. mathematics

Article

A Blow-Up Criterion for the Density-Dependent Incompressible
Magnetohydrodynamic System with Zero Viscosity

Kunlong Shi !, Jishan Fan >* and Gen Nakamura

check for
updates

Citation: Shi, K.; Fan, J.; Nakamura, G.
A Blow-Up Criterion for the
Density-Dependent Incompressible
Magnetohydrodynamic System with
Zero Viscosity. Mathematics 2024, 12,
1510. https://doi.org/10.3390/
math12101510

Received: 16 April 2024
Revised: 9 May 2024

Accepted: 11 May 2024
Published: 12 May 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

3

College of Sciences, Nanjing Forestry University, Nanjing 210037, China; skl@njfu.edu.cn

Department of Applied Mathematics, Nanjing Forestry University, Nanjing 210037, China

Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan; nakamuragenn@gmail.com
*  Correspondence: fanjishan@njfu.edu.cn

w N =

Abstract: In this paper, we provide a blow-up criterion for the density-dependent incompressible
magnetohydrodynamic system with zero viscosity. The proof uses the LP-method and the Kato-Ponce
inequalities in the harmonic analysis. The novelty of our work lies in the fact that we deal with the
case in which the resistivity # is positive.
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1. Introduction

Magnetohydrodynamics (MHD) is concerned with the study of applications between
magnetic fields and fluid conductors of electricity. The application of magnetohydrody-
namics covers a very wide range of physical objects, from liquid metals to cosmic plasmas.

We consider the following 3D density-dependent incompressible magnetohydrody-
namic system:

do+u-Vo=0, 1)
poru + p(u-V)u+ Vm=roth x b, )
otb+u-Vb—b-Vu=nAb, 3)
divu =0, divb =0 in R3 x (0,c0), (4)
lim (p,u,b) = (1,0,0), (5)
|x|—o00

(0,4,)(-,0) = (po, uo, bo) in R>. (6)

The unknowns are the fluid velocity field u = u(x, t), the pressure 7w = 7(x, t), the density
p = p(x,t), and the magnetic field b = b(x,t). 7 > 0 is the resistivity coefficient. The term
rotb x b in (2) is the Lorentz force with low regularity, and thus it is the difficult term.

For the case of b = 0, there are many studies. Beirdo da Veiga and Valli [1,2] and Valli
and Zajaczkowski [3] proved the unique solvability, local in time, in some supercritical
Sobolev spaces and Holder spaces in bounded domains. It is worth pointing out that, in
1995, Berselli [4] discussed the standard ideal flow. Danchin [5] and Danchin and Fanelli [6]
(see also [7,8]) proved the unique solvability, local in time, in some critical Besov spaces.
Recently, Bae et al [9] showed a regularity criterion:

Vu € LY(0, T; L®(R3)). )
This refined the previous blow-up criteria [5-7]:

.4
w:=rotu € L (0,T; B?il (Rd))' ®
Vu e LY(0,T;L™) and Ve LY(0,T;B5)),s > 1,1 < r < co. ©)
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In [10], the authors proved the local well-posedness of smooth solutions in Sobolev
spaces. The aim of this article is to prove (7) for the system (1)—(6). We will prove the
following.

Theorem 1. Let 0 < infpy < po< C, Vo € H?,ug, by € H> with div ug = divby = 0 in R3,
Let (p, u,b) be the unique solution to the problem (1)—(6). If (7) holds true with some 0 < T < oo,
then the solution (p,u,b) can be extended beyond T > 0.

Remark 1. In [8], Zhou, Fan and Xin showed the same blow-up criterion (8), which is refined by
(7) for the ideal MHD system.

Remark 2. When 1 = 0, we are unable to show a similar result.

In the following proofs, we will use the bilinear commutator and product estimates
due to Kato-Ponce [11]:

1A°(fg) = fFA°glIy < CUNV Fllon 1A% gl + llglloea 1A f I sz, (10)
IA°(fe)lIr < CUA e A8l o + IA°fllLr2 I8l 222), (11)

1 1 1 1

1
PPt @1 P2

and

NI

withs > 0, A := (—A)
2. Proof of Theorem 1
We only need to prove a priori estimates.

First, thanks to the maximum principle, it is easy to see that

<p<C (12)

Q-

We will use the identity
b-Vb+bxroth = %V|b|2. (13)

Testing (2) by u, using (1), (4) and (13), we find that

%%/p\uyzdxz/(b-wb.udx. (14)

Testing (3) by b and using (4), we obtain

1d

Ea/|b\2dx+;7/|Vb|2dlx: /(b-V)u-bdx. (15)

Summing up (14) and (15), we have the well-known energy identity

1d
S [ (el + |b|2)dx+17/|Vb\2dx —0,
and hence T
/(|u|2+ |b|2)dx+/ /|Vb|2dxdt <c. (16)
. JO

It is easy to deduce that

t
Vel < Vool exp( [ 19u(s) it < c. )
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Testing (3) by |b|172b (2 < g < ) and using (4), we derive
Ly +17/|b|q—2|Vb|2dx+;7/1V\b|2.V|b|‘7—2dx
gdt" " 2
= [ b Vu pl72bdx < ||Vl b] .

and therefore 4
—|b < ||IVull;=||b
dt” ||Lq = || uHL H HL‘M

which gives

t
6l < ol exp ) 19091 ). as)
Taking g — oo, one has
[b]|~ < C. (19)
(2) can be rewritten as
1 1
atu—i—u-Vu—l-EVn: ;rotbx b. (20)

Testing (20) by Vr and using (4), it follows that

/:)|V7r|2dx - —/u-VwVﬂfdx—i—/(:)rotb x b)  Vrdx
< C(lu- Vullpz + |lrotb x b|[12) [ V7| 12
< Clull 2 Vulle + [[bll L=l V][ 2) [V 7] 12,

whence
V7|2 < C[[Vu| L= + C[| V] 2. (21)

Taking rot to (20) and denoting the vorticity w := rotu, we obtain
atw—i—u-Vw—w-Vu—V;><V7T+rot<m;b><b>. (22)

Testing (22) by w and using (4), (17) and (19), we compute

1d
2.dt

= /w~Vu~wdx—/(V:)an)wdx—i—/rot(m;ij) - wdx

|w|2dx

1
< 19l [ oPas+ |03 |9 lzlel
+CIVpll o 10l F ol 2 + bl bl 2 ol 2 + VB ol
< ClVulls [ loPdx+Cl Tzl + CITb ]z el

+ 2186112, + Cllw]. 23)
Here, we have used the Gagliardo-Nirenberg inequality

IVBIZs < Clibl|= | AD]| 2. (24)
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On the other hand, testing (3) by —Ab and using (4) and (19), we achieve
1d
2 dt
- 2/(u - V)ba?bdx — /(b “V)u - Abdx
j

/|Vb|2dx+17/|Ab|2dx

— — % [ou-Vb-gpdx — [b-Vu- Abdx
i

IN

ClIVullge [ V5|12 + [[bll | Vall 2B .
< HJab|R; +ClIVullis | VIR, + Cllw |22 25)
Here, we have used the inequality
|Vul|r < Cllw||rr with 1 <7 < oo. (26)
Summing up (23) and (25) and using (21) and the Gronwall inequality, we reach
lwll2 +[[VE]2 < C. (27)

Taking div to (20) and using (4), we observe that
. 1 . (rotb
—Amr = f:=pdiv (u-Vu) +pV; -V — pdiv <p X b), (28)

from which, with (17), (19), (21) and (27), we have

[A7tl[s < [Ifllis < ClIVullie[Vull s + ClIVol| || V]| 4
+C|Vpl|z||Bllz[|rot bl 1+ + ClIAB] ]| Bl| =~ + CIIVBIIZs

< ClIVulli=llwllys + CI V7] s + Clirotbl s + CllAb]| s

< ClIVullislwll s+ CIVAN L A7, + Cllrot bl s + C[Ab] s

< ATl + ClVullslwlls + ClIVals +C + Cllrotblls + ClAbl s,
which yields

|67l < CIVulzellwll s + CIVulle + C + Cllrotbll s + Clabls.  (29)

Here, we have used the Gagliardo—Nirenberg inequalities
IVBIZs < Clibll~[|Ablls, (30)

4 3
IVl < CIVrllL 1Az, (31)

Testing (22) by |w|?w and using (4), (17), (19), (29), (30) and (31), we have

failelts < cIvulistoltc| O3] vl
1
+c<|b||Loo||Ab||L4+||w||i8>||w|i4+chpHL 18]l 170t Bl s ]2
< CVullillwls + CUV ] + COablLs + rotbl o) P,
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which implies

d
EIIWH@ < ||Vl = |lwl|Zs + C(|[ V] L= + 1+ [|rot bl 14 + || A 1) |||l 4
< C||Vullps[|w7s + C(VullLo + 14 [lrot bl 4) [lw|l 4 + Cllwl|Zs 4+ Cl| A3,
and thus

t
lolfs < I\WO||%4+C/O [Vl + 1) w4
t
+(IVul>+1+ ||r0thL4)||w||L4]ds+/O 18b]74ds. (32)

On the other hand, using the 12 (0,T; W2'4)-theory of the heat equation, it follows that

t
| I1abl2.ds

IN

t
c+c/ - Vb — b Vu|2,ds
0
t
< CH+C [ (ul Vbl + 0] Vull)ds
o 3 2 2
< C+C/0(HullLe||Vu||LooHr0tb||L4+||WI|L4)dS
t 2
< C+C [ (19u] 3 rotb], + w]2)ds. (33)
Here, we have used the inequality

|Vb||r < Clrotb|r with 1< p < co. (34)

Inserting (33) into (32), we have

t t
lolfs < c+C [(IVulle+)llwltds +C [ (1Vullis + [rotb]s) e
t 2
+c/0 V] 3. |[rot b2, ds. (35)

Taking rot to (3) and denoting the current | := rotb, we infer that
o] —nAJ+rot(u-Vb—0b-Vu)=0. (36)
Testing (36) by |J|2], using (17), (19) and (34), we derive

1d 1
i+ [RI9)Pdx g [ SVIR - VIR

- / (b-Vu—u-Vb)rot(|J*])dx

/(b Vi —u-Vb)(|]Prot] + V|12 x J)dx

16 Vi —u- Vb [l alIT1- V]2
Cbllze [Vl s + Nl VO L) [T s I1T] - IV T2

g/II\z\VIIdeJrC(IIwH%ﬁ\|u||%m|!J||%4)I\I\I%4,

ININA

IN

which implies

d 2
all]l!é < Cllwllfs + Cl[Vull i |17
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Integrating the above inequality, one has
t 2
Jrotb]2, < C+C [ (s + 1Vul o ot b] ) ds. 37)
Summing up (35) and (37), using the Gronwall inequality, we arrive at
T
[Vulys + 190l + [ 18bI3e < €, 8)
T
fullis+ [ IVOIF-dt < C. )
Applying A3 to (1), testing by A%p and using (4) and (10), we obtain
1d 13 3 3,173
Ea./(A 0) dx:—/(A (u-Vp)—u-VANp)Npdx
< C(IVull= A%l 2 + Vol | A%u]| 2) 1A% 2. (40)

Is+ 17

Applying A3 to (2), testing by A3u and using (1) and (4), we have

%%/p|A3u|2dx - /(A3(b~Vb) y VA3b)A3udx+/b-VA3b-A3udx
- /(A3(p8tu) — pA39;u) A3udx — /(A3(pu -Vu) — pu - VA3u) A3udx
= h+L+13+ 14 41)

Applying A3 to (3), testing by A3b and using (4), we have
1d
2dt

- /(A3(b Vi) — b VA%u) ASbdx + / b- A%u- Abdx

/|A3b|2dx+11/|/\4b|2dx

- /(A3(u Vb)) — u- VA3 A3bdx =: Is + Is + I. 42)

Summing up (41) and (42) and noting that I 4+ Iy = 0, we have

1d

BT (p|A3u\2+|A3b|2)dx+17/|A4b|2dx: L+L+1L+I5+ 1 (43)

Using (10) and (11), we bound I3, 14, Is and I7 as follows.

I < ClVbll=([A%D]1Z, + [|A%ullZ.);

L < CUIV(eu)ll | A%ull 2 + [Vl | A (ou) [ 2) | A%l 2
< CIVullps + DIIA%ulT2 + CIVullzs (A%l 2 + fJulle | A%pll2) |A%0]] 2
< C(IVulles + DIIAulF: + CIVull= | A% 172
< C(IVblle | Aullpz + [ Vael| o | A%B]] 2) | AB] 2.
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To bound I3, we proceed as follows.

oS Clldulis A%l + [ Volell A% )| A%]
1 th
< Cllu-Vut-vr—"2xp | | A30]| 2| A3u]| 12
P P Le
1 b
+CHA(u -Vu+ -V — rotb . b) H | A3u;2
P p L2
< COVullen + I 7eln + 90l A%l 2 1A%
1
€ (Il IA%uls + 1829z + [ 9l |27
1
#az]] rotblus s + 1ot 1A%012 ) 1aulis
< COIVulem + 1 eln + [0l A%l 2 1A%
(1A%l + A2Vl + (9l s + gl + 1A )l A%l
< C(IVulles + 1V le + 90l A%l 2 1A%

+C(IN%ull 2 + IV fll 2 + IV 7l 1A% 2 + [ A%l] 2 + 1A% ) |A%ul| 2. (44)

On the other hand, we have

|97l < ClIV7ll +Cllanll
< C||Vu|lr= 4+ C+ C||Ab|| 11; (45)
ZS

< CIVpllis IVulfs +Clullue A%l + I Vplus 2]

+Cpls IVl 3 + CTp e (18blabll + VoI + |9l [V ]2)

1

+Clbln 1A%l + € bln VL
< CH+C|A%ul| 2 + C[ V27| 2 + ClIA%p| 2 [V 7 s + ClIA%E| 2 + Cl| A% 2

1
< SISl + IVl + C+ ClA%l

+C[|[ A%l 2 + Cl A% 12 + Cl[A%p] 12| V7l 5,
which gives
IVFll: < C+C|Vullp~ + Cl|A%p]| 2 + Cl|A%ul| 2

+ClIA%ll 2 + ClI A%l 2 (IV 7l 2 + (| A7 1)
< C+ClVullrs +CIA%(p,u,0) |12 + ClIAp | 2 ([ Vil + 1+ | 8D 4).

Inserting the above estimates into (44), we obtain

L < C(IVulles + 1+ [Vl + 186] 1) (1A%0lI72 + [|A%ull72) + CIA% (0,1, b) |2
< C(IVullpe + 1+ [Vl + [185]] )| A% (0, u, b) [ 72

Inserting the above estimates of Iy, I3, I4, Is and I7 into (43), we have

%% (ol %P + | A% P)cx + [ | A% Pty
< C(IVullo + 14 | VD o + [|Ab]|4) [|A% (0, 1, ) || 2. (46)

Summing up (40) and (46) and using the Gronwall inequality, we conclude that

T
1A% (0,1, )| 2 + /O / A%b2dxdt < C.
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This completes the proof. [

3. Conclusions

In this paper, we prove a refined blow-up criterion for the inhomogeneous incompress-
ible MHD system with zero viscosity, which is important and can be used for the simulation
of MHD. For p = 1 and # = 0, Caflisch et al. [12] showed the following regularity criterion:

rotu,rotb € L}(0, T; L*). (47)
Since the problem is very challenging, we are unable to present further developments.
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