily on the researcher’s prior knowledge and experience, and the optimal combination of
hyperparameters selected based on experiments and manual experience may limit the
emergence of new optimal network architectures to some extent. Therefore, we need to
design the network model structure with the help of algorithms, and swarm intelligence
algorithms are a type of swarm-based gradient-free optimization algorithms that have seen
significant application recently for the construction of neural networks and the modifi-
cation of hyperparameters. The swarm intelligence optimization algorithm is a kind of
computational intelligence algorithm. This algorithm’s fundamental idea is to mimic the
natural behavior of animal species, including fish, birds, and wolves. It makes use of group
collaboration and knowledge sharing to optimize a given issue through straightforward
and constrained individual interactions. In 2016, Mirjalili et al. [34] introduced the whale
optimization algorithm (WOA), a novel swarm intelligence algorithm that specifically
mimics the hunting behavior of humpback whales when they are in close proximity to
their prey. The primary objective of WOA is to seek the best possible solution for intricate
optimization problems. Compared to other swarm intelligence optimization methods,
including Particle Swarm Optimization [35], Gravitational Search Algorithm [36], Genetic
Algorithm [37], Grey Wolf Optimizer [38], and Ant Colony Optimization [39], WOA is a
recently developed and widely used optimization technique across multiple tested sce-
narios. The use of swarm intelligence algorithms to optimize the hyperparameters and
structure of neural networks has received increasing academic attention. Consequently,
numerous scholars have begun employing this algorithm in practical applications. For
instance, WOA_BiLSTM_Attention [40] uses WOA to optimize the BiLSTM_Attention
network model for traffic flow prediction to obtain its four optimal parameters, including
the learning rate, the number of training sessions, and the number of nodes in both hidden
layers. The accuracy of traffic flow prediction is thus improved. Pham Q V [41] et al. have
utilized WOA to address the resource allocation problem in wireless networks. Pradeep
Jangir [42] et al. employed WOA to train a multilayer perceptron for addressing the local
optima problem, thereby achieving a high level of accuracy in optimizing the system.
This paper is the first to optimize AGCRN using WOA to improve the accuracy of traffic
flow predictions.
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3. Methodology
3.1. Problem Statement and Preliminaries

Traffic flow prediction is a common time series prediction problem. In our study, we
modeled the traffic road network as a graph denoted by G = (V, E, A), where
V = {v1, · · · · · · , vn} represents the set of N traffic sensor nodes (observation points)
and E represents the set of edges connecting these nodes. A ∈ RN×N is the adjacency
matrix of the traffic network graph G, if vi, vj ∈ V and (vi, vj) ∈ E, which then makes
Aij = 1. The traffic flow prediction task is to use the observed historical traffic sequence data
X(t−M+1), X(t−M+2), . . . , X(t) to predict the future traffic sequence data X(t+1), X(t+2), . . . ,
X(t+T), where X(t+T) ∈ RN×C denotes the observed value at the time step t, C denotes the
number of feature channels, and T denotes the length of the time series to be predicted.
Given the recorded data X(t−M+1):(t) ∈ RN×M, then, by training the model F to predict the
traffic volume on the road network G for the next T time steps, X(t+1):(t+T) ∈ RN×T . The
traffic flow prediction problem is formally defined as presented in Equation (1):

X(t+1):(t+T) = F
[

X(t−M+1):(t); G
]
, (1)

where F is a function of the learning historical traffic flow sequence information.

3.2. The Proposed Algorithm

This section presents the architecture of the WOA-AGCRTN model, as depicted in
Figure 2. The model comprises four main components: (1) Adaptive graph convolutional re-
current network (AGCRN), which includes NAPL-DAGG-GCN and GRU modules. (2) The
transformer layer that enhances long-range time correlations by performing correlation
modeling in the time dimension. This contributes to the construction of adaptive graph con-
volutional recurrent network based on transformer (AGCRTN). (3) The transformer layer
that captures time correlations across long ranges to enhance global time correlations. This
layer is responsible for constructing the transformer-based adaptive graph convolutional
recurrent network. We employ the whale optimization algorithm to optimize the network
architecture and hyperparameters of AGCRTN, thereby aiming to enhance the model’s
performance. (4) WOA is employed to enhance the model’s performance by optimizing
both the network architecture and hyperparameters of AGCRTN (WOA-AGCRTN). The
specific optimization parameters include the learning rate, learning rate decay, the number
of layers in the implicit GRU layer, the number of neurons in the implicit layer, the number
of layers in the transformer, and the number of heads in the multi-headed attention module.
These parameters significantly influence the model’s performance, and finding the optimal
combination based on human experience is challenging. Consequently, the whale opti-
mization algorithm is employed to globally optimize these parameters and determine the
best parameter combination, thus leading to the reconstruction of the AGCRTN network
model for training and prediction purposes. The model’s specifics are elaborated in the
subsequent subsections.

3.2.1. Adaptive Graph Convolutional Recurrent Network

AGCRN is enhanced by two adaptive modules for GCN: the Node Adaptive Parameter
Learning (NAPL) module and the Data Adaptive Graph Generation (DAGG) module.
To augment the conventional GCN, the NAPL module learns two smaller parameter
matrices: (1) the node embedding matrix EG ∈ RN×d, where d is the number of embedding
dimensions; and (2) the weight pool WG ∈ Rd×C×F, which has the bias bG ∈ Rd×F. Thus,
the NAPL-augmented GCN is as follows Equation (2):

Z = (IN + D− 1
2 AD− 1

2 )XEGWG + EGbG. (2)
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To automatically infer the hidden interdependencies in the data, the DAGG module
randomly initializes the learnable node embedding dictionary EA ∈ RN×de for all nodes,
where each row of EA denotes the embedding of a node and de denotes the node embedding
dimension. The spatial dependencies between each pair of nodes are then inferred through
a node similarity definition graph, which is as follows Equation (3):

D− 1
2 AD− 1

2 = so f tmax(ReLU(EA · ET
A)). (3)

Finally, NAPL-DAGG-GCN can be represented as follows Equation (4):

Z = (IN + so f tmax(ReLU(EA · ET
A)))XEGWG + EGbG. (4)

To capture local temporal dependencies sequentially, the AGCRN model utilizes the
GRU mechanism for processing sequence information, thus preserving a hidden represen-
tation for each time step. This hidden representation serves the dual purpose of regulating
information flow to subsequent time steps and serving as the output for the current time
step. Notably, the MLP layer within the GRU is substituted with NAPL-DAGG-GCN to
capture the temporal correlation of specific nodes in the traffic sequence. More precisely,
when presented with an input Xt, the GRU operates using the equation below for each
node vi at time step t, which is as follows Equation (5):

Ã = so f tmax(ReLU(EET))

zt = σ(Ã{Xt[i, :], ht−1[i, :]}EWz + Ebz)

rt = σ(Ã{Xt[i, :], ht−1[i, :]}EWr + Ebr)

ĥt[i, :] = tanh({Xt[i, :], r ⊙ ht−1[i, :]}Eĥ + Ebĥ)

ht[i, :] = z ⊙ ht−1[i, :] + (1 − z)⊙ ĥt[i, :]

, (5)

where {·} represents the concatenation operation, ⊙ represents the element-by-element
multiplication, and ht[i, :] signifies the output of the current time step, which is further
employed as the input for the subsequent time step. E, Wz, Wr, bz, br, bĥ are learnable
parameters.



Mathematics 2024, 12, 1493 9 of 25

3.2.2. Adaptive Graph Convolutional Recurrent Network Based on Transformer

While GRU is beneficial for capturing local temporal information, traffic flow predic-
tion problems involve more than just sequential correlation. Thus, it becomes crucial to
capture global temporal information. In contrast to STFGNN and DSTAGNN, we incorpo-
rated the transformer algorithm after the GRU layer to directly capture global dependencies.
Notably, the transformer algorithm fully replaces the convolutional structure to fulfill this
task. The transformer technique is used to capture the global temporal dependencies in traf-
fic flow because of its effectiveness in accurately describing long-distance and multi-scale
characteristics, which improves model generalization.

In the temporal dimension of traffic data, the current traffic state in a spatial region
is closely linked to the traffic states before and after the current time in the same region.
To more effectively capture the long-term temporal dependence of traffic data patterns,
we propose integrating a transformer layer. This layer enables modeling of the global
contextual information within the sequence. The layer comprises a location embedding,
a multi-headed attention layer, a feedforward network layer, and a normalization layer.
The transformer layer is applied to each node independently, with the output sequence
(h1[i, :], · · ·, ht[i, :]) from the GRU serving as the input for the transformer layer. The multi-
headed attention mechanism in the transformer layer allows the model to capture long-term
temporal patterns and prioritize important information, thus addressing the limitations of
GRU in modeling time dependencies. This is illustrated in Figure 3.
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In the Transformer layer, the multi-headed attention layer employs a self-attentive
mechanism to dynamically capture the spatial dependencies among sensors. The self-
attentive mechanism is extensively employed in various domains, such as computer vision
and natural language processing, to capture the relationships between individual elements.
Similarly, GAT utilizes the self-attentive mechanism to calculate the weights between nodes.
However, due to the requirement of a predefined and static graph topology, the nodes can
only dynamically model each other. In real traffic road networks, there exist hidden spatial
dependencies that are not entirely captured by the road topology. Therefore, the graph and
edge weights need to be dynamically constructed.

First, we explain the principle of the single-headed attention mechanism and then
elaborate on its extension to a multi-headed attention mechanism. In the Transformer, the
multi-headed attention layer employs normalized Scaled Dot-Product Attention, thereby
enabling elements at each position in the sequence to depend on all elements in the sequence.
The attention function takes the input queries of dimension dk, as well as the keys and
values of dimension dv for each position in the sequence. We compute the dot product
between the queries and keys, divide the result by

√
dk, and apply the Softmax function

to obtain the attention scores for each position. The computed attention scores serve as
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weights to represent the level of focus on specific information. The formula for calculating
the attention score across all positions is as follows Equation (6):

Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V, (6)

where Q, K ∈ RT × dk, V ∈ RT × dv represent the queries, keys, and values of all nodes. In
particular, the query at position i in the sequence corresponds to the i-th row of Q. Initially,
we stack the GRU outputs (h1[1, :], . . . , ht[i, :]) row by row in a sequential manner, thus
resulting in the matrix hvi ∈ RT×d. The superscript vi represents the corresponding node vi
in the traffic network. Next, we perform a linear projection of matrix hvi into the queries,
keys, and values as follows Equation (7):

Qvi = hvi WQ, K = hvi WK, V = hvi WV , (7)

where WQ ∈ Rd×dk , WK ∈ Rd×dk , and WV ∈ Rd×dv are the projection matrices to be learned,
and they are shared by all nodes in the traffic road network. Consequently, the function to
compute the attention score can be expressed as follows Equation (8):

Attention(hvi ) = so f tmax

(
(hvi WQ)(hvi WK)

T

√
dk

)
hvi WV . (8)

In this work, the reason for the choice of a multi-headed attention mechanism is
that it provides a parallel mechanism to aggregate information from different subspaces
focusing on different locations, thus enhancing the representation capability of the model.
Consequently, it becomes possible to effectively concentrate on the long-term relevance of
time series data. Within the multi-headed attention mechanism, the K-group projection
matrix is utilized to project hvi into distinct K-groups, which comprise queries, keys, and
values. The multi-headed attention score is then computed as a concatenation of the
individual output scores from each single-headed attention function, which is expressed as
follows Equations (9) and (10):

Multihead(hvi ) = Concat(head1, . . . , , headC)WO, (9)

headi = Attetioni(hvi ) = so f tmax

(
(hvi Wi

Q)(hvi Wi
K)

T

√
dk

hvi Wi
V

)
. (10)

The matrices Wi
Q ∈ Rd×dk , Wi

K ∈ Rd×dk , and Wi
V ∈ Rd×dv correspond to the projec-

tion matrices of the i-th attention head, while Wi
V ∈ Rd×dv (where h represents the number

of heads in the multi-headed attention) denotes the linearly projected output combining
their results.

After the feature sequence (h1[1, :], . . . , ht[i, :]) output by the AGCRN module is sent
to the transformer layer, we first add the position vector to the input data at each moment
via considering that the attention mechanism in the transformer layer ignores the relative
positions in the sequence during the dot product operation. This is shown as follows
Equation (11):

h′t[i, :] = ht[i, :] + et, (11)

where the Location Code Token A is defined as Equation (12):

et =

{
sin(t/100002i/dmodel), i f t = 0, 2, 4, . . .
cos(t/100002i/dmodel), otherwise

. (12)

Figure 2 illustrates the flow of information in the model. The output state from the
multi-headed attention layer is sequentially processed through the normalization layer,
feedforward network layer, and transformer layer, thereby resulting in the output denoted



Mathematics 2024, 12, 1493 11 of 25

as hvi
out ∈ RT×d. Subsequently, hvi

out is utilized as the input for the prediction layer, which
consists of a fully connected layer, to forecast the future traffic flow.

3.2.3. Whale Optimization Algorithm

Deep learning has achieved remarkable breakthroughs and advancements across
various fields owing to its potent ability to automatically capture features from unstruc-
tured data. However, it has been demonstrated that the design of network architecture
is crucial for achieving optimal performance. Nevertheless, designing the hyperparam-
eters of complex network models heavily depends on researchers’ prior knowledge and
experience. However, due to the inherent limitations of human knowledge, it remains chal-
lenging to devise an optimal network architecture. Therefore, this work adopts the WOA
approach to automatically design the most effective network structure while minimizing
human intervention.

WOA is a swarm-based algorithm that obtains it inspiration from whale dietary habits.
Due to its simplicity, versatility, and strong optimization capabilities, WOA has gained
wide acceptance among scholars, and it has been used for neural network optimization.
The two components of the WOA optimization process are illustrated as follows:

(1) Development stage

The development stage of the WOA includes both shrink-wrapping and bubble net
attack mechanisms for position updates.

Shrinking envelope: The other individuals in the WOA move toward the whale that is
currently in the best position, and they update their position by using Equations (13)–(16).

A = 2 · a · r1 − a, (13)

C = 2 · r2, (14)

D = |C · X∗(t)− X(t)|, (15)

X(t + 1) = X∗(t)− A · D, (16)

where t represents the current number of iterations, a linearly decreases from 2 to 0 with
each iteration, and r1 and r2 are random vectors with values ranging from 0 to 1. X∗(t)
represents the leading whale in the WOA, denoting the individual with the highest fitness
value at the given moment. D represents the distance between X∗(t) and X(t) after scaling
by C. X(t) represents the whale requiring position update, and X(t + 1) is its updated
position.

Bubble net attack: In addition to shrink-wrapping, the WOA incorporates a bubble net-
based attack for position updates, as described in the mathematical formulation presented
in Equations (17) and (18).

D′ = |X∗(t)− X(t)|, (17)

X(t + 1) = D′ · ebl · cos(2πl) + X∗(t), (18)

where D′ represents the distance between X∗(t) and X(t), b is a constant typically set to 1,
and l is a randomly generated number in the range of 0 to 1. During the development phase,
WOA utilizes two position update mechanisms: shrinkwrap and the bubble net attack.
These mechanisms are randomly alternated, with each method chosen with a probability
of 0.5. The formula for the WOA development phase is given by Equation (19), where
p denotes a random number in the range of 0 to 1, which represents the probability of
choosing the two position update mechanisms.

X(t + 1) =

{
X∗(t)− A · D i f p < 0.5
D′ · ebl · cos(2πl) + X∗(t) i f p ≥ 0.5

. (19)

(2) Exploration stage
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In the exploration phase of WOA, the position update mechanism is the same as the
shrinking envelope, as depicted in Equations (20) and (21). However, unlike the previous
shrinkage envelope mechanism, it employs a randomly selected individual to guide its
own position movement.

D =
∣∣∣C · Xrand(t)− X(t)

∣∣∣, (20)

X(t + 1) = Xrand(t)− A · D. (21)

During the exploration phase of WOA, the Xrand(t) is randomly chosen to guide the
position update of X(t). This mechanism enhances the algorithm’s ability to escape local
optima. The exploration phase of WOA is controlled by |A|. Equation (21) is triggered
when |A| exceeds 1. The fitness function in WOA represents the objective function of the
problem to be optimized, and each whale within it represents a solution to that problem.
Therefore, the fitness value of each whale in WOA is equal to the value calculated by the
objective function of that problem. The specific optimization execution process of WOA is
shown below.

Step 1: Initialize the important parameters of WOA as follows: population size P,
current iteration number t, maximum number of iterations Max_t, the dimension of the
objective function D, the lower bound of the value of the decision variables lb, and the
upper bound ub.

Step 2: Initialize WOA’s population and calculate the fitness value of each whale
through the objective function to determine the whale with the best fitness value obtained
thus far as X∗(t).

Step 3: Update the following parameters: a, A, C, l, and p. These are based on
computer-generated random numbers. Then, select Equations (16), (18), or (21) to update
the positions of all whales based on the value of p and |A|.

Step 4: Restrict the updated positions of all whales to be within lb and ub, recalculate
their fitness values, and update X∗(t).

Step 5: Determine whether the current iteration reaches the maximum number of
iterations, i.e., t > Max_t. If not, proceed to the next iteration and repeat Steps 3 to 4; if yes,
return the best whale obtained thus far as X∗(t).

Step 6: Output X∗(t) as the best solution optimized by WOA for this problem.

3.2.4. WOA-Optimized AGCRTN Method (WOA-AGCRTN)

The implementation of AGCRTN for traffic flow prediction considers spatial influence,
long-term and short-range time dependence, and integrates multiple deep learning models.
The increased complexity of the whole model and the enhanced tightness between parame-
ters all increase the difficulty of parameter selection and model optimization. In contrast to
traditional machine learning models, shallow models have a relatively simple structure
and involve tuning fewer parameters. However, various hyperparameters still need to be
taken into account. Unlike the traditional machine learning models, the shallow model
structure is relatively simple, and the tuning of parameters is relatively single, so various
hyperparameters need to be considered. The AGCRTN network model is influenced by the
Lr-init and Lr-decay-rate, which significantly impact its training effectiveness. Additionally,
Rnn-num-layers and Rnn-num-units play a decisive role in achieving an optimal model fit.
Moreover, Transformer-num-layers and Transformer-num-heads are crucial for effectively
capturing long-range time series. Finding the optimal combination of hyperparameters
through experiments and manual exploration is a time-consuming process due to the
challenge of exhaustively testing and evaluating all possible combinations. Therefore, the
utilization of optimization algorithms is crucial in facilitating the selection of improved
hyperparameters to enhance the performance of AGCRTN. In this study, the WOA is
employed to identify the optimal combination of hyperparameters, thereby subsequently
enabling the reconstruction of the AGCRTN network model for training and prediction.
This approach significantly enhances the prediction accuracy of AGCRTN.
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In this section, we describe the workflow of WOA-AGCRTN, the main workflow of
which is shown in Figure 4. In the optimization process, each whale represents a set of
hyperparameter combinations, so the lb and ub are the upper and lower bounds of the
hyperparameters, the best whales are the best hyperparameter combinations found thus
far, and the MAE on the validation set is used as the fitness value. We set the population
size of WOA to 10 and the maximum number of iterations to 10. The primary objective
of WOA-AGCRTN is to optimize the parameters of AGCRTN using the WOA, thereby
enhancing its prediction accuracy. The specific steps for optimizing the AGCRTN model
using WOA are as follows.
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Step 1: The PEMS dataset is divided into a training set for training the model, a
validation set for calculating the fitness value of each whale in WOA, and a test set for
evaluating the prediction error of the model in the ratio of 6:2:2.

Step 2: Normalize the training set, validation set, and test set with the following
formula:

x′ =
x − Min

Max − Min
. (22)

In this scenario, x represents the original feature value, x′ denotes the normalized
feature value, and Max and Min represent the maximum value and the minimum value of
the feature, respectively.

Step 3: Configure the WOA’s parameters as follows: the population size is set to
P (P = 10); each individual has a dimension of 6, which matches the number of hyperpa-
rameters (Lr-init, Lr-decay-rate, Rnn-num-layers, Rnn-num-units, Transformer-num-layers,
and Transformer-num-heads) to be optimized in this study (AGCRTN); and the maxi-
mum number of iterations is set to 10. The initial population of WOA is generated by
randomly creating a matrix with P rows and 6 columns. Each row in the matrix represents
an individual, and each individual is represented by a 6-dimensional vector.

Step 4: The fitness value of each individual in the optimization algorithm is determined
by calculating the mean absolute error (MAE) between the true and predicted values on
the validation set after decoding the individual as an AGCRTN hyperparameter. Therefore,
the objective function is MAE, as shown in Equation (23), and its value on the validation
set is used as the fitness value of each whale in WOA.

Fitness = MAE =
1
N

N

∑
I=1

∣∣∣Xi
n − Yi

n

∣∣∣, (23)
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where Xi
n denotes the n-th observation of the traffic flow on the validation set, which is the

true value; Yi
n denotes the predicted value of the model; and N denotes the total number of

samples of data on the validation set. It should be noted that AGCRTN does not use the
validation set during the training process. AGCRTN calculates its MAE on the validation
set only after the training process is completely finished, and this MAE serves as the WOA’s
fitness value.

Step 5: WOA is executed according to the workflow described in Section 3.2.3.
Step 6: If the WOA reaches the termination condition, i.e., t > Max_t, the final

optimization result is output; otherwise, go back to Step 5.
Step 7: The optimal hyperparameters of AGCRTN are determined by using the values

of each dimension from the final optimization result obtained in Step 6. Subsequently,
AGCRTN is reconstructed based on these optimal hyperparameters identified by WOA.

Step 8: The reconstructed AGCRTN is trained using the data from the training set,
and its performance is evaluated by making predictions on the test set.

4. Experiment
4.1. Datasets

We evaluated the performance of the WOA-AGCRTN model using four real traffic
datasets, namely PEMS03, PEMS04, PEMS07, and PEMS08, which were released in Cal-
ifornia, USA. These datasets were collected by the Caltrans Performance Measurement
System (PEMS) [43] at a frequency of every 30 s, and it captured the real-time traffic flow on
California highways. The collected data were aggregated into 5 min windows, which we
considered as time steps. Each hour consists of 12 time steps. Our objective was to utilize
the historical data from one hour to predict the data for the next hour. Detailed information
about the datasets is provided in Table 1.

Table 1. Description of the dataset.

Datasets Nodes Edges Time Steps Time Range Missing Rate

PEMS03 358 547 26,208 1/9/2018–11/30/2018 0.672%
PEMS04 307 340 16,992 1/1/2018–2/28/2018 3.182%
PEMS07 883 866 28,224 5/1/2017–8/31/2017 0.452%
PEMS08 170 295 17,856 7/1/2016–8/31/2016 0.696%

4.2. Baseline Methods

We compared WOA-AGCRTN with 13 baseline methods, which are as follows.
(1) Vector Autoregression (VAR) [4]: VAR is a temporal model that captures the

temporal correlation of traffic series.
(2) Support Vector Regression (SVR) [6]: SVR is a machine learning method that

employs support vector machines for traffic sequence regression. Unlike the traditional
statistical methods discussed earlier, SVR addresses the limitations associated with sta-
bility assumptions and incorporates the capability to model spatial and long-term time
dependence.

(3) Long Short-Term Memory (LSTM) [8]: LSTM is a neural network model that can
efficiently capture the temporal correlation of time series.

(4) Temporal Convolutional Network (TCN) [44]: TCN utilizes stacked causal convo-
lutions to effectively capture the temporal correlations in time series data.

(5) Diffusion Convolution Recurrent Neural Network (DCRNN) [14]: DCRNN
integrates the encoder–decoder architecture of diffusion GCNs and GRUs to predict traffic
sequences.

(6) Spatio-Temporal Graph Convolution Network (STGCN) [18]: STGCN combines
GCNs and temporal convolutions to capture spatial and temporal correlations, respectively.

(7) Attention-Based Spatio-Temporal Graph Convolutional Network (ASTGCN) [19]:
ASTGCN introduces a spatio-temporal attention mechanism to capture the spatio-temporal
correlations of sequences.
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(8) Spatio-Temporal Synchronous Graph Convolutional Network (STSGCN) [20]:
STSGCN constructs multiple local spatio-temporal graphs to capture complex local spatio-
temporal correlations effectively. Additionally, modules with varying time periods are
designed to capture the heterogeneity within the local spatio-temporal graphs.

(9) Spatio-Temporal Fusion Graph Neural Network (STFGNN) [23]: STFGNN incor-
porates a new fusion operation to learn hidden dependencies from spatial and temporal
graphs.

(10) Spatio-Temporal Graph ODE Networks (STGODE) [32]: STGODE for Traffic
Flow Forecasting utilizes a continuous graph neural network for multivariate time series
traffic forecasting.

(11) Time Zigzags at Graph Convolutional Networks (Z-GCNETs) [45]: Z-GCNETs
introduces the concept of zigzag persistence to time-aware graph convolutional networks
for time series forecasting.

(12) Adaptive Graph Convolutional Recurrent Network (AGCRN) [24]: AGCRN
leverages the learnable node embeddings in graph convolution and integrates GRUs for
traffic prediction.

(13) Dynamic Spatio-Temporal Aware Graph Neural Network (DSTAGNN) [31]:
DSTAGNN designs a new temporal attention module and gated convolution module to
capture the temporal dynamic information in traffic data.

4.3. Experiment Settings

The datasets utilized in the experiments were split into training, validation, and
test sets following a ratio of 6:2:2. The historical data from the past 1 h, consisting of
12 consecutive time steps, were employed to forecast the traffic flow for the subsequent
1 h, comprising 12 consecutive time steps. The experiments with WOA-AGCRTN were
repeated 10 times for each dataset, and the final results were obtained by averaging the
outcomes across the 10 experiments. The model experiments were conducted in a computer
environment equipped with an 11th Gen Intel(R) Core (TM) i7-11700 @ 2.50 GHz CPU
and NVIDIA GeForce RTX3080Ti graphics card. We used WOA to search for the best
combination of parameters in the structure of the AGCRTN network model.

• In the first stage, we determine the parameter combinations to search for the optimal
number of layers and neural units in the GRU hidden layers, the number of transformer
layers, and the number of heads in the multi-headed attention mechanism, as well
as the parameters of learning rate and learning rate decay within the structure of
the AGCRTN network model. After conducting several experiments, we determined
the range of search parameter combinations for the PEMS04 and PEMS08 datasets
as [1, 20, 1, 1, 0.2, 0.002] to [2, 90, 6, 8, 0.6, 0.006]. Due to the relatively large size
of PEMS07 and equipment limitations, the range for the PEMS07 dataset was set as
[1, 20, 1, 1, 0.2, 0.002] to [1, 60, 2, 4, 0.6, 0.006]. For the PEMS03 dataset, the range of
search parameter combinations was determined as [1, 20, 1, 1, 0.2, 0.002] to [2, 78, 6,
8, 0.6, 0.006]. The number of epochs for all four datasets was set to 200, and 15 early
stopping mechanisms were employed for certain parameters. The batch size was set to
64 for PEMS03, PEMS04, and PEMS08, and to 32 for PEMS07. The embedding matrix
dimension was set to 10 for the PEMS03, PEMS04, and PEMS07 datasets, thereby
following the parameters of the AGCRN model; meanwhile, for the PEMS08 dataset, it
was set to 2. WOA-AGCRTN was trained using the Adam optimizer with a decaying
learning rate, and the L1 loss function was employed.

• In the second stage, the WOA is employed to search for the optimal combination
of parameters within the network structure search space, with the L1 loss on the
validation set serving as the fitness function. The performance of the obtained optimal
network structure was assessed based on three evaluation metrics: the mean absolute
error (MAE), the root mean square error (RMSE), and the mean absolute percentage
error (MAPE). Assume that Xi

n ∈ RN×1 is the real traffic flow data for all nodes at time
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step i, Yi
n ∈ RN×1 is the predicted value, and N is the number of samples observed.

These indicators are defined as Equations (24)–(26):

MAE =
1
N

N

∑
I=1

∣∣∣Xi
n − Yi

n

∣∣∣, (24)

RMSE =

√√√√ 1
N

N

∑
i=1

(
Xi

n − Yi
n
)2, (25)

MAPE =
100%

N

N

∑
i=1

∣∣∣∣Xi
n − Yi

n
Xi

n

∣∣∣∣. (26)

The MAE, RMSE, and MAPE measures indicate better prediction performance with
smaller values.

4.4. Experiment Results and Analysis

Table 2 presents the specific parameter values of WOA-AGCRTN across four datasets.
It is evident that the optimal parameters for AGCRTN vary among these datasets, thereby
underscoring the necessity of employing WOA to optimize AGCRTN. The prediction
results of WOA-AGCRTN and the 13 comparative models for four real traffic flow datasets,
which were forecasted one hour ahead (12-time steps), are presented in Table 3. The findings
show that our proposed WOA-AGCRTN method surpassed all other models across all
four datasets in terms of all measures, thus indicating its superior prediction performance.
Specifically, the WOA-AGCRTN method exhibited significant improvements in its results
when applied to the PEMS03, PEMS04, PEMS07, and PEMS08 datasets, as shown in
Table 3. Compared to DSTAGNN, WOA-AGCRTN exhibited a similar performance in all
metrics except for the MAPE index. In PEMS03, WOA-AGCRTN outperformed the current
best baseline approach by 2.6% and 1.4% in MAE and RMSE, respectively. Similarly, in
PEMS04, WOA-AGCRTN achieved improvements of 1.6% and 1.4% in MAE and RMSE,
respectively, compared to the current best baseline approach. Furthermore, in PEMS07,
WOA-AGCRTN surpassed the current best baseline approach by 4.1% and 2.2% in MAE and
RMSE, respectively. For PEMS08, WOA-AGCRTN outperformed the current best baseline
approach by 3.4% and 1.6% in MAE and RMSE, respectively. WOA-AGCRTN leveraged
GRU and transformer architectures to effectively capture the temporal dependencies at
both long and short ranges. Finding the ideal set of network structure parameters using
WOA as a neural network architecture search approach eliminates the need for experience-
dependent manual adjustment.

PEMS07 requires excessive processing resources due to its large size, while PEMS03
suffers from a significant number of missing values, thus impacting result accuracy. To
investigate these issues, we focused on analyzing PEMS04 and PEMS08. The variance in
MAE, MAPE, and RMSE for the models in Table 2 across PEMS04 and PEMS08 is depicted
in Figure 5. The difficulty of prediction increases with forecast time steps are reflected in the
rising MAE, MAPE, and RMSE scores. WOA-AGCRTN outperformed DSTAGNN, particu-
larly in terms of leveraging transformer’s multi-headed attention mechanism. Although
WOA-AGCRTN’s performance closely matched DSTAGNN’s MAPE on the PEMSE08
dataset, it notably exceled at time steps 10, 11, and 12. Additionally, WOA-AGCRTN’s pre-
diction performance surpassed DSTAGNN, thus indicating its ability to effectively model
global temporal relationships across sequences by leveraging GRUs and the transformer
algorithm to capture the correlations between long-term and short-term dimensions. Thus,
WOA-AGCRTN demonstrates a superior capability in long-term prediction.
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Table 2. The parameters of WOA-AGCRTN on four traffic datasets.

PEMS03 PEMS04 PEMS07 PEMS08

Parameters Values Values Values Values

Lr-init 0.0060 0.0021 0.0020 0.0060

Lr-decay-rate 0.2417 0.3315 0.6000 0.5689

Rnn-num-layers 1 1 1 2

Rnn-num-untis 30 65 41 69

Transformer-num-layers 3 6 2 2

Transformer-num-heads 4 4 4 6

Table 3. Comparison of WOA-AGCRTN against the baselines on the four traffic datasets.

Methods
PEMS03 PEMS04 PEMS07 PEMS08

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

VAR 23.65 38.26 24.51% 24.54 38.61 17.24% 50.22 75.63 32.22% 19.19 29.81 27.88%
SVR 21.97 35.29 21.51% 28.7 44.56 19.20% 32.49 50.22 14.26% 23.25 36.16 14.64%

LSTM 21.33 35.11 23.33% 26.77 40.65 18.23% 29.98 45.94 13.20% 23.09 35.17 14.99%
TCN 19.32 33.55 19.93% 23.22 37.26 15.59% 32.72 42.23 14.26% 22.72 35.79 14.03%

DCRNN 17.99 30.31 18.34% 21.22 33.44 14.17% 25.22 38.61 11.82% 16.82 26.36 10.92%
STGCN 17.55 30.42 17.34% 21.16 34.89 13.83% 25.33 39.34 11.21% 17.50 27.09 11.29%

ASTGCN 17.34 29.66 17.24% 22.93 35.22 16.56% 24.05 37.97 10.92% 18.25 28.06 11.64%
STSGCN 17.48 29.21 16.78% 21.19 33.65 13.90% 24.26 39.03 10.21% 17.13 26.80 10.96%
AGCRN * 15.98 * 28.25 * 15.23% * 19.88 * 32.27 * 13.03% * 22.26 * 36.47 * 9.16% * 15.97 * 25.25 * 10.13%
STFGNN 16.77 28.34 16.30% 19.83 31.88 13.02% 22.07 35.80 9.21% 16.64 26.22 10.60%
STGODE 16.50 27.84 16.69% 20.84 32.82 13.77% 22.59 37.54 10.14% 16.81 25.97 10.62%

Z-GCNETs * 16.64 * 28.15 * 16.39% * 19.67 * 31.86 * 12.91% * 21.79 * 35.15 * 9.27% * 16.03 * 25.28 * 10.39%
DSTAGNN * 15.57 * 27.21 * 14.68% * 19.44 * 31.83 * 12.82% * 21.46 * 34.82 * 9.12% * 15.81 * 25.08 * 9.98%

WOA-
AGCRTN 15.17 26.83 14.48% 19.13 31.37 12.77% 20.57 34.06 8.74% 15.27 24.67 9.96%

* denotes re-implementation or re-training. The bold in the table represents the optimal solution.
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Figure 5. Comparison of the prediction performance at the 12 time steps on the PEMS04 and
PEMS08 datasets.
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To visually assess the prediction performance of our method, we created a plot that
compares the predicted values of our approach (WOA-AGCRTN) with the ground truth for
multiple stations/nodes throughout a given day, as shown in Figure 6. The WOA-AGCRTN
effectively captures the real-world traffic variations across different time periods. This high
accuracy is attributed to our precise modeling of long-range spatio-temporal dependencies
and the optimal design of the network structure. This demonstrates that our method
achieves accurate predictions even in challenging traffic scenarios, such as during peak
hours or when significant fluctuations occur. Specifically, our method effectively captures
changes in traffic patterns, as shown in Figure 6a,b for the PEMS04 dataset, where traffic
trends between 4–6 and 16–20, and 4–6 and 18–20 are also observed. The predicted values
in the PEMS08 dataset closely align with the actual changes in traffic trends.
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Figure 6. Traffic flow prediction at different time points. (a) Node 25 in PEMS04; (b) Node 125 in
PEMS04; (c) Node 28 in PEMS08; and (d) Node 135 in PEMS08.

4.5. Ablation Study

To more accurately evaluate the transformer algorithm and WOA’s performance, we
utilized the PEMS04 and PEMS08 datasets, which consist of freeway traffic flow data from
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the Los Angeles area. These datasets offer a long-time span and high temporal resolution,
thus providing ample data features for training and evaluating traffic flow prediction
algorithms. Consequently, we conducted a comprehensive ablation study specifically
on the PEMS04 and PEMS08 datasets. To achieve this, we devised four variations of
WOA-AGCRTN and baseline AGCRN for the ablation experiments, as described below.

• AGCRN: This replaces the traditional GCN with NAPL, DAGG, and then integrates the
NAPL-DAGG-GCN module with GRU to capture the temporal and spatial correlations.

• AGCRTN: Compared to WOA-AGCTRN, the WOA is not present, and specific param-
eters are set according to experience.

• WAGCRN: Compared to WOA-AGCRTN, the transformer layer is removed and WOA
is used to only optimize the Rnn-num-units, Rnn-num-layers, Lr-init, and Lr-decay-
rate mechanisms of the AGCRN module.

• WAGCRN-T: Compared to WOA-AGCRTN, WOA’s optimization of the transformer
module is removed, i.e., WOA only optimizes the Rnn-num-units, Rnn-num-layers,
Lr-init, and Lr-decay-rate mechanisms of the AGCRN module.

• AGCRN-WT: On the basis of WOA-AGCRTN, the optimization of the AGCRN mod-
ule by WOA is removed, and WOA only optimizes the Transformer-num-layers
Transformer-num-layers, Lr-init, and Lr-decay-rate mechanisms of the transformer
module.

• WOA-AGCRTN: The WOA-AGCRTN model employs the transformer algorithm
and WOA to capture the global dependencies, thus effectively optimizing the model
parameters to attain the optimal combination for the network model’s performance.

The results of the ablation experiments conducted on the PEMS04 and PEMS08 datasets
for the four variants are presented in Figure 7. The following observations can be made.

• The AGCRTN model demonstrated a superior overall performance compared to
AGCRN, thereby highlighting the effectiveness of the transformer algorithm in captur-
ing global temporal dependencies. In contrast, GRU was primarily used to capture
the short-term temporal dependencies. However, by integrating GRU with the trans-
former algorithm to model both long- and short-range temporal dimensions, the
prediction performance was further improved.

• The WAGCRN model consistently outperformed AGCRN, thus highlighting the ne-
cessity of employing WOA for neural network architecture searches.

• The WAGCRN-T model exhibited a superior performance compared to AGCRTN and
WAGCRN. By leveraging the search capability of WOA to enhance the parameter
training process of AGCRTN and integrating it with the transformer module, the
indispensability of both WOA and the transformer modules in the overall model was
demonstrated.

• The AGCRN-WT model demonstrated an overall superior performance compared to
AGCRTN and WAGCRN. By leveraging the search capability of WOA to enhance the
parameter training process of the transformer module, the indispensability of both
WOA and the transformer modules for the entire model was demonstrated.

• The overall performance of the WOA-AGCRTN model was optimized compared to
WAGCRN-T and AGCRN-WT. This optimization was achieved by utilizing the search
capability of WOA to enhance the parameter training process of both AGCRN and
the transformer algorithm, thus resulting in an improved prediction accuracy. These
results demonstrate the synergistic nature of GRU and the transformer algorithm, and
they also underscore the significance of WOA in optimizing the parameters of both
GRU and the transformer algorithm for model performance.
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Figure 7. Ablation study on the PEMS04 and PEMS08 datasets.

Overall, our WOA and transformer modules can be deployed independently or in
combination, and they consistently enhance predictive performance.

On PEMS04 and PEMS08, for these three variants of WOA-AGCRTN when using
the WOA search for optimal model performance, we set the same range of search for
the same parameters, and the parameters that made the model performance optimal after
10 whale populations and 10 iterations of search are shown in Tables 4 and 5. The optimized
parameter settings are as follows: (8 significant digits are used for experiments, while 4
significant digits are provided for readability in papers). For the PEMS04 dataset, the
WOA-AGCRTN model was configured with 1 GRU layer, 65 neural units, a learning rate of
0.0021, and a learning decay rate of 0.3315, as well as 6 layers in the Transformer and 4 in the
Transformer. These parameter settings aim to minimize the loss value of WOA-AGCRTN on
the validation set. For the PEMS08 dataset, the WOA-AGCRTN model was configured with
2 GRU layers, 69 neural units, a learning rate of 0.0060, and a learning decay rate of 0.5689,
as well as 2 layers and 6 attention heads in the transformer algorithm. These parameter
settings aimed to minimize the loss value of WOA-AGCRTN on the validation set. The
parameter combinations after a WOA search vary across different datasets, as evident from
Tables 4 and 5. This suggests that parameters should not be set universally but rather
analyzed and tailored to individual datasets to search for optimal combinations. Such an
approach can significantly enhance prediction accuracy. The analysis of Tables 4 and 5
reveal that the Rnn-num-layers, Rnn-num-units, Transformer-num-layers, and Transformer-
num-heads mechanisms were not maximized. This observation further highlights the
effectiveness of the WOA optimization algorithm in conducting a hyperparameter search.
In conclusion, our WOA-AGCRTN model achieves the lowest loss value on the validation
set, thus indicating the highest average prediction accuracy at 12 time steps.
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Table 4. The parameters of the ablation experiment modules on the PEMS04 dataset.

PEMS04

WAGCRN WAGCRN-T AGCRN-WT WOA-AGCRTN

Parameters Values Values Values Values

Lr-init 0.0049 0.0036 0.0027 0.0021

Lr-decay-rate 0.5976 0.4026 0.2204 0.3315

Rnn-num-layers 2 1 - 1

Rnn-num-untis 55 75 - 65

Transformer-num-layers - - 4 6

Transformer-num-heads - - 2 4

Best loss 19.55 19.10 19.17 18.93

Table 5. The parameters of the ablation experiment modules on the PEMS08 dataset.

PEMS08

WAGCRN WAGCRN-T AGCRN-WT WOA-AGCRTN

Parameters Values Values Values Values

Lr-init 0.0027 0.0039 0.0026 0.0060

Lr-decay-rate 0.3004 0.2659 0.3895 0.5689

Rnn-num-layers 1 2 - 2

Rnn-num-untis 85 76 - 69

Transformer-num-layers - - 5 2

Transformer-num-heads - - 3 6

Best loss 16.01 15.83 15.96 15.73

4.6. WOA Optimizes the Iterations of the Different Modules

The optimization process of each module in AGCTRN was visualized using WOA
on the PEMS04 and PEMS08 datasets, as presented in Figure 8. The number of whale
populations was set to 10 on both datasets and the number of iterations was 10. The fitness
value corresponds to the minimal loss value on the validation set in each iteration, where
the L1 loss function (MAE) is utilized.
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Figure 8. The performance of WOA in independently optimizing the different modules of AGCTRN
on the PEMS04 and PEMS08 datasets.
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WOA performs an optimization search based on the loss value of the validation set at
each iteration of the AGCRTN. A smaller loss value indicates a greater prediction accuracy,
thus demonstrating that the network model improved during the optimization process.
Several experimental modules for both datasets were optimized, as depicted in Figure 8,
and it demonstrated a faster discovery of the optimal parameter combination, thus leading
to superior model performance. The majority of optimal parameter combinations were
discovered by the sixth iteration. Our proposed model, WOA-AGCRTN, exhibited the
lowest fitness value on both datasets, thus indicating the best overall performance among
the network models.

5. Conclusions

This paper introduces a novel deep learning framework for traffic flow prediction.
Firstly, we propose an AGCRN that integrates the transformer algorithm to effectively cap-
ture long-range temporal correlations. Secondly, the whale optimization algorithm (WOA)
is employed to automatically design a WOA-AGCRTN network structure that achieves
optimal performance with limited computational resources. Our network framework’s
efficacy and superiority for resolving traffic flow prediction problems are demonstrated
by the results from the experiments on four real datasets. Specifically, in the PEMS03
dataset, it achieved a 2.6% improvement in MAE and a 1.4% improvement in RMSE. In the
PEMS04 dataset, the improvements were 1.6% in MAE and 1.4% in RMSE, while the MAPE
remained essentially the same as the best baseline. For the PEMS07 dataset, our approach
demonstrated a 4.1% improvement in MAE and a 2.2% improvement in RMSE. Moreover,
on the PEMS08 dataset, it surpassed the current best baseline approach by achieving a
3.4% improvement in MAE and a 1.6% improvement in RMSE. The experimental results
demonstrate that the WOA-AGCRTN model achieved a good performance in traffic flow
prediction across four public datasets.

However, using optimization methods to optimize the structure and hyperparameters
of neural networks is a very computationally resource intensive task. It is often difficult to
optimize a set of structures and hyperparameters for neural networks that perform well
on larger datasets. In addition, for any neural network model, the optimal structure and
hyperparameters will vary from dataset to dataset. We do not have enough computational
resources to search for the optimal parameters and structure of the model for a new dataset.
Therefore, we often need to re-optimize the model whenever we train on a new dataset.

Finally, traffic networks exhibit distinct structural and dynamical properties that
differentiate them from other types of networks, such as social and biological networks.
Therefore, in future research, the plan is to conduct a detailed analysis of the characteristics
and dynamic correlations of various networks. We aim to leverage the strengths of the
WOA-AGCRTN model in temporal and spatial domains and to explore its applicability in
other tasks related to network structure analysis and time prediction.
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Abbreviations

G = (V, E, A) Graph with a set of vertices (V), edges (E), and an adjacency matrix (A)
N Traffic sensor nodes (observation points)
X(t+T) The observed value at the time step t
C(3.1) The number of feature channels
F A function of learning historical traffic flow sequence information
EG The node-embedding matrix
WG The weight pool
EA The learnable node embedding
ht[i, :] The output of GRU
Q, K, V The queries, keys, and values of all nodes
dk,dv Queries of dimension, and the keys and values of dimension
WQ,WK ,WV The projection matrices to be learned
hvi

out The input for the prediction layer
A, C(3.2.3) The ratio in WOA
a linearly decreases from 2 to 0
r1, r2 Random vector
D The distance between X∗(t) and X(t) after scaling by C
X*(t) The leading whale in the WOA
X(t) The whale requiring position update
X(t + 1) The whale‘s updated position
D′ The distance between X∗(t) and X(t)
b A constant typically set to 1
l A randomly generated number in the range of 0 to 1
Xrand(t) Randomly chosen to guide the position update of X(t)
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