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Abstract: Deep learning, a crucial technique for achieving artificial intelligence (AI), has been
successfully applied in many fields. The gradual application of the latest architectures of deep
learning in the field of time series forecasting (TSF), such as Transformers, has shown excellent
performance and results compared to traditional statistical methods. These applications are widely
present in academia and in our daily lives, covering many areas including forecasting electricity
consumption in power systems, meteorological rainfall, traffic flow, quantitative trading, risk control
in finance, sales operations and price predictions for commercial companies, and pandemic prediction
in the medical field. Deep learning-based TSF tasks stand out as one of the most valuable AI scenarios
for research, playing an important role in explaining complex real-world phenomena. However,
deep learning models still face challenges: they need to deal with the challenge of large-scale data
in the information age, achieve longer forecasting ranges, reduce excessively high computational
complexity, etc. Therefore, novel methods and more effective solutions are essential. In this paper,
we review the latest developments in deep learning for TSF. We begin by introducing the recent
development trends in the field of TSF and then propose a new taxonomy from the perspective of
deep neural network models, comprehensively covering articles published over the past five years.
We also organize commonly used experimental evaluation metrics and datasets. Finally, we point
out current issues with the existing solutions and suggest promising future directions in the field
of deep learning combined with TSF. This paper is the most comprehensive review related to TSF
in recent years and will provide a detailed index for researchers in this field and those who are just
starting out.

Keywords: time series forecasting; deep learning; Transformer; convolutional neural network (CNN);
recurrent neural network (RNN); multi-layer perceptron (MLP); state space model (SSM); large
language model (LLM)
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1. Introduction

Time series forecasting (TSF) is a field of study that involves all aspects of society, and
the concept has been around for decades in statistics and economics. Early TSF methods
mostly evolved gradually through the contributions of many statisticians, economists,
and mathematicians spanning multiple periods, a relatively long process, and primarily
found applications in economics. For example, conducting research and forecasting trends
in stock prices aid in the development of investment strategies and risk management.
Similarly, predicting fluctuations in commodity prices facilitates inventory adjustments
and supply chain management. Additionally, forecasting macroeconomic indicators such
as gross domestic product (GDP) and the unemployment rate enables timely economic
decision-making at the national level. With the advent of the information age, the rate
of data generation has surged significantly, prompting the need for TSF across various
domains, such as electricity [1], transportation [2], meteorology [3], and disease prevention
and control [4].
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Statistical models played a crucial role in the early stages of TSF, where viewing TSF as
a regression problem was a common approach. With the refinement of the theory and grad-
ual evolution of the application of the autoregressive (AR) model and the moving average
(MA) model, these models were eventually amalgamated into the autoregressive moving
average (ARMA) model. The ARMA model not only considers the long-term dependencies
in the time series but also addresses the influence of short-term white noise; thus, it can
better capture structural patterns at different time scales using time series data. Further,
the ARIMA model, which incorporates a differencing component based on ARMA, can
handle the trend part of the time series data more effectively and makes the coefficients in
the model more interpretable. Other models also exist including the error-trend-seasonality
(ETS) model, which takes seasonal patterns into account, the non-parametric Gaussian
process (GP) model, etc. However, these models are better at handling small datasets that
are less noisy or highly trending. Additionally, these early statistical models are mostly
designed for univariate time series forecasting and often require data preprocessing.

However, with the development of this field and burgeoning volume of data, the
influence of external variables (covariates) on the prediction results has been increasingly
considered by researchers; for instance, the vector autoregression (VAR) model [5] considers
the setting of multiple variables.

In recent years, with the development of machine learning, especially deep learning,
deep learning models have gained prominence due to their ability to flexibly capture
complex relationships and better capture features and long-term dependencies in data.
RNN variants (LSTM, GRU), CNNs, and Transformers have also been introduced to handle
multivariate time series data after improving upon the original. However, whether in
univariate or multivariate, single-step or multi-step TSF scenarios, deep learning models
have shown the ability to positively improve the accuracy of the results.

In the fields of natural language processing (NLP) and computer vision (CV), some
models or components exhibiting superior performance have also made remarkable contri-
butions to improving prediction accuracy after being introduced into the field of TSF and
have become an important part of the new generation of TSF models [6,7].

In this paper, we aim to fill this gap by summarizing the development of deep models
for TSF in recent years. We also present a milestone chart depicted in Figure 1. We first
introduce several models commonly used in TSF over recent years and their evolving
trends, and we then propose a novel taxonomy from the perspectives of neural network
architectures. In addition, we explore the improvement directions of various models, such
as RNN, Transformer, and MLP models. We identify key models in each category to analyze
and elaborate on their advantages and innovations, aiming to offer insights for enhancing
the performance of TSF models. Additionally, we outline the common problems of TSF in
detail, summarize the existing solutions and further categorize the solutions according to
the approach they involved. Finally, we also point out potential research directions, as well
as the gaps and challenges that still need to be addressed, to provide researchers with fresh
perspectives on the future trajectory of the TSF domain.

Existing surveys mainly focus on the entire field of time series, including classification
and anomaly detection. Not many surveys focus on TSF tasks, and those that do only
explore a limited number of early works or provide an overview of specific neural networks
of models, failing to cover the overall development trend in this field. Our work provides
a comprehensive overview for researchers who are seeking to enter the important field
of TSF, an important area of AI development. The main contributions of this paper are
as follows:

• Development trend and new taxonomy: We analyze the development trend of TSF
models over the past five years and propose a new taxonomy of the network archi-
tecture of TSF models. We categorize existing TSF models into the following four
categories: RNN based, Transformer based, CNN based, and MLP based.

• Fine-grained problem investigation: We summarize and categorize the common
issues in TSF as well as the existing solutions to these problems to facilitate targeted
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model selection for researchers in different fields when integrating or transferring TSF
models to specific areas.

• Rich resources: Our paper includes almost all the research in the field of TSF over the
past five years, involving a wide range of state-of-the-art models and datasets. This
survey can serve as a practical guide to get started, understand, apply, and explore
various deep learning methods in the field of TSF.

• Future directions: We explore the limitations of existing TSF models and propose
several potentially effective future innovations as well as research directions in terms
of seven aspects.
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The rest of our survey is organized to guide the readers as follows. Section 2 outlines
the preliminaries of TSF and enumerates commonly used abbreviations and concepts
related to TSF. Section 3 clarifies the categorization and taxonomy of TSF models, offering
an overview of various models. Section 4 presents commonly used experimental evaluation
metrics and datasets. Section 5 discusses current challenges in deep learning-based TSF
tasks. Section 6 explores future directions for research. In Section 7, we summarize
this survey.

2. Preliminaries of Time Series Forecasting
2.1. Overview of Time Series Forecasting

The essence of TSF simply refers to using historical observations of variables to predict
the future values of target variable. Further, the target of TSF is to build a predictor P,
where the time series is denoted by Y = (y1, y2, ..., yt) and yt is the value in time t. Based
on a given forecast horizon h, predicted values are generated. This generalized definition
takes the following form:

Y = (y1, y2, ..., yt)
P⇒ Ŷ = (ŷt+1, ŷt+2, ..., ŷt+h) (1)

As described above, this is only a generalized formal definition. Depending on the
type of TSF, different definitions exist, which will be provided in this section.

Early statisticians often viewed TSF tasks as regression problems, and ARIMA, which
combines autoregressive, differential, and moving average elements, can be utilized for
models with trends and seasonality; it can also be applied in situations where non-stationary
data need to be predicted. However, ARIMA focuses only on linear relationships and fails
to capture non-linear relationships. More specifically, the autoregressive part of the model
focuses on the linear relationship between the current observed value and historical value,
while the moving average (MA) indicates the linear relationship between the current value
and the white noise term. This is a very significant limitation of the ARIMA family, namely,
the linearity assumption for the observed system is commonly deemed invalid.
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In 2017, the research team at Facebook launched a piece of commercial software
named Prophet (https://www.prophet-web.com/) [8] for large-scale TSF, which was
essentially based on statistical methods. Prophet offers a modular regression model with
interpretable parameters, allowing for modeling based on domain knowledge related to
time series. According to Prophet, the data are decomposed into four basic factors of
variation: trend, periodic changes (e.g., weekly, and yearly seasonality), holiday effects,
and extra events. The primary distinction between extra events and holiday effects is that
holiday effects focus on dealing with periodic occurrences such as traditional holidays,
whereas extra events are more flexible and are not unconstrained by fixed periodic or
seasonal patterns, and these special events may be irregular and one-time, which is currently
a research hotspot. Compared with ARIMA, the early-stage statistical model applying
decomposition architecture, the advantage lies in its better accuracy when predicting
change points and trends as well as its applicability to large-scale data. However, due to
applying additive model and fitting components, forecasting an exact value is challenging
due to the influence of noise and other implicit factors. It is worth noting that none of
these models can be used for long sequence time series forecasting (hereinafter called LSTF,
Informer proposed) scenario.

However, RNNs face serious problems such as vanishing gradients and exploding
gradients when dealing with long sequences. In 1997, Jürgen Schmidhuber proposed long
short-term memory (LSTM) [9]. By introducing a gating mechanism (including forget
gates, input gates and output gates) to control information flow, LSTM effectively captures
long-term dependencies between different time steps in sequence. Furthermore, the gated
recurrent unit (GRU) [10] simplifies the network architecture by including only two gates, an
update gate and a reset gate, which reduces the number of parameters, prevents overfitting,
and makes computation more efficient. DeepAR [1] is a probabilistic forecasting tool
proposed by Amazon based on an autoregressive recurrent network architecture, and its
predicted output is not a definite value but rather a probability distribution of the predicted
value. Compared to LSTM, DeepAR considers the stochastic nature of many processes. The
probability distribution as the output is closer to the essence and can effectively reflect the
uncertainty of forecasting, offering a comprehensive basis for decision-making with higher
accuracy. It seems that RNN variants can potentially resolve long sequence forecasting.
However, their effectiveness remains unsatisfactory when confronted with real-world
applications involving massive, high-frequency time series data and longer prediction
demand. Therefore, integrating long sequence and addressing these data characteristics is
one of the key challenges in deploying sequence data analysis.

Before the advent of Transformers [11], LSTF was a relatively neglected issue in the
field of TSF. On the one hand, the models mentioned above only provide relatively short-
term prediction; on the other hand, the coarse-grained prediction for a long-term trend
in the future is insufficient for real-world application. This has hindered development
and progress in fields where the support of LSTF is urgently needed to reduce resource
consumption in real-life applications, such as the commissioning of large electrical Trans-
formers. Initially successful in the NLP, Transformers have been gradually applied in TSF
tasks since both NLP and time series involve sequence data. The successful application of
models in NLP and CV has led to a surge in research activity in the field of TSF over the past
couple of years. Initially, Wu et al. [4] directly applied Transformers for TSF. Subsequently,
researchers adopted a combination of CNN or LSTM with Transformers [12] to address
the issue of position information dependent on position embedding. This ensured the
perfect application of the sequence modeling capability and ultra-long-period information
extraction capability of the attention mechanism.

In the classical encoder–decoder structure [13], between Input and output of the
model, there is a recurrent neural network modeling process one by one. When the model
is presented with a longer prediction sequence, the cumulative number of neurons, i.e.,
the traveling paths of network signals, between the input and output will also increase,
raising the cumulative error. However, the self-attention mechanism in the Transformer,

https://www.prophet-web.com/
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by virtue of the fact that the output of each position only depends on the weights of the
other positions in the sequence and the weighted sum of the corresponding feature values,
is able to avoid having a recurrent structure. Moreover, the maximum length of network
signals’ traveling paths can be reduced to O(1). However, given the overall length of
the sequence, solving the quadratic computational complexity still needs to be addressed.
Informer [14] utilized key and few critical queries to perform sparse attention, thereby
reducing computation. Since then, innovation in Transformer-based approaches for solving
LSTF problems has entered a phase of rapid growth, facilitated by the integration with
traditional statistical TSF methods and inspiration from leading advances in domains
like CV.

Due to recurrent architecture’s inherent advantages in modeling sequence, it is of-
ten considered the default starting point for sequence modeling tasks. However, some
convolutional architectures can achieve good accuracy in machine translation [15], audio
synthesis [16], and language modeling [17], so the scope of applicability for convolutional
sequence modeling has expanded. The CNN is a type of deep feedforward neural network
with convolution and pooling operations at its core. Although the CNN was originally
designed to handle image recognition in CV [18], it is still effective for TSF. (1) The advan-
tage of using a CNN in TSF tasks is its convolution kernels, and its local receptive fields
mean that each convolution kernel only views a small part of the input data. (2) Sliding
kernels can capture local patterns and features, with varying scales of patterns and features
captured by adjusting the sizes and strides of the convolution kernels. Meanwhile, the
pooling operation can save key data, reduce the amount of redundant information, and
ultimately yield forecasting results. (3) In addition, kernel weights are shared across the
input, which means that a CNN can recognize the same pattern at any position in time
series, increasing its capacity for generalization. (4) By stacking CNNs, complex patterns in
time series can be effectively learned.

The characteristics above enable CNNs to perform well in some specific time series
tasks, especially those involving multi-scale patterns. CNN-based TSF models have limi-
tations in handling non-stationary data and long-term dependencies, possibly failing to
fully capture the contextual information of the data. In comparison with other network
architectures, such as RNNs, CNNs do not exhibit superior prediction accuracy, particu-
larly in scenarios involving TSF with longer intervals. Nonetheless, they are frequently
integrated into other advanced algorithmic models as robust modules for prediction tasks.
In 2016, DeepMind proposed an audio generative model called WaveNet [16] based on Pix-
elCNN [19], which regards audio data as 1D waveform data. By combining dilated causal
convolution with residual and skip connection, it shows very promising results in audio
modeling and speech recognition. Transferring to the TSF realm, time series can also be
reviewed as one-dimensional vectors and then be fed into WaveNet to obtain the predicted
value for the next time step. Inspired by WaveNet, Anastasia Borovykh et al. [20] used
ReLU instead of the gated activation function with novel parametrized skip connections to
simplify and optimize the model structure for multivariate TSF. In 2016, Lea et al. proposed
a temporal convolutional network (TCN) [21] for video-based action segmentation, which
was later extended to the TSF field. Moreover, in 2018, Bai et al. introduced causal convolu-
tions based on TCN while combining residual connection and dilation convolution to avoid
future information leakage and realize the introduction of longer historical information
with the same complexity to effectively improve the prediction performance. Further, in
2022, Liu et al. proposed SCINet [22] based on downsample–convolve–interact architecture,
with a unique binary tree structure where both short- and long-term dependencies can be
extracted, and its performance once surpassed Transformer-based models that obtained
SOTA in the LSTF task. Following this, influenced by decomposition [23] and other novel
ideas successfully applied in TSF, CNN-based models and Transformer-based models have
demonstrated leading performance in recent years.

The MLP method is constrained by its point-wise mapping approach, rendering it
ineffective in addressing the global dependencies within time series data, thereby signifi-
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cantly impeding its performance, but it has a simpler structure. However, over the past
year, many works have moved away from RNNs, CNNs and Transformers, instead opting
for MLP-based models in TSF tasks, especially for LSTF, resulting in significant improve-
ments [24–27]. In other words, the architecture of TSF models is developing towards a new
direction: simplicity. Zeng et al. questioned the effectiveness of using Transformers in TSF,
especially the necessity of the attention mechanism, and proposed DLinear [26], a model
that combines the decomposition scheme with the linear layer. Raw time series data are
decomposed into trend and seasonal components by a moving average. Each component is
processed by one-layer linear layers and then added to obtain the result. This simple model
outperformed SOTA’s Transformer model at the time in both univariate and multivariate
TSF tasks. Further, influenced by Mixer [28] in CV, which realizes the interaction between
the channel dimension and token dimension through MLP, MTS-Mixer [29] applies the
structure of Mixer to the TSF scenario, and studies the low-rank property of multivariate
time series, that is, only a small part of data can represent the nearly complete original ma-
trix and be used to design a model with a factorized temporal and channel mixing strategy.
Since then, institutions like Google have continued to explore the potential capacity of MLP,
optimizing results in TSF.

Additionally, a kind of model known as Time-index model, which is defined in
detail by woo et al. [30]. This model uses time-related features rather than the historical
observations mentioned before, such as datetime features, as inputs to predict the value on a
specific timestep. In 2017, Luke B. Godfrey and Michael S. Gashler proposed ND [31] with a
regression-based extrapolation method. In simple terms, a complex curve is obtained based
on historical values by implementing regression, whose horizontal axis and vertical axis
represent timestamps and sequence values, respectively. In this way, the future timestamp
is used as an input to obtain the predicted values. Many recent works have been heavily
influenced by its idea. This method obviously takes global information into account rather
than just making predictions based on a small time window in the past.

2.2. Some Definitions in Time Series Forecasting

In this paper, we elaborate on some ambiguous or undefined issues in previous research.
Firstly, in this paper, TSF is primarily separated into two categories based on variate:

univariate TSF and multivariate TSF.
For univariate TSF, given historical time series Y with look-back window size length

T, Y = (y1, y2, ..., yT), the goal of our task is to predict the forecasting horizon with length
L, Ŷ = (ŷT+1, ŷT+2, ..., ŷT+L). We can obtain T × 1 → L × 1 , denoting input T and predic-
tion L with one variable. Most of the early TSF models were designed for univariate TSF
due to the difficulty in acquiring and recording data as well as the scarcity of computa-
tional resources in the past, meaning that the focus of research was usually on a single
variate. However, as science and technology advances, more and more applications are
required to consider the complexity of the data more thoroughly, so multivariate TSF has
gradually emerged.

For multivariate TSF, given historical data χ containing M variables,
χ =

{
Xt

1, Xt
2, ..., Xt

M
}T

t=1, wherein the look-back window size is length T and Xt
i means the

value of the ith variate at the tth timestep, the goal of our task is to predict the corresponding
sequence Y =

{
Yt

1, Yt
2, ..., Yt

N
}T+L

t=T+1 at future L-time steps. Most of the models surveyed
in this article, especially those developed in the past two years, are aimed at tackling
LSTF problems. Therefore, the length of L is longer than in previous works, and we can
obtain T × M → L × N , denoting input T with feature dimensions or numbers of variables
M(M > 1) and prediction L with N dimensions. It should be noted here that the number
of variables will also be considered as multiple channels.

The essential distinction between univariate TSF and multivariate TSF lies in whether
to consider the relationship between multiple variables. In real-world scenarios, multivari-
ate TSF models can often be directly applied to univariate TSF. Therefore, the categorization
in this paper is only used for describing the models’ application in original papers. Most
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researchers believe that the process of modeling multivariate TSF modeling is focused on
exploring the dependency relationship between multiple variables, so early studies tend to
create a complex multivariate relationship extraction model, leading to improved accuracy
in prediction results. Coincidentally, with the evolution of the model structure, more and
more researchers have discovered that simpler Channel-Independent (later called CI) mod-
eling approaches [6,26], specifically modeling each variable individually in multivariate
TSF, yield better results. We will get into the specifics in the subsequent section. However,
it is clear that this simplification of complex problems has played an important role in
various research areas.

Above is the division of TSF with respect to the variate dimension of the input.
Similarly, for the output, we have one-step and multi-step TSF depending on the time
horizon of forecasted output values. For one-step TSF, it simply forecasts the next time
step, i.e., it forecasts only one value in the future, so it is used for short-term forecasting,
such as the stock price on the next trading day. Multi-step TSF predicts values of multiple
time steps in the future, which is the primary focus for LSTF, because we need longer
predicted values.

Furthermore, multi-step TSF can be categorized according to the way model outputs
and the predicted sequences are generated. The following are the main strategies, usually
selected according to the requirements of tasks and the characteristics of the data:

1. Iterated multi-step forecasting (IMS): This strategy means that the model iteratively
generates forecasts for multiple future time steps; each time step’s forecast result
is dependent on the forecast of the previous step. In other words, the model uses
the forecast of the first future time step as an input to predict the value of the next
time step, and the whole process is carried out iteratively. However, this kind of
iterative forecasting results in significant cumulative errors in the LSTF problem; we
are particularly concerned with the prediction accuracy being greatly affected. The
commonly used RNN-based TSF method falls within the category of IMS forecasting
because of its recursive nature.

2. Direct multi-step forecasting (DMS): This strategy means that the model directly gen-
erates forecasts for multiple time steps, unlike IMS, where each forecast depends on
the prediction of the previous time step. Informer [14] has designed a generative-style
decoder that generates the forecasts in one forward procedure and is no longer affected
by dynamic decoding. Meanwhile, it is no longer affected by the inability to make
fast predictions when tasks require long outputs. MQ-RNN [32], Autoformer [33],
FEDfomer [34], DLinear [26], Pyraformer [35], etc., all implement the DMS strategy.
Zeng et al. [26] notes that the essential difference between these two strategies lies
in whether the decoders are implemented in an autoregressive way: IMS if yes, and
DMS otherwise.

In the early stage, deep learning-based TSF models considered the properties of
sequence data such as long- or short-term dependencies, meaning that the current observed
value is influenced by past distant time points. However, the unique characteristics of time
series data are not adequately taken into account:

• Trend: The overall long-term direction of change shown by time series data, with
three specific trends: stationary, upward, and downward.

• Seasonality: The periodicity of the time series data shown over a specific period,
which is usually associated with a specific time interval (weekly, monthly, quarterly,
etc.). For example, sales of cold drinks increase every summer.

• Cyclical Patterns: Although seasonality is a special form of cyclical pattern and can be
considered a subset of cyclicality, it more specifically refers to cyclical patterns that
occur within a fixed period. There is still a difference, theoretically. Cyclical patterns
represent alternating peaks and troughs in a time series, characterized by fluctuations
that tend to be irregular but predictable over the long term. These patterns often arise
in reality from various business or economic activities, scientific and technological
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developments, etc. In deep learning models, we typically decide whether to consider
it based on the characteristics of the data.

• Noise: Stochastic fluctuations in the time series that may come from measurement
errors or external factors.

The above are the components obtained using decomposition methods the deep
learning models usually used to assist them in obtaining more accurate predictions. For
example, N-BEATS [36] uses fully connected layers to perform decomposition for time
series data; the interpretability of results is aided by the analysis of the trend and seasonal
part. A typical characteristic of the trend is that it is typically a monotonic function, or
at least a slowly varying one. N-BEATS utilizes polynomial regression and sine–cosine
functions to fit the trend and seasonal part, respectively. Autoformer [33] innovatively
incorporates a commonly used statistical preprocessing method into an embedded module,
called series-decomposition block, which is based on the moving average (MA), in order to
highlight the trend term and smooth the seasonal term. Recent SOTA models have widely
embraced this strategy. We will organize detailed developments in the following sections
for reference.

3. Taxonomy of Deep Time Series Forecasting Models

To systematically summarize the existing deep TSF models, we propose a taxon-
omy from the perspectives of the neural network architecture, and the discussed models
cover RNN-based, CNN-based, Transformer-based, and MLP-based models, as outlined in
Figure 2. We present the innovation points and trends of each category along the timeline.
The four architectures represent the main research directions in the field of deep learning-
based TSF, covering the evolution from traditional RNNs to more modern Transformer
models, and the recent development of MLP models achieving good performance with sim-
ple architectures. These methods are based on different neural network architectures, each
with its unique characteristics and advantages, as detailed in Section 2. Categorizing them
helps highlight the architectural differences, making it easier for readers to understand how
different types of architecture models have improved in forecasting performance over time,
particularly in addressing the increasingly focused LSTF issue, and where innovations
and improvements can be made. Moreover, this taxonomy can clearly demonstrate how
innovative ideas within different neural network architectures mutually influence and
promote each other. In this way, it could be helpful for researchers who are new to this field
to straighten out the context and choose specific models according to their own research
direction in academic research. The content of articles listed under each classification serves
to foster the development of the TSF realm, an approach less commonly encountered in
previous surveys but providing a comprehensive understanding of the TSF field’s evolution
through this approach. Clear summaries of these models are presented in tables after each
category. It is worth noting that most of the models are designed for the LSTF problem,
which is consistent with the research focus changing as real-world data develop.
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3.1. RNN-Based Models

Recurrent neural network (RNN)-based models are the pioneer of deep learning in
the TSF realm. Because of their recursive structure, RNN-based models are suitable for
working with time series data or tasks that involve obtaining time dependencies. However,
there is still a limit to handling long-term dependencies or capturing intricate patterns,
particularly when working with LSTF, where the issue of vanishing gradients or inflating
gradients is likely to occur.

LSTNet [37], proposed by Lai et al. for multivariate TSF, introduced a convolutional
layer to capture short-term features of time series data with LSTM or GRU for long-term
feature extraction. Considering that RNNs cannot capture very long-term connections,
a recurrent skip component is designed to record ultra-long-term features of time series
data. Using the periodic pattern of real data, a periodic p hyperparameter is introduced
to solve this problem. Finally, considering that the neural network is not flexible enough
to the change in the input scale (changes in data size and dimension), which will lead to
fluctuations in performance, an AR model is introduced to add linear components, making
the non-linear deep learning model more robust to time series that violate the scale change,
and the output can respond to the scale change to the input. The DA-RNN model [38] used
a dual-stage attention mechanism to adaptively assign higher weights to highly correlated
feature variables in the input stage and find the encoder hidden states with the strongest
temporal correlation over the entire time steps in the decoder stage. This kind of design
ensures that DA-RNN can not only adaptively select the most relevant input features
but can also capture the long-term temporal dependence of time series. MQ-RNN [32],
which also adopts Seq2Seq architecture, considers that a single value provided by point
forecasting methods cannot reflect the uncertainty of the model for the predicted value, but
probabilistic ones are suitable for this situation and provide abundant information for many
decision-making scenarios. A novel forking-sequences approach is applied in the training
process (reflected in the connection of a decoder after every time point in the encoder part),
and a DMS strategy is adopted; an encoder–decoder structure is also optimized with the
RNN being replaced with a MLP for prediction in the decoder.

Further, mWDN [39] introduced wavelet decomposition as part of the network frame-
work with trainable parameters rather than a preprocessing method before modeling.
Subseries obtained by mDWN are sent to corresponding LSTMs and then ensemble the re-
sults. MTNet [40] introduced a memory network and redesigned the attention weights. As
with LSTNet, the traditional autoregressive linear model is paralleled with the non-linear
neural network to address its insensitive output scale. Hybrid ES-LSTM [41] combines
the exponential smoothing (ES) method with LSTM and trains the preprocessed param-
eters together with a neural network. At the same time, the ES method can effectively
capture active components such as seasonality, and the neural network can iteratively
eliminate seasonal factors. By hierarchically leveraging both local and global components,
sequence information is extracted and integrated simultaneously. This approach has in-
spired numerous subsequent models. Moreover, Fan et al. [42] focuses on multi-modal
fusion, regarding different historical periods as different modalities and fusing them with
multimodal attention weights for better prediction.

C2FAR [43] is a univariate probabilistic TSF model based on DeepAR [1] that intro-
duces the binning approach that already exists in CV and NLP. It first classifies the coarse
bin in which the predicted value is located and then uses that as a condition to sort out
which finer bin the prediction value is located in. It is worth mentioning that C2FAR focus a
practical concern regarding the diverse nature of real-world time series, which often exhibit
a combination of discrete, continuous, and semi-continuous characteristics. C2FAR deals
with prediction problems through the discretization of sequence values and is suitable for
prediction that does not require high precision. Moreover, Neural ODE is frequently used
to describe the change in hidden state over time, and the derivative of the hidden state is
used to model this change. Based on that, RNN-ODE-Adap [44] included the data itself in
the derivative of the hidden state to model together and selected the time steps adaptively
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according to the local variations in the time series, capturing the potential trend with fewer
steps, and achieved higher prediction accuracy with lower time complexity.

With the emergence of Transformer-based models, the Transformer’s superior perfor-
mance has rendered RNN-based models no longer the preferred choice for LSTF problem,
and its performance has even been surpassed by MLP-based models, such as DLinear [26]
and TiDE [24]. In the LSTF problem, with the expansion of the prediction horizon, the cu-
mulative error of RNN-based model increases rapidly, and the inference time also increases
rapidly. Although many previous efforts have made great improvements, they are dwarfed
by the reality of longer data inputs: longer forecast horizons. However, SegRNN [45]
emerged at a time when Transformer-based models and MLP-based models were alter-
nating in prominence. This was influenced by the patching technique used to preprocess
data, which has been utilized in both of these kinds of models. SegRNN assumes that the
main reason for RNNs’ failure in LSTF problems is their high recurrent iteration counts. It
introduces a segment technique into the RNN and a parallel multi-step forecasting (PMF)
strategy while replacing pointwise iterations with segment-wise iterations to reduce the
number of iterations. These methods greatly improve the prediction accuracy of RNN-
based models. Following this, WITRAN [46] continued to emphasize capturing long- and
short-term repeating patterns. However, inspired by TimesNET’s reconstruction of 1D
time series in 2D space to simulate both intra- and inter-period changes, the author further
rearranged the sequence, and multiple adaptive cycles of the input were learned by setting
up hyperparameters instead of fast Fourier transformations (FFT). Gate select cells were
designed in both horizontal and vertical directions to merge and select information. The
computational efficiency is further improved through the parallel processing of two direc-
tions of information transmission through a recurrent acceleration network. Theoretically,
both WITRAN and SegRNN solve the vanishing gradient and exploding gradient of RNNs
by reducing the length of the transmission path. This approach aligns with the main
direction of restarting RNN-based models to solve LSTF problems.

While RNN-based methods have experienced periods without good performance
in either predictive accuracy or forecasting capability for LSTF issues, they are lower in
complexity compared to Transformer-based models. Moreover, the structure of RNN-based
models is more suitable for processing time series data and allows long- and short-term
patterns to be captured simultaneously. By studying strategies that have proven successful
in other network models, such as patching techniques, RNN-based models may shine again.
We summarize the RNN-based models in Table 1.

Table 1. Summary of RNN-based TSF models involved in taxonomy.

Models Journal/Conference Category Year

LSTNet [37] SIGIR RNN-based 2018
DA-RNN [38] IJCAI RNN-based 2017
MQ-RNN [32] Arxiv RNN-based 2017
mWDN [39] KDD RNN-based 2018
MTNet [40] AAAI RNN-based 2019

Hybrid-ES-LSTM [41] IJoF RNN-based 2020
LSTM-based ED [42] KDD RNN-based 2019

C2FAR [43] NeurIPS RNN-based 2022
RNN-ODE-Adap [44] Arxiv RNN-based 2023

SegRNN [45] Arxiv RNN-based 2023
WITRAN [46] NeurIPS RNN-based 2023

3.2. CNN-Based Models

Convolutional neural network (CNN) is crucial for the success of deep learning
in the CV realm. In the field of TSF, CNNs can leverage their high efficiency in local
feature extraction. Meanwhile, temporal convolutional networks (TCNs), after effectively
introducing causal convolution and dilated convolution, are highly suitable for processing
sequence data and improve the performance of handling long-term sequences in some
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scenarios. They are designed to address the problems of RNNs such as vanishing gradients
and high computational complexity encountered in handling long sequences and utilize
the advantages of modeling long-term dependencies faster and the ability to compute in
parallel. Even though TCNs have increased performance, other neural network types may
still perform better on long sequences.

DSANet [47] focuses on time series with dynamic periodic or non-periodic patterns. It
independently inputs each univariate time series into two parallel convolution structures,
each operating at a different scale, to model global and local complex patterns, respectively.
Meanwhile, each branch combines an individual self-attention module to learn the depen-
dencies between different sequences. DSANet also employs an autoregressive component
to address the issue of neural network output scale insensitivity to input scale, and, finally,
considers the mixture of linear and non-linear components as a result. MLCNN [48] places
the construal-level theory of psychology as the core of the entire model design. From the
human perspective, MLCNN uses abstract features to predict distant future values. Some
specific features are used to predict near-future values, thereby improving the prediction
performance by fusing prediction information from different future moments. To achieve
this objective, an MLCNN was used to build a multi-tasking architecture wherein one main
task and four auxiliary tasks were used to learn about the target future moment and its
near- and distant-future values. The raw time series constructed five intermediate feature
maps with different levels through a 10-layer one-dimension CNN. After that, it was used
as the input for the subsequent LSTM-based fusion-encoder–main-decoder part to obtain
the result of the non-linear part, and then the linear part’s results obtained using AR were
merged to obtain the final prediction.

SCINet [22] believed that the unique characteristic of time series compared to other
sequence data (e.g., text sequences) lies in the fact that after downsampling them into
subsequences, they still contain relevant information and connections of time series. It is
proposed that causal convolution in TCN is not only unnecessary but also self-restrictive
in its ability to extract temporal information. Therefore, SCINet is designed as a recursive
downsample–convolve–interact architecture. It also adopts a multi-layer binary tree struc-
ture, iteratively capturing information at different time resolutions. As the depth of the
binary tree increases, finer-grained information is extracted. This hierarchical structure
allows for the extraction of both short- and long-term dependencies in the sequence. Fur-
ther, more complex sequences can be processed by stacking multiple SCINets. MICN [49]
uses a moving average similar to Autoformer [33] and FEDformer [34] to decompose the
original sequence into trend terms and seasonal terms and predicts them separately, and
it then integrates them to obtain the result. The innovation is that a multi-scale branch
structure was designed for the seasonal part and down-sampled convolution was used to
extract local features of time series. Then, instead of masked self-attention, an isometric
convolution module is used to model the correlation between all local features and obtain
global features. Isometric convolution involves padding the original sequence, which
has a length of S, with S-1 zeros at the beginning, followed by convolving the sequence
with a kernel of size S. Integrating both CNN and Transformer modeling perspectives en-
hances the performance of CNN models in LTSF. From the perspective of multi-periodicity,
TimesNet [50] breaks through the limitation that the original one-dimensional time series
structure can only represent changes between adjacent time points. Further, complex tem-
poral variations are divided into multiple intra-period and inter-period variations. By using
the fast Fourier transform (FFT) algorithm to convert 1D sequences into 2D tensors, the pro-
cessing of two different types of variations is extended to 2D space, which enables temporal
patterns to be captured using various neural network backbones in CV such as Inception.
It is important to note that TimesNet serves as a versatile neural network framework for
time series analysis, capable of handling various tasks, including TSF, classification, and
anomaly detection. Instead of depending on advancing the neural network, TLNet [51]
utilized a transform-based network architecture for interpretability and better performance
in LSTF tasks. It was realized by transforming the input’s features into a domain defined by
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large receptive fields and then building representations within that domain with potential
space for interpretability. In the new domain, it may be easier to learn the global features
and structure.

MPPN [52] focuses on how to automatically mine multi-resolution and multi-periodicity
patterns in time series and proposes an entropy-based method to evaluate the predictability
of time series to prevent the negative effects brought about by the introduction of unfore-
seeable noise in training. In terms of resolution, convolutions with different kernel sizes are
employed to extract features from original sequences to form representations at different
resolutions. For the periodic pattern, Fourier transform is used to map the time series
to the frequency domain, and frequencies with the top-k amplitudes are selected as the
corresponding pre-defined periods. Further, dilated convolution is adopted to achieve
multi-periodic and multi-resolution pattern mining. Finally, the resolution and periodic
information are concatenated for the encoding result. FDNet [23], with a simple structure
consisting of basic linear projection layers and CNN, uses a focal input sequence decompo-
sition method to divide the input sequence into multiple continuous subsequences based
on the temporal distance. The length of subsequences decreases as the temporal distance
from the predicted element shortens, with the numbers determined by a hyperparameter.
This kind of design effectively solves the problem of long sequence time series input (LSTI).
PatchMixer [7] is a model that integrates patching data-organizing strategy and CI strategy
with CNN architecture, which have shown significant effectiveness in TSF. It still employs
trend–seasonal decomposition and applies linear and non-linear methods to two branches,
respectively, eventually summing their prediction results up. Two convolutional branches
are creatively employed to model intra- and inter-patch data, facilitating the extraction of
local and global information and further enhancing the performance in LSTF tasks.

ModernTCN [53] drew inspiration from the superior performance of CNNs in the
field of CV compared to Transformer-based models, and it further explored the potential
of improving the performance of CNNs in the TSF realm. Specifically, it increases the
kernel size to expand the effective reception field (ERF) and draws inspiration from the
architectural advantages of Transformers. In addition, ModernTCN adopts the patching
strategy to split each variable into patches for embedding to prevent variable mixing
embedding methods from disrupting the modeling of relationships between subsequent
variables. By cleverly decoupling the temporal part, channel part (referring to depth-
wise convolution), and variable part through three types of convolutions, the prediction
performance in LSTF problem was improved. Moreover, UniRepLKNet [54] essentially
serves as a feature extraction network, further exploring the potential of large-kernel
CNNs. It still focuses on the ERF as its design center and decouples various elements when
designing large-kernel CNNs: ensuring a large receptive field with a few large kernels,
efficiently capturing features in local regions with flexible small kernels, enhancing the
abstract hierarchy of spatial patterns, and improving the model depth and representational
capacity with efficient structures like SE Blocks. In handling time series data, it draws
inspiration from the embedding layer in CorrFormer, transforming data into tensors in
latent space and then simply reshaping them into a single channel embedding map. This
approach demonstrates promising results in prediction tasks, potentially even replacing
Transformer model architectures.

We have systematically reviewed the latest developments of CNN-based networks in
the field of TSF over time, as summarized in Table 2. We can observe that the advantage
of using CNN-based models for TSF is in feature extraction, especially when facing multi-
variate TSF tasks. Although the CNN has experienced a period of silence, the effectiveness
of causal convolution, the crucial structure of the TCN and an important advancement in
the TSF realm, has been questioned and challenged. In addition, the large-kernel CNN
has shown promising results in various tasks in CV, such as semantic segmentation and
object detection. As a result, researchers have taken notice of this technology and have
modified convolution for use in TSF tasks. Numerous versions based on this concept have



Mathematics 2024, 12, 1504 13 of 33

been proposed, particularly in the last few months, effectively solving the LSTF issue. This
architecture will undoubtedly present a better future.

Table 2. Summary of CNN-based TSF models involved in taxonomy.

Models Journal/Conference Category Year

DSANet [47] CIKM CNN based 2019
MLCNN [48] AAAI CNN based 2020
SCINet [22] NeurIPS CNN based 2022
MICN [49] ICLR CNN based 2023

TimesNet [50] ICLR CNN based 2023
MPPN [52] Arxiv CNN based 2023
FDNet [23] KBS CNN based 2023

PatchMixer [7] Arxiv CNN based 2023
ModernTCN [53] ICLR CNN based 2024

UniRepLKNet [54] Arxiv CNN based 2023

3.3. Transformer-Based Models

Transformer [11] was initially proposed by Vaswani et al. in their paper “Attention is
All You Need”. Its original model was an encoder–decoder structure that showed state-
of-the-art performance across a wide range of NLP tasks. Models such as GPT use this
structure. By treating each position in the sequence as a vector and utilizing the multi-
head self-attention mechanism and feedforward neural network’s outstanding ability in
capturing long-term dependencies, it has great potential for development in modeling time
series. Significant breakthroughs that have revolutionized the TSF field during the last
three years have built upon the Transformer’s foundation by exploring the nature of the
time series itself (different from textual sequences), such as periodicity.

Initially, many applications considered directly applying Transformer, such as Wu
et al., who directly applied Transformer to the influenza-like disease forecasting task. Log-
Trans [55] emphasizes the specificity of time series data, which cannot be used only with
a point-to-point attention mechanism similar to that in NLP realm but focuses on the
contextual information around data points. Meanwhile, sparse attention is used to improve
the efficiency of operation. The LogSparse self-attention mechanism proposed opts to select
only elements from the range 1, 2, 4, 8, etc., adhering to the time step of the exponential
growth interval. At the same time, a local attention mechanism is applied to enhance the
influence of nearby elements to the current point. In addition, LogTrans integrates convolu-
tion and Transformer in its entirety; 1D convolution was used to extract the surrounding
information of each node in the input sequence, and then multi-head attention mechanism
was applied to learn the relationship between nodes and establish connections between
parts with similar shapes. Similarly, Informer [14] also optimized Transformer from the
perspective of efficiency to solve the problem of LSTF. Following the discovery that the
attention scores show long tail distribution, the emphasis shifts to modeling significant
relationships, specifically by forming sparse query–key pairs between critical queries and
keys to reduce computational overhead. Simultaneously, the distilling operation is added
between each attention block, and the input sequence length of each layer is shortened so
that the model can accept longer input sequences. Furthermore, a generative decoder is
designed to prevent the propagation of cumulative errors in the inference stage. TFT [12]
comprehensively considers the necessary features for a high-quality TSF model, such as
statistical properties like static information, adaptability to complex time series with in-
creased noise, the application of DMS strategy, and the acquisition of uncertainty interval
of predicted value. The entire model utilizes a combination of Transformer and LSTM.
From the bottom up, the variable selection network (VSN) weights variables for feature
screening to reduce unnecessary noise input; LSTM replaces the position embedding to
capture long- and short-term information simultaneously; further, the gating mechanism
is applied to identify the importance of different features and advance the network at the
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same time; the temporal self-attention layer learns the long-term dependence of time series
data and provides additional knowledge about the importance of features to facilitate
explanation; finally, quantile regression is used to forecast the interval. Another interval
prediction method, AST [56], embeds Transformer into GAN, and the α-entmax function is
used to compute the sparse attention weights. This sparse Transformer functions as the
generator, with the quantile loss measuring the disparity between the predicted output
and ground truth serving as the generator’s loss function. The discriminator is attached
to the Transformer’s decoder and classifies inputs to identify predicted values or ground
truth, utilizing the cross-entropy loss function to calculate the adversarial loss. These two
loss functions are leveraged for updating the sparse Transformer and the discriminator,
respectively. The adversarial training process shapes the output distribution of the gen-
erator through backpropagation, thereby mitigating error accumulation. Furthermore,
Autoformer [33] innovates based on the modular architecture from the Informer, with
embedded decomposition modules, a commonly used preprocessing method in traditional
statistics, to decompose the time series into the trend term and seasonal term. To break the
bottleneck of information loss caused by sparse pointwise attention mechanism in previous
models, a series-wise mechanism is proposed, which uses subsequences that are correlated
with the current time series representation as the current time point’s decision-making
enhanced the capture of feature information with less computational complexity. Motivated
by Autoformer [33], FEDformer [34] further exploits the characteristic wherein preserving a
small number of frequency components in the frequency domain can be used to almost en-
tirely reconstruct time domain signals without significant information loss. Raw time series
are converted from the time domain to the frequency domain through Fourier transform
and the attention part is performed in the frequency domain to improve the computational
efficiency while better capturing the global view of time series. Aliformer [57] systemat-
ically performs a targeted exploration on the influence of known future knowledge on
prediction in real life, especially in the field of sales. To address the issue, Aliformer utilizes
a bidirectional self-attention mechanism that allows future information to be leaked. A
knowledge-guide branch was designed to modify the attention map to minimize the effect
of noise due to replaced learnable tokens from introduced future statistics. In addition, the
emphasis on future knowledge is emphasized by adding span masking in the middle of
the sequence.

Pyraformer [35] proposed a C-ary tree attention-based Transformer model. The mech-
anism relies on the path of pyramidal graph for information transfer. From the bottom
to top is the fine-grained time series of the original input to coarse-grained ones obtained
through convolution. The tree structure offers benefits by enabling direct interaction be-
tween any two nodes, effectively balancing the computational complexity and shortening
the maximum signal traveling path. Preformer [58] follows the modular structure, focusing
on multi-scale construction by choosing segments with different lengths. It leverages the
characteristics of time series’ continuous variations. Segment-wise attention was proposed
to cope with its strong local characteristics by using matrix dot product to calculate the
attention score instead of vectors. A new computing paradigm is designed to shift the
query and value from the perspective of periodicity to make precise predictions. For
time series decomposition, ETSformer [59] was inspired by the traditional Holt–Winters
method and utilized exponential smoothing to extract the trend while incorporating a
damping coefficient for stable trend generation. In other words, ETSformer improves
upon Autoformer’s simple detrending operation, which only relies on moving averages of
sequences. The decomposed components offer interpretable insights into the prediction
results. Furthermore, ETSformer employs residual learning to construct a deep architecture
for modeling complex dependencies. Triformer [60] designed a model with patch attention
combined with a triangle hierarchical structure. From bottom to top, the layer input shrinks
exponentially to replace the stacked attention layer that requires an additional pooling layer
to maintain consistent dimensions to ensure accuracy while achieving linear complexity.
Different from the patch as an input unit, the complexity is here reduced only by treating the
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pseudo timestamp as a query within the patch without considering the semantic features
behind it. Meanwhile, according to the fact that the time series with different variables
often have different temporal dynamics, the variable-specific modeling method is adopted,
drawing on the idea of matrix factorization, to only learn the most prominent characteristics
of each variable that are different from other variables and achieve lightweight generation
of variable-specific parameters. TDformer [61] analyzed the applicability of time domain
attention and two frequency domain attentions and a TSF model based on Transformer
combined with MLP. Decomposition remains to be used as a preprocessing method. The
trend items after decomposition are directly modeled by MLP while seasonal items are
modeled using Fourier attention. The above two parts are concatenated as the results.
Non-stationary Transformer [62] aims at tackling the over-stationarization problem caused
by the traditional normalization methods, showing the attention matrix convergence phe-
nomenon in the modeling of different time series after normalizing in Transformer-based
models. By restoring statistical characteristics through normalization operations on inputs
and de-normalization operations on outputs, Non-stationary Transformer designed a De-
stationary Attention, a new form of attention from theory, where the attention matrix of
the stationarized sequence is used to approximate the attention matrix of the original non-
stationary sequence. Scaleformer [63] developed a multi-scale model-agnostic framework
to sample time series at different sampling frequencies by average pooling. The framework
employs a hierarchical forecasting strategy, progressing from coarse to fine-grained levels.
The forecasting results at lower scales serve as inputs for the decoder at higher scales,
with each scale equipped with its own forecasting module. Cross-scale normalization is
incorporated to mitigate errors caused by distributions at different scales and in the data
itself. Furthermore, adaptive loss, rather than Mean Squared Error (MSE) loss, is utilized for
model training to alleviate error accumulation due to iterative processes. Quatformer [64]
focuses on modeling complex cyclical patterns and mitigating the quadratic complexity
in LSTF tasks. To solve these two challenges, learning-to-rotate attention (LRA) using
quaternion was proposed, a mathematical tool used to represent rotation and direction;
at the same time, a learnable period was introduced and phase information was used to
describe complex periodic patterns. Meanwhile, linear complexity is achieved by stripping
the global information and storing the global memory with an additional fixed-length
latent series.

Persistence Initialization [65] designed a model-agnostic framework and its overall
structure is similar to nesting the ReZero normalization outside the Transformer-based
model, in fact, consisting of a residual skip connection and a learnable scalar gating
mechanism. Simultaneously, Rotary encoding is used in the Transformer-based model, and
replace the normalization in different positions, such as Pre- or Post-Layer Normalization,
with ReZero, which can achieve a better effect. W-Transformer [66] is also a model-agnostic
framework used for univariate TSF. The adopted strategy involves decomposing first
using the MODWT algorithm, forecasting components separately after decomposition, and
then performing aggregation before inverse MODWT. It leverages the advantage of the
MODWT’s shift-invariance property thoroughly.

Crossformer [67] focuses on modeling the relationship between multiple variables,
aiming to simultaneously capture the dependences of time dimension and cross-variables
simultaneously. Inspired by Vision Transformer (ViT) [68] in CV on image segmentation
tasks, the input sequence is embedded into 2D vector array by patching (different from
Triformer) with designed Dimension-Segment-Wise (DSW) embedding method. In order
to keep both time and variable dimension information, a two-stage attention (TSA) layer
is used to capture these two dependencies, respectively. In the variable dimension, an
efficient routing attention mechanism is proposed. Patch merging can be used to obtain
hierarchical representations at different scales. After linear projection to each layer, sum
them up to obtain results. PatchTST [6] also adopts patching technique. Different from
Crossformer, PatchTST adopts CI strategies. Each channel contains only one dimension of
multivariate time series, which is processed separately and then input into Transformer
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backbone, which is equivalent to processing univariate series. All series share the same
embedding and Transformer weights, and then concatenate the predicted results along
the dimension direction. Improved performance on LSTF task is achieved by this design.
From this perspective, we can observe that simpler models may outperform complex ones.
Continuing the trend of simplifying models, the innovation of TVT [69] lies in replacing
the previous Time Point Tokenization (TPT) strategy with Time Variable Tokenization
strategy (TVT), namely, it treats each time variable in the multivariate time series as a
token instead of simultaneous data points which effectively lower over-smoothing degree
and enhances the correlation between different variables. Moreover, TVT abandons the
sinusoidal and cosinusoidal positional embedding strategy, questioned the effectiveness of
the Transformer decoder and replacing it with a simple linear layer. Further, Conformer [70]
integrates the previously used Fourier transform, multi-frequency sequence sampling and
recursive trend-seasonal decomposition strategy to improve the performance in LSTF
tasks with complex periodic patterns. In addition, an RNN based module is designed
to model the global information and combines it with the local information extracted by
sliding-window attention to compensate for the loss of fitting ability caused by linear
complexity. Finally, a Normalizing Flow module uses the latent states generated in the
above module to directly generate the distribution of future sequences to obtain more
stable prediction results. CARD (Channeled Aligned Dual Transformer) [71] concentrates
on Channel-Dependent (CD) design with patching technique to process input sequence,
while capturing the temporal correlation and the dynamic relationship of different vari-
ables over time. Rethinking that widely used MSE loss function has the same weight
when dealing with errors of different time steps, which fails to fully reflect the stronger
correlation between near-future observations and historical ones. A signal decay-based
loss function with superior performance is developed, weighted according to the impor-
tance of predictions within a finite horizon. JTFT [72] proposed a joint time-frequency
domain Transformer. Inspired by the frequency sparsity FEDformer leveraged to extract
temporal dependencies, a customize discrete cosine transform (CDCT) with strong energy
compaction property was developed to calculate custom frequency-domain components,
and then combined with time-domain patches to generate a joint time-frequency domain
representation (JTFR) as input for subsequent models. To mitigate the loss of predictability
caused by non-stationarity and extract the latest local relationships. Further, JTFT utilizes
a two-stage approach, namely, using Transformer encoder and low-rank attention (LRA)
layers inspired by the router mechanism in Crossformer to extract time-frequency and
cross-variable dependencies, respectively. Client [73] continues the strategy in this stage of
dividing time series modeling and multivariate relationship modeling into two modules
and uses linear model and Transformer to carry out them, respectively. Taylorformer [74],
an autoregressive probabilistic model, only focuses on better capturing target data dis-
tribution instead of efficiency, so only autoregressive modeling of the target variable is
implemented. By integrating concepts from Taylor series and Gaussian processes, it enables
Taylorformer to approximate continuous processes consistently to improved performance
of the model. GCformer [75] combines the advantages of convolutional and self-attention
mechanism, and adopts a two-branch design overall to extract local and global information.
For long input sequences, a global convolutional branch is utilized which operates on all
elements of the input data simultaneously. Additionally, three parameterization methods
are introduced, including weights-decaying sub-kernels, kernel generation in the frequency
domain, and perspectives from state space models, enabling slower sublinear parameter
growth than linear while capturing long-term dependencies. Furthermore, integrating
the local attention-based module enhances prediction accuracy. SageFormer [76] designed
a general framework that can be applied to various Transform-based models, aiming to
effectively introduce the relationship between various variables, bringing information gain
while avoiding redundant information from interfering with the model training process.
The input data are still processed with patching technique and global information of each
variable sequence is extracted by adding global tokens to each sequence, and then multi-
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variable relationship is extracted by graph learning. DifFormer [77] is a multi-task model
for time series analysis, which adopts a two-stream structure to extract information from
the time domain and the frequency domain, respectively. Meanwhile, breaking through the
traditional statistical approach of viewing neural differencing as a preprocessing technique,
DifFormer uses it as a built-in module to capture temporal variances progressively and
flexibly, thus displaying the desired properties in various temporal modes. DSformer [78]
incorporates a parallel structure throughout the whole model. Designed double sampling
(DS) block performs down sampling operation through larger sampling intervals to avoid
the influence of local noise and obtain more global information. At the same time, the
original data are segmented by the piecewise sampling method in parallel to obtain local
information. The following temporal variable attention (TVA) block also performs attention
operations from the time and variable dimensions in parallel. Finally, a TVA block is used to
fuse the information of the above two branches appending MLP-based generative decoder
to obtain the results. SBT [79] is also a multi-task model, in terms of TSF, only for multivari-
ate TSF with single-step forecasting. It applied sparse and binary-weighted Transformer
with attention masks to reduce the computational complexity which only focus on the cur-
rent time step’s attention, allowing the propagation of the entire input sample to multiple
attention layers, helping to keep relevant historical information for downstream layers and
thus improving the model’s performance and accuracy with lightweight implementation.
PETformer [80] explored the novel structure of Transformers and the effective modeling
of multivariable relationships. After processing the input data by patching techniques,
integrate the historical and future segments as inputs to the Transformer in a placeholder
enhanced manner, where each placeholder represents a part of the future data to be pre-
dicted. The distinction between encoder and decoder is eliminated, making it possible
for the predicted component to access historical sequence information more naturally. In
order to incorporate the relationship between variables into the model, the Inter-Channel
Interaction module is incorporated at the same time.

TACTiS [81] combines the Transformer and the probabilistic copula model for complex
real-world time series with irregular sampling and missing values. It primarily uses a
copula-based decoder to mimic the properties of non-parametric copulas, which are flexible
and can adapt to data with varying features and structures. Different from the TACTiS,
TactiS-2 [82] designed the dual encoder and the decoder to generate the distributional
parameters for the marginal CDFs and the copula, respectively, showing the training
curriculum in a two-stage approach. These approach makes the number of distributed
parameters varies linearly with the number of variables, while avoiding the problem of
training dynamic difference and suboptimal prediction. PrACTiS [83] improves the encoder
of TACTiS and expands it by integrating perceiver model as an encoder to enhance the
expression of covariates’ dependencies. At the same time, midpoint inference and local
attention mechanisms are combined to solve the high computational complexity problems
related to self-attention mechanisms.

iTransformer [84] presents an innovative inverted perspective to rethink the appro-
priate responsibilities of Transformer in modeling time series data. Specifically, the token
embedding is constructed by variate dimension instead of the original token embedding in
time dimension. And attention mechanism is utilized to learn the relationships between
variable sequences, while an inverted feedforward network is employed to extract complex
temporal features. BasisFormer [85] broke through the previous simple basis learning
methods (such as generating only corresponding basis coefficients) and obtained the basis
through adaptive self-supervised learning with bidirectional cross-attention to calculate
the similarity coefficient to select and consolidate the basis in the future view to achieve
accurate future predictions. MTST [86] further learns temporal patterns with different
frequencies by controlling the size of the patch. Each layer of the stacked network uses a
multi-branch structure to process patches of different sizes, respectively, with independent
Transformer. Finally, the results of each branch are fused as the input of the next layer to
learn the representation of time series at different resolutions.
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From the recent volume of work, it is evident that Transformer-based models undergo
rapid iterations and updates, which are compiled in detail in Table 3 along with the relevant
papers. It has made significant explorations in the field of TSF, implying that mainstream
trends can be easily extracted. We explore these trends from the following perspectives:

Table 3. Summary of Transformer-based TSF models involved in our taxonomy.

Models Journal/Conference Category Year

InfluenzaTransformer [4] Arxiv Transformer based 2020
LogTrans [55] NeurIPS Transformer based 2019

TFT [12] IJoF Transformer based 2021
AST [56] NeurIPS Transformer based 2020

Informer [14] AAAI Transformer based 2021
Autoformer [34] NeurIPS Transformer based 2021
Aliformer [57] Arxiv Transformer based 2021

Pyraformer [35] ICLR Transformer based 2022
Preformer [58] ICASSP Transformer based 2023
FEDformer [34] ICML Transformer based 2022
ETSformer [59] ICML Transformer based 2022

TACTiS [81] ICML Transformer based 2022
Triformer [60] IJCAI Transformer based 2022
TDformer [61] NeurIPS Workshop Transformer based 2022

Non-stationary Transformer [62] NeurIPS Transformer based 2022
Scaleformer [63] ICLR Transformer based 2023
Quatformer [64] KDD Transformer based 2022

Persistence Initialization [65] APPL INTELL Transformer based 2022
W-Transformers [66] ICMLA Transformer based 2022

Crossformer [67] ICLR Transformer based 2023
PatchTST [6] ICLR Transformer based 2023

TVT [69] Arxiv Transformer based 2022
Conformer [70] ICDE Transformer based 2023

CARD [71] ICLR Transformer based 2024
JTFT [72] Arxiv Transformer based 2023

Client [73] Arxiv Transformer based 2023
Taylorformer [74] ICML Workshop Transformer based 2023

GCformer [75] CIKM Transformer based 2023
SageFormer [76] IEEE Internet Things J. Transformer based 2024
DifFormer [77] TPAMI Transformer based 2023
DSformer [78] CIKM Transformer based 2023

SBT [79] KDD Transformer based 2023
PETformer [80] Arxiv Transformer based 2023
TACTiS-2 [82] Arxiv Transformer based 2023
PrACTiS [83] Arxiv Transformer based 2023

iTransformer [84] ICLR Transformer based 2024
BasisFormer [85] NeurIPS Transformer based 2023

MTST [86] ICAIS Transformer based 2024

First, design for attention. In the initial phase, Transformer-based models focused
on improving efficiency by building sparse attention, Longformer designed three sparse
attention mechanisms to reduce the time complexity of Transformers to linear growth with
exponential growth of sequence length, and later Logtrans [55], AST [56] and Informer [14]
adopted this design concept. It greatly improved the efficiency of TSF, but the attention
operation at this stage was still based on point-wise and did not properly take into account
the characteristics of local continuous variations in time series. In the second stage,
researchers believed that sparse point-wise attention would sacrifice information utilization,
so models in this stage often adopted series/segment/patch-wise attention to reduce the
number of elements participating in attention calculation, including Autoformer [33] and
Preformer [58]. Lower complexity was realized, and the calculation formula of attention
was redesigned according to the periodicity of time series. On the basis of segment-wise
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attention, the model in the third stage fully redesigned the hierarchical structure of stacked
attention layers, such as presenting a triangle structure or tree structure. With this approach,
each node only needs to perform attention calculation with adjacent nodes rather than
on all positions of sequence. This approach further reduces the number of operations,
thereby decreasing the complexity, such as Triformer [60] and Pyraformer [35]. The design
of the attention mechanism in the fourth stage is based on decoupling of the dependencies
among variables and temporal dependencies in multivariate time series. Several models
adopt the strategy of modeling temporal dependencies and cross-variable dependencies,
respectively, so temporal attention and cross-variable attention are designed synchronously,
such as in DSformer [78], or only one of them is modeled by the attention mechanism,
while another one is modeled by other models such as Client [73] and PETformer [80], etc.

Second, input format of time series data. It is widely recognized that NLP is the
initial development area of Transformers, which primarily centered around textual data.
Usually, a segment of text is selected as the model input, with each token in the text being
mapped to a vector. The vector combined with position embedding, type embedding, etc.
is input into the model. When applying Transformer to time series, the earliest approach is
to directly input, specifically, each time step is represented as a vector, and then combined
with position embedding, time-related embedding and Holiday embedding related to
human activities are combined as the input of Transformer-based model. The work in
this stage includes InfluenzaTransformer [4] and Informer [14], etc. In the second stage,
the correlation of the time series itself and the nature of local continuous variations are
completely considered, by combining contextual information rather than only studying
individual points as part of the input. From above articles, it is evident that by appending
LSTM or convolutional layer behind the input layer to assist in establishing the context
information of each point in the time series, the advantages of these two kinds of networks
in capturing long- and short-term dependencies are cleverly used to improve the prediction
performance, such as Logtrans and TFT. In the third stage, it is apparent that all the
models discussed in survey published over the past two years are influenced by ViT,
which has achieved excellent performance in field of CV, and adopt patching technique
to process input data and conduct modeling. It results from summarizing the similarities
between image data and time series data, researchers in the field of TSF believe that a
single pixel in an image is equivalent to each time point in a time series, and research
at single point is meaningless, only aggregation can contribute to training. The specific
method involves patching input windows, regarding the subsequences within each window
as a whole, mapping them through MLP layers, and ultimately obtaining a vector as
subsequent input. This approach obviously improves model efficiency by shortening the
length of the input sequence, such as PatchTST [6], SageFormer [76], and PETformer [80].
However, an increasing amount of research is starting to concentrate on the flexible way
of patch generation, considering the multi-scale patching approach instead of applying
fixed window for patching previously. The mainstream approach is to design a stacked
network architecture, where different layers or different branches at the same layer handle
patches with different sizes to realize different scales of modeling, such as MTST [86]. The
combination of this multi-scale patching technique and Transformer is more flexible and
has become one of the most important directions of current innovations.

Third, modular design of Network Architecture. Starting from Informer [14], Auto-
former [33], FEDformer [34], the mainstream models continue the modular design. Building
upon this foundation, the gradual combination of methods originally used for preprocess-
ing are served as in-bult modules, leading to further advancements in TSF, especially in the
task of forecasting data with periodicity.

Fourth, the modeling of relationships between multiple variables in multivariate
TSF. In the initial TSF methods, the conventional approach was similar to that of univariate
TSF, such as mapping multi-dimensional values into multi-dimensional vectors [14,33–35].
Later on, models like PatchTST found that better results can be achieved by using CI,
i.e., a strategy that completely disregards the relationship between the variables, and
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models each variable individually. It may result from the increased noise and redun-
dancy when introducing multiple variables. According to recent works, some researchers
insist that capturing the dependencies between multiple variables provide useful infor-
mation for prediction, but it is necessary to decouple the time dimension modeling from
the multiple-variables relationship modeling to prevent problems such as overfitting or
complex computation. For example, PETformer introduced an Inter-Channel Interaction
module to keep the relationship between the channels.

However, it is essential to recognize that despite the gradual improvement in predictive
performance, certain models still have limitations. For instance, some models struggle to
capture temporal patterns in poorly structured time series data [35,70]. Some may overly
rely on identifying periodic features in time series data, making them less effective for
training on datasets with weak periodicity [33]. Additionally, some of them overemphasize
extracting future information, thereby restricting the scope of tasks to those entailing easily
obtainable or predictable future information [57]. Therefore, when applying them to tasks
in specific domains, we need to further analyze the models themselves.

3.4. MLP-Based Models

With Transformer-based models propelling the TSF realm into a period of rapid
advancement, Zeng et al. questioned the effectiveness of Transformers in LSTF tasks and
proposed DLinear [26], in which the author argued that the ordering of the time series itself
is very important. Although the position embedding retains some ordering information,
the self-attention mechanism has permutation invariant and inevitably loses some temporal
information. Therefore, DLinear simply performs the time series decomposition first, fits the
trend and seasonal terms obtained after decomposition with two linear layers, respectively,
and finally merges them, which outperforms all the Transformer-based models at that time
in terms of the data with obvious trend, which brings about a competition for optimal
performance between MLP-based and Transformer-based models among a period.

N-BEATS [36] is a relatively early work using MLP architecture to carry out TSF and
built a method for univariate TSF which is as simple and effective as possible and has
certain interpretability. It serves as the foundation for many subsequent models. N-BEATS
adopts “stack-block” structure overall, and time series decomposition is achieved through
multi-layer fully connected networks. According to the designed Doubly Residual Stacking,
each layer fitted part of the time series information, that is, the residual fitting of the previ-
ous layers, and iteratively refined the prediction process. The interpretability of N-BEATS is
achieved through the concept of basis, when projecting onto the basis, learn the coefficients
of each time series in a flexible way. By weighting and combining the basis based on the
coefficients, it is easier to observe which basis is more important to current output. N-
BEATSx [87] further extends the N-BEATS to enable it to input and process covariates while
maintaining interpretability of the covariates’ influence on the prediction. Furthermore,
NHITS [88] improves N-BEATS for the perspective of long-horizon forecasting (different
from LSTF, which just refers to a relatively long forecasting horizon), in order to alleviate in-
creasing error as the forecast horizon increases. In brief, the concept of input-downsampling
and output-upsampling is incorporated, and time series is divided into multiple granular
sequences through downsampling, which reduces the number of parameters and the com-
plexity to achieve higher efficiency. For periodic sequences, DEPTS [89] applied Fourier
transform to extract periods based on N-BEATS, where MLP is used to extract periodicity
dependencies to solve the challenges of complex dependencies and multiple periodicities
in periodic time series. Works at this stage benefited from the Residual learning introduced
by N-BEATS firstly, which showed the potential to build a deep learning architecture with
better expressive and generalization capabilities, at the same time, explored the periodicity
of time series adequately. These ideas serve as references for follow-up works.

The second stage of development has been influenced by some advanced Transformer-
based models, which focused research on the LSTF problem. The emergence of DLinear [26]
prompts researchers to think about the necessity of complex models. At the same time, the
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Mixer structure in the field of CV has gradually been applied to the TSF realm promoting
the trend of structural simplification developing. For example, FreDO [90] proposed a
frequency-domain-based LSTF model. Through experimental comparison, it is found that
it is easier to capture multiple periodicities in the frequency domain, and periodicity-based
mining is conducive to long-term forecasting. Same as TimesNet [50], LightTS [27] also
converts the 1D time series into 2D in structure and capture short-term local patterns and
long-term dependencies, respectively, through interval sampling and continuous sampling.
Finally, MLP is used to extract the features, which reduces the complexity and running time
while ensuring the accuracy. MTS-Mixers [29] further applies the structure of Mixer to TSF
by designing a factorized temporal and channel mixing structure. Time series is divided
into multiple subsequences, with each subsequence undergoing temporal information learn-
ing independently. Subsequently, these subsequences are concatenated in their original
order and redundancy in channel dimension is addressed through matrix decomposition.
TSMixer [91] studied the problem that multivariate TSF models sometimes cannot outper-
form univariate TSF models. In order to use cross-variate information assist in improving
forecasts, by introducing cross-variate feed-forward layers, extend the capabilities of linear
models and model the time dimension and the feature dimension, respectively. TiDE [24]
designed an encoder–decoder model based on MLP with CI strategies. Static covariates
and dynamic covariates information are utilized. Both the encoder and decoder of the
model are stacked with multiple MLP based residual blocks. Through the global residual
connection with only one linear layer, it is guaranteed that TiDE can theoretically achieve
similar performance to DLinear. Koopa [92] innovatively combined Koopman theory with
TSF and designed the model from the perspective of dynamic system. The model itself
was realized by a very simple MLP, which could achieve faster forecasting speed, and
more accurate results compared with other models. TSMixer [25] designed by IBM adopts
patching technique for input data and considers intra-patch, inter-patch, and cross-variable
information interaction. By using CI backbone with cross-channel forecast reconciliation
heads, it achieves better performance than other mixing methods. FITS [93] shows the
similar idea to DLinear. The difference is that FITS operates in the frequency domain.
After converting the time series data into the frequency domain by using Discrete Fourier
Transform (DFT), and then passing them through complex linear transformation, finally
inverse Fourier transform was used to return back to the time domain to obtain the result.
TFDNet [94] adopts a branching structure overall, capturing long-term latent patterns and
temporal periodicity from the time domain and the frequency domain, respectively, while
combining Channel-Dependent (CD) strategy and trend-seasonal decomposition method.
FreTS [95] still adopts the application of MLP in the frequency domain, by separately con-
sidering the complex numbers’ real mappings and imaginary mappings before stacking the
output to obtain output results. This kind of method performed on both channel dimension
and temporal dimension in the frequency domain.

So far, we have summarized the achievements from four network architecture in recent
years, and showed in Table 4. The development of TSF architecture from RNN/CNN-based
models to Transformer-based models, and then to the popularity of MLP-based models,
the whole structure presents a simplified process. However, this kind of simplification of
structure is not unique to the field of TSF. We can observe that after N-BEATS [36] proposed
to perform TSF tasks in a fully connected way, the models were expanded just around how
to make longer forecasting horizons or increasing functionality over almost two years. No
advanced models came out, until MLP-Mixer achieved a performance comparable to CNN
and ViT [68] on ImageNet datasets in the field of CV with a pure MLP architecture, and
then achieved competitive results on NLP tasks with a small number of parameters. The
research of MLP-based models has been further deepened. We observed that recent models
carefully incorporate innovations in other architectures, especially Transformer-based ones,
such as processing data in the frequency domain, and reconstructing time series data in 2D,
etc. All developments are accompanied with the innovations in other deep learning fields.
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Table 4. Summary of MLP-based TSF models involved in Taxonomy.

Models Journal/Conference Category Year

N-BEATS [36] ICLR MLP based 2020
N-BEATSx [87] IJoF MLP based 2022

NHITS [88] AAAI MLP based 2023
DEPTS [89] ICLR MLP based 2022

DLinear [24] AAAI MLP based 2023
FreDo [90] Arxiv MLP based 2022

LightTS [27] Arxiv MLP based 2022
MTS-Mixers [29] Arxiv MLP based 2023

TSMixer [91] Arxiv MLP based 2023
TiDE [25] Arxiv MLP based 2023

Koopa [92] NeurIPS MLP based 2023
TSMixer [26] KDD MLP based 2023

FITS [93] ICLR MLP based 2024
TFDNet [94] Arxiv MLP based 2023

FreTS [95] NeurIPS MLP based 2023

4. Experimental Evaluation Metrics and Datasets

This chapter is divided into two parts. First, we will introduce the evaluation metrics
used to evaluate the performance of deep learning models, especially point-forecasting
models in TSF tasks in detail. Furthermore, we collect the commonly used public datasets
in recent years, focusing on their data categories, number of variables, sources, data charac-
teristics, etc., which is convenient for researchers to choose according to the preferences
of models and research field during their research process, and is helpful for gaining a
thorough understanding of the research background.

4.1. Evaluation Metrics

• Mean Squared Error (MSE) MAE is one of the most commonly used evaluation
metrics to measure the degree of difference between the predicted value and the actual
value of the model, especially when it is desirable to penalize larger prediction errors
more severely. For each sample, the squared difference between the predicted and
true value is calculated, and then is summed up across all samples to obtain the MSE.
The formula is as follows:

MSE =
1
n∑n

i=1(yi − ŷi)
2 (2)

• Mean Absolute Error (MAE) Like MAE, most models designed for the LSTF task on
the same open-source datasets consider it together with MSE. MAE provides a simple
and easy-to-understand way to measure the overall performance of models. MAE
calculates the absolute error between the predicted value and the actual value for each
sample and divides the sum by the number of samples to obtain MAE. The formula is
expressed as:

MAE =
1
n∑n

i=1|yi − ŷi| (3)

• Root Mean Squared Error (RMSE) Measures the average magnitude of the error
between the predicted and actual values. RMSE can be chosen when it is desirable to
combine the advantages of MSE in the evaluation and express the evaluation metrics
in the same unit as the target variable. A lower value of RMSE indicates a closer
proximity between the predicted values and the actual values, signifying superior
model performance. The formula is as follows:

RMSE =

√
1
n∑n

i=1(yi − ŷi)
2 (4)
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• Mean Absolute Percentage Error (MAPE) It is calculated as the average of the per-
centage error between the predicted and actual values. The value of MAPE is between
0 and positive infinity, the closer the value of MAPE is to 0, the more accurate the
prediction is. MAPE can be chosen when we need to visually assess the accuracy
of the model’s predictions because it expresses the error as a percentage, which also
means that MAPE can be used when comparing the relative performance of different
datasets. The formula is as follows:

MAPE =
1
n∑n

i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100% (5)

• Symmetric Mean Absolute Percentage Error (SMAPE) It considers the symmetry
between predicted and actual values, that is, the proportionality between predicted and
actual values. When there is some kind of fluctuation in the dataset, these fluctuations
may be periodic or symmetrical, and this pattern often emerges as a very important
feature of data, so we need to take it into account. The formula is as follows:

SMAPE =
1
n∑n

i=1
||ŷi − yi||

(|ŷi|+ |yi|)/2
× 100% (6)

• Mean Absolute Scaled Error (MASE) It measures the forecasting performance of a
TSF model relative to a simple benchmark model. MASE compares the model’s MAE
with the MAE obtained through a simple method to examine the model’s performance
relative to the benchmark model. The smaller the value of MASE, the better the
model’s performance relative to the benchmark model and is suitable for evaluating
the forecasting accuracy between different datasets. MASE has different calculation
methods for non-seasonal time series and seasonal time series, and the formulas are
specified as follows:

MASE =
MAE

1
n−1 ∑n

i=2|yi − yi−1|
or MASE =

MAE
1

n−m ∑n
i=m+1|yi − yi−m|

(7)

• Overall Weighted Average (OWA) In the article of N-BEATS [36], it is mentioned as
a metric used in the M4 dataset to rank entries. OWA provides an easy method to
evaluate multiple metrics in a comprehensive way, which facilitates decision-making.
Here, we generalize the formula by not explicitly including multiple evaluation metrics
but rather describe it in a more generalized way:

OWA = ∑n
i=1 wi·xi (8)

• Normalized Root Mean Squared Error (NRMSE) Formulaically, it is the ratio between
the RMSE and the mean of the actual observations. By standardizing RMSE, NRMSE
removes the effect of data size and can be used to compare models across different
scales:

NRMSE =

√
1
n ∑n

i=2(yi − ŷi)
2

y
(9)

• Normalized Deviation (ND) By calculating the mean of the absolute differences
between observed and predicted values across all samples, divided by the observed
values. A smaller value of ND indicates a smaller prediction error, reflecting better
model performance:

ND =
1
n∑n

i=2

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (10)

The pros and cons of the applicability of the above methods are compared in Table 5,
and Table 6 displays the meaning of the involved notations.
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Table 5. Comparison of several evaluation metrics.

Metric Scale-Free Temporal Structure

MAE ✘ ✘

MSE ✘ ✘

RMSE ✘ ✘

MAPE
√

✘

SMAPE
√

✘

MASE
√ √

NRMSE
√

✘

ND ✘ ✘

Table 6. Notions in evaluation metrics.

Notions Meaning

n number of samples
yi observed value for the ith sample
ŷi predicted value for the ith sample
m the seasonal period
wi the weight of ith evaluation metric
xi the value of ith evaluation metric
y the average of the observed value

While R2
(

1 − MSE
Var(y)

)
is a commonly used statistical metric, it assumes a linear rela-

tionship between the dependent and independent variables, which may not hold true in
deep learning models where the relationship between variables is often non-linear. Conse-
quently, using R2 may not fully capture the complexity and non-linear relationships of the
model. Additionally, R2 does not penalize overfitting and tends to reward an increase in
model complexity. In contrast, metrics such as MSE and MAE are more intuitive in TSF
scenarios. Therefore, in the context of deep learning-based time series forecasting, R2 may
not effectively provide its value compared to regression problems.

4.2. Commonly Used Public Datasets

We collect commonly used public datasets in recent years, as shown in Table 7.

Table 7. Commonly used public datasets.

Dataset Source/Paper Variate
Number

Feature
Type Description

ETTh Informer [14] 7 real Electricity Transformer Temperature for 1 h level
ETTm Informer [14] 7 real Electricity Transformer Temperature for 15-min level
ECL UCI 1 321 real Hourly electricity consumption of 321 clients from 2012 to 2014

Weather BGC Jena 2 21 real Meteorological indicators collected every 10 min
ILI CDC 3 8 real Weekly ratio of influenza-like illness to total patients reported

EXCHANGE LSTNet [37] 9 real Daily exchange rate of 8 countries from 1990 to 2016
Traffic Cal-trans 4 862 real Hourly road occupancy of San Francisco freeways

Solar-Energy LSTNet [37] 137 real Solar power production sampled every 10 min
PEMS03 SCINet [22] 358 real Traffic dataset starting from 1 May 2012 collected every 5 min
PEMS04 SCINet [22] 307 real Traffic dataset starting from 1 July 2017 collected every 5 min
PEMS07 SCINet [22] 883 real Traffic dataset starting from 1 May 2017 collected every 5 min
PEMS08 SCINet [22] 170 real Traffic dataset starting from 1 March 2012 collected every 5 min

1 https://archive.ics.uci.edu/mL/datasets/ElectricityLoadDiagrams20112014 (accessed on 1 January 2023);
2 https://www.bgc-jena.mpg.de/wetter/ (accessed on 1 January 2023); 3 https://gis.cdc.gov/grasp/fluview/
fluportaldashboard.html (accessed on 1 January 2023); 4 https://pems.dot.ca.gov/ (accessed on 1 January 2023).

https://archive.ics.uci.edu/mL/datasets/ElectricityLoadDiagrams20112014
https://www.bgc-jena.mpg.de/wetter/
https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
https://pems.dot.ca.gov/
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5. Challenges and Possible Solutions
5.1. Distribution Shift

Whether differences arise between the distributions of training and test data of a
predictive model or among the distributions of different input sequences can lead to degra-
dation in the performance of the predictive model. Therefore, the problem of distribution
shift is urgently needed to be solved, and the essential idea behind this problem’s solution is
to allow the model to fit the stable part extracted from the data. A brief organization of some
current works is shown in Table 8, which divides it into two categories: Model-Agnostic
ones and in-model ones based on the relationship between the method and the model.

Some existing works, such as RevIN [96], reduce the difference of data distribution
and improves model performance by removing non-stationary information such as mean
and variance from input sequences. In the output stage, this information is used to restore
the sequence, so as to prevent some conventional normalization methods from eliminating
non-stationary information which is important for forecasting the future values. Since
occasionally, non-stationary information may provide some important clues about the
dynamics of the data. To some extent, it benefits prediction. This method can be applied as
a plug-in to numerous models such as Informer [14] and TDformer [61]. Compared with
the effect of the time series model itself, it can be found that the use of this framework can
improve the prediction effect. Utilizing it enhances performance when compared to the
effects of these TSF models themselves.

Another category of work, such as AdaRNN [97], uses maximum entropy (ME) to
divide the sequence into segments, and then learns the common knowledge of segments
from different distributions of the sequence, which uses domain adaptation as its primary
method and allows the model to generalize across different distributions. Although the
problem of distribution shift is not explicitly pointed out in Non-stationary Transformer,
the designed simple parameter-free Series Stationarization is good enough for stationarize
time series, thanks to its redesigned attention formula that can effectively alleviate over-
stationarization problem.

In addition, Han et al. [98] mentioned in their article that CI strategy can alleviate
distribution drift (note: there is no clear distinction between drift and shift in some articles)
problem. Therefore, researchers may need to consider the impact of more factors and
strategies when mitigating this type of problem.

Table 8. Summary and classification of solutions for distribution shift in TSF.

Type Method

Distribution shift
Model-Agnostic DAIN [99], RevIN [96], Dish-TS [100]

In-Model AdaRNN [97], Non-stationary Transformer [62] etc.

5.2. Irregular Time Series Forecasting

Irregular time series is a common type in real-world data, usually referring to uneven
intervals between samples or observations, frequently observed in financial and medical
data. However, there are some issues with modeling irregular time series because most
of the models we employed rely on the assumption of uniform sampling to model the
sequence. Typical techniques include imputation and resampling to make these data with
equal intervals to facilitate prediction by conventional forecasting models. However, these
operations still have negative influences on downstream tasks, such as over-fitting and
introducing noises. Some recent works are in [101–103].

5.3. Time Domain or Frequency Domain

Through the above summary, we have observed that in recent years, it is an important
innovation point to operate time series data in the frequency domain through conversion
algorithms, such as Fourier transform [34,59,90], in order to improve the performance of
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TSF. In particular, there are a lot of achievements in solving the LSTF problem, mostly
due to the fact that periodic information is more easily obtained in the frequency domain,
and the sparsity of the frequency domain. TDformer [61] analyzes the application and
selection of the time domain and two frequency domain attentions in detail. At the same
time, some models began to pay attention to time and frequency dimension of time series
data [72] simultaneously, allowing the model to leverage the benefits in both domains,
such as the ability to record the dynamic evolution of data in the time domain and identify
periodic patterns in the frequency domain, in order to enhance comprehension of time
series data and effectively extract long-term and local dependencies. However, we still need
to consider the potential issue of information redundancy that arises from this combination.

6. Future Directions

The proposed taxonomy provides a framework for researchers to understand the
current research, while also discussing some challenges faced and corresponding solutions.
However, some areas of TSF learning seem to be understudied, or are only at an early stage,
and we outline several promising directions for future research.

6.1. Large Language Model for Time Series Forecasting

Large language models (hereinafter called LLMs) have shown great advancements in
fields of CV and NLP, and their strong ability of generalization enables them to perform
well even when dealing with limited datasets. The large number of parameters and complex
network structure make it better to capture the dependencies in time series. Over recent
months, there has been a surge of LLMs developed for TSF field. We have summarized
them, as shown in Table 9.

Table 9. Summary and classification of LLMs for TSF are cited.

Type Method

LLMs (Large
Language Models)

Transferring LLMs in NLP
to TSF

LLMTIME [104], Time-LLM [105],
FPT [106], LLM4TS [107], TEST [108],

TEMPO [109], LSTPrompt [110],
AutoTimes [111]

Training LLMs for TSF TimeGPT-1 [112], Lag-Llama [113],
MOIRAI [114]

The earliest type of work was to transfer LLMs used in the NLP field to TSF. This
kind of method’s primary goal is to address how to load time series data into LLMs for
handling. There has been a lot of research in CV field, such as processing from data-level or
adding cross-modal adaptor to models. For example, LLMTIME [104] designed a special
tokenizer to address the problem that existing LLMs, such as GPT-3 [115], cannot be used
to encode time series directly. And LLMs are successfully applied to the zero-shot TSF
tasks which eliminates the requirement for collecting historical data on the target datasets,
and after pre-training with other text corpus datasets, the pre-trained model is directly
used for forecasting. Although the forecasting effect of LLMTIME is inferior to the SOTA’s
TSF models and cannot handle large context windows well. However, the most recent
LLMs listed below are progressively addressing this drawback, such as AutoTimes [111]. It
will be a very meaningful research direction for dealing very long sequence forecasting.
Moreover, in real-world datasets, particularly in financial datasets, the data are relatively
messy, noisy and the availability of a substantial amount of data is limited. So, it is easy to
encounter the situations of overfitting or parameter stability with some traditional deep
learning methods such as DLinear [26]. Therefore, the application of this kind of model is
very practical significance.

After deeply exploring the characteristics of time series data, Time-LLM adopts CI
and patching strategies to make the model more suitable for time series tasks, and realizes
cross-modal alignment between time series and context by reprogramming methods. At the
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same time, two extra modules designed by Time-LLM have a small number of parameters,
and only require a small number of time series samples for fine-tuning, which means that
Time-LLM has a strong ability of few-shot forecasting. Moreover, by introducing prior
knowledge by prompts, Time-LLM [105] has a wider range of predictive scenarios, as does
LSTPrompt [110]. FPT [106] only trains positional embedding, input embedding, output
linear Layer, normalization layers with freezing self-attention and FFN to allow inputs
in different domains. Meanwhile, the method of obtaining token after patching is more
suitable for time series tasks. LLM4TS [107] also uses patching technique and CI strategy
to tokenize time series data, and further integrate temporal information properly. Other
models in this category include TEST [108] and TEMPO [109].

Another type is to construct LLMs directly in the field of TSF. For instance, Lag-
Llama [113] endeavors to build a foundational model for TSF with neural scaling laws.
TimeGPT-1 [112] constructed a GPT-based model, applying a large amount of time series
data in various domains. In addition, MOIRAI [114] launched LOTSA, the largest collection
of open time series datasets, and then trained on the datasets. However, the first type is
relatively easier to implement, less complicated, and has better application prospects.

6.2. Graph Neural Network for Modeling Cross-Variable Dependences

The methods discussed in this paper for modeling cross-variable rarely involve the
utilization of Graph Neural Network (GNN). In fact, GNNs have been continuously studied
in the field of TSF for a very long period and the dependencies between variates can be
efficiently learnt by treating the variates as nodes, the relationships between them as
edges and modeling them in the structure of a network or a graph. Particularly impressive
outcomes have been obtained in spatial TSF tasks, such as traffic flow forecasting. Although
it may require more computational cost to use GNNs to build multivariate relationships
in normal TSF task, but researchers can choose different GNNs according to specific
application scenarios. It is a very worthwhile area for future research.

6.3. Developping New Loss Functions

The commonly used loss function for TSF is MSE [6,14,45], which aims to minimize
the difference between the predicted value and the actual value to optimize the model
parameters. It is a point-to-point approach. However, it is widely acknowledged that
time delay is a typical TSF problem, and many models have taken this problem into
consideration in design, such as Autoformer [33]. Similarly, in the loss function, we can
better optimize the model by adding penalty terms or assigning different weights to the
loss. Although there are already relevant loss functions, these loss functions are more likely
to apply in specific fields, such as finance and weather forecasting. Therefore, a general
adaptive loss function which considers the time delay between the output sequence itself
and actual values will hold promising prospects for the future.

6.4. Generative Models

Most of the models used in the TSF domain are usually discriminative models, in
contrast to generative methods which are less used in solving TSF problems, such as Diffu-
sion, GAN, and Normalizing Flows. It is mainly because TSF is typically categorized as a
discriminative issue, which is easier to implement and straightforward. Meanwhile, dis-
criminative models are more concerned with achieving the mapping relationship between
inputs and outputs, that is, forecasting future outputs based on known inputs. However,
generative models need to model the joint distribution of inputs and outputs. Therefore,
certain probabilistic TSF models often adopt generative-style ideas. In real-world datasets,
there are often some small samples with missing values or irregular-sampling datasets. In
this case, applying generative models is more appropriate and somewhat eliminate the
requirement for preprocessing, and it represents a very promising direction for research. A
simple summary of recent generative models for TSF and categorized cases is provided in
Table 10.
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Table 10. A simple summary of generative models in TSF.

Type Method

Generative model

GAN ForGAN [116], AST [56]

Diffusion TimeGrad [117], CSDI [118], TSDiff [119],
TDSTF [120]

Normalizing Flows MAF [121], MANF [122]
VAE D3VAE [123]
SSM DSSM [124]

6.5. MAMBA

MAMBA [125] is a new architecture that has been proposed recently which claims
to perform better than Transformer. It is widely known that Transformer is the main
component of LLMs. Therefore, an architecture better than Transformer will undoubtedly
lead to the future development of the TSF realm. Moreover, MAMBA can remember the
previous information while parallelizing training like Transformer, as well as achieve faster
inference and its time and computation complexity are linearly related to the sequence
length. MAMBA simplifies the deep sequence model architecture by utilizing a selective
SSM architecture that can selectively decide whether to focus on or ignore inputs, and
Transformer’s MLP block and then merges them into a single block.

State Space Model (SSM) mentioned before provides another perspective to under-
stand time series. Almost all the models we learned before, can be represented by SSM
through the construction of state function and observation function. Before MAMBA ap-
peared, there had been a lot of work combining SSM with deep learning models, such
as DSSM [124]. Combining their benefits allows the model to learn similar patterns from
a huge number of sequences and features, as well as to make models have certain inter-
pretability, which offers a promising direction for future exploration.

6.6. Domain-Specific Time Series Forecasting

The deployment of high-performance deep learning-based TSF models is widely
recommended in specific domains in practice. Updating the algorithms with domain-
specific requirements has great potential for development.

6.7. Exploring the Integration of Traditional Statistical Methods with Deep Learning Methods

In the past few years, we have explored the application of models or techniques from
traditional statistics in time series analysis, such as trend-seasonal decomposition and SSM,
and combined them with deep learning models to achieve huge success. So, continuing to
explore along this direction, while utilizing the characteristics of the time series data itself, to
further enhance the interpretability and improve the forecasting performance simultaneously.

7. Conclusions

In this survey, we conducted the most comprehensive overview so far of a promising
field in AI: TSF. First, we outlined the historical development of TSF and its early method
evolution in academia. Then, we systematically organized the reviewed methods in a
new taxonomy of architecture designs, categorizing them into four groups: RNN-based,
CNN-based, Transformer-based, and MLP-based methods. In each category, we offered
thorough descriptions of the important models with their innovation points and trend
analyses for recent years, which were not available in previous surveys. The included
papers were also organized in tabular format at the end of each category. We observed
a trend towards simplification in model structures and modeling approaches in the TSF
domain. In addition, commonly used datasets and evaluation metrics for TSF in recent
years were summarized. Finally, to promote the development of the TSF field, this paper
offered seven potential development directions, including research into LLMs and novel
architectures, anticipating their ability to enhance prediction performance and address the
increasing demand for prediction diversity, robustness, and applicability driven by the
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growing availability of computational resources. We believe that this survey will inspire
further innovations in the TSF field and provide a valuable guide for researchers and
newcomers seeking to enter the domain of deep learning-based TSF.
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