

MDPI

Article

A Blow-Up Criterion for the Density-Dependent Incompressible Magnetohydrodynamic System with Zero Viscosity

Kunlong Shi 1, Jishan Fan 2,* and Gen Nakamura 3

- ¹ College of Sciences, Nanjing Forestry University, Nanjing 210037, China; skl@njfu.edu.cn
- ² Department of Applied Mathematics, Nanjing Forestry University, Nanjing 210037, China
- ³ Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan; nakamuragenn@gmail.com
- * Correspondence: fanjishan@njfu.edu.cn

Abstract: In this paper, we provide a blow-up criterion for the density-dependent incompressible magnetohydrodynamic system with zero viscosity. The proof uses the L^p -method and the Kato-Ponce inequalities in the harmonic analysis. The novelty of our work lies in the fact that we deal with the case in which the resistivity η is positive.

Keywords: magnetohydrodynamic system; incompressible; blow-up criterion

MSC: 35Q35; 76D03

1. Introduction

Magnetohydrodynamics (MHD) is concerned with the study of applications between magnetic fields and fluid conductors of electricity. The application of magnetohydrodynamics covers a very wide range of physical objects, from liquid metals to cosmic plasmas.

We consider the following 3D density-dependent incompressible magnetohydrodynamic system:

$$\partial_t \rho + u \cdot \nabla \rho = 0, \tag{1}$$

$$\rho \partial_t u + \rho (u \cdot \nabla) u + \nabla \pi = \operatorname{rot} b \times b, \tag{2}$$

$$\partial_t b + u \cdot \nabla b - b \cdot \nabla u = \eta \Delta b,\tag{3}$$

$$\operatorname{div} u = 0, \ \operatorname{div} b = 0 \ \operatorname{in} \ \mathbb{R}^3 \times (0, \infty), \tag{4}$$

$$\lim_{|x| \to \infty} (\rho, u, b) = (1, 0, 0), \tag{5}$$

$$(\rho, u, b)(\cdot, 0) = (\rho_0, u_0, b_0) \text{ in } \mathbb{R}^3.$$
 (6)

The unknowns are the fluid velocity field u = u(x,t), the pressure $\pi = \pi(x,t)$, the density $\rho = \rho(x,t)$, and the magnetic field b = b(x,t). $\eta > 0$ is the resistivity coefficient. The term rot $b \times b$ in (2) is the Lorentz force with low regularity, and thus it is the difficult term.

For the case of b=0, there are many studies. Beirão da Veiga and Valli [1,2] and Valli and Zajaczkowski [3] proved the unique solvability, local in time, in some supercritical Sobolev spaces and Hölder spaces in bounded domains. It is worth pointing out that, in 1995, Berselli [4] discussed the standard ideal flow. Danchin [5] and Danchin and Fanelli [6] (see also [7,8]) proved the unique solvability, local in time, in some critical Besov spaces. Recently, Bae et al [9] showed a regularity criterion:

$$\nabla u \in L^1(0,T;L^\infty(\mathbb{R}^3)). \tag{7}$$

This refined the previous blow-up criteria [5–7]:

$$\omega := \text{rot } u \in L^1(0, T; \dot{B}_{2,1}^{\frac{d}{2}}(\mathbb{R}^d)), \tag{8}$$

$$\nabla u \in L^1(0, T; L^{\infty}) \text{ and } \nabla \pi \in L^1(0, T; B^{s-1}_{\infty, r}), s \ge 1, 1 \le r \le \infty.$$
 (9)

Citation: Shi, K.; Fan, J.; Nakamura, G. A Blow-Up Criterion for the Density-Dependent Incompressible Magnetohydrodynamic System with Zero Viscosity. *Mathematics* **2024**, 12, 1510. https://doi.org/10.3390/math12101510

Received: 16 April 2024 Revised: 9 May 2024 Accepted: 11 May 2024 Published: 12 May 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Mathematics **2024**, 12, 1510 2 of 8

In [10], the authors proved the local well-posedness of smooth solutions in Sobolev spaces. The aim of this article is to prove (7) for the system (1)–(6). We will prove the following.

Theorem 1. Let $0 < \inf \rho_0 \le \rho_0 \le C$, $\nabla \rho_0 \in H^2$, $u_0, b_0 \in H^3$ with $\operatorname{div} u_0 = \operatorname{div} b_0 = 0$ in \mathbb{R}^3 . Let (ρ, u, b) be the unique solution to the problem (1)–(6). If (7) holds true with some $0 < T < \infty$, then the solution (ρ, u, b) can be extended beyond T > 0.

Remark 1. *In* [8], Zhou, Fan and Xin showed the same blow-up criterion (8), which is refined by (7) for the ideal MHD system.

Remark 2. When $\eta = 0$, we are unable to show a similar result.

In the following proofs, we will use the bilinear commutator and product estimates due to Kato–Ponce [11]:

$$\|\Lambda^{s}(fg) - f\Lambda^{s}g\|_{L^{p}} \le C(\|\nabla f\|_{L^{p_{1}}} \|\Lambda^{s-1}g\|_{L^{q_{1}}} + \|g\|_{L^{p_{2}}} \|\Lambda^{s}f\|_{L^{q_{2}}}), \tag{10}$$

$$\|\Lambda^{s}(fg)\|_{L^{p}} \le C(\|f\|_{L^{p_{1}}} \|\Lambda^{s}g\|_{L^{q_{1}}} + \|\Lambda^{s}f\|_{L^{p_{2}}} \|g\|_{L^{q_{2}}}),\tag{11}$$

with
$$s > 0$$
, $\Lambda := (-\Delta)^{\frac{1}{2}}$ and $\frac{1}{p} = \frac{1}{p_1} + \frac{1}{q_1} = \frac{1}{p_2} + \frac{1}{q_2}$.

2. Proof of Theorem 1

We only need to prove a priori estimates.

First, thanks to the maximum principle, it is easy to see that

$$\frac{1}{C} \le \rho \le C. \tag{12}$$

We will use the identity

$$b \cdot \nabla b + b \times \operatorname{rot} b = \frac{1}{2} \nabla |b|^2. \tag{13}$$

Testing (2) by u, using (1), (4) and (13), we find that

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\int \rho |u|^2 \mathrm{d}x = \int (b \cdot \nabla)b \cdot u \mathrm{d}x. \tag{14}$$

Testing (3) by b and using (4), we obtain

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\int |b|^2 \mathrm{d}x + \eta \int |\nabla b|^2 \mathrm{d}x = \int (b \cdot \nabla)u \cdot b \mathrm{d}x. \tag{15}$$

Summing up (14) and (15), we have the well-known energy identity

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\int(\rho|u|^2+|b|^2)\mathrm{d}x+\eta\int|\nabla b|^2\mathrm{d}x=0,$$

and hence

$$\int (|u|^2 + |b|^2) \mathrm{d}x + \int_0^T \int |\nabla b|^2 \mathrm{d}x \mathrm{d}t \le C.$$
 (16)

It is easy to deduce that

$$\|\nabla \rho\|_{L^{\infty}} \le \|\nabla \rho_0\|_{L^{\infty}} \exp\left(\int_0^t \|\nabla u(s)\|_{L^{\infty}} ds\right) \le C. \tag{17}$$

Mathematics **2024**, 12, 1510 3 of 8

Testing (3) by $|b|^{q-2}b$ (2 < $q < \infty$) and using (4), we derive

$$\begin{split} &\frac{1}{q}\frac{\mathrm{d}}{\mathrm{d}t}\|b\|_{L^{q}}^{q}+\eta\int|b|^{q-2}|\nabla b|^{2}\mathrm{d}x+\eta\int\frac{1}{2}\nabla|b|^{2}\cdot\nabla|b|^{q-2}\mathrm{d}x\\ &=\int b\cdot\nabla u\cdot|b|^{q-2}b\mathrm{d}x\leq\|\nabla u\|_{L^{\infty}}\|b\|_{L^{q}}^{q}, \end{split}$$

and therefore

$$\frac{\mathrm{d}}{\mathrm{d}t}\|b\|_{L^q} \leq \|\nabla u\|_{L^\infty}\|b\|_{L^q},$$

which gives

$$||b||_{L^q} \le ||b_0||_{L^q} \exp\left(\int_0^t ||\nabla u(s)||_{L^\infty} ds\right).$$
 (18)

Taking $q \to \infty$, one has

$$||b||_{L^{\infty}} \le C. \tag{19}$$

(2) can be rewritten as

$$\partial_t u + u \cdot \nabla u + \frac{1}{\rho} \nabla \pi = \frac{1}{\rho} \operatorname{rot} b \times b.$$
 (20)

Testing (20) by $\nabla \pi$ and using (4), it follows that

$$\int \frac{1}{\rho} |\nabla \pi|^2 dx = -\int u \cdot \nabla u \cdot \nabla \pi dx + \int \left(\frac{1}{\rho} \operatorname{rot} b \times b\right) \cdot \nabla \pi dx
\leq C(\|u \cdot \nabla u\|_{L^2} + \|\operatorname{rot} b \times b\|_{L^2}) \|\nabla \pi\|_{L^2}
\leq C(\|u\|_{L^2} \|\nabla u\|_{L^\infty} + \|b\|_{L^\infty} \|\nabla b\|_{L^2}) \|\nabla \pi\|_{L^2},$$

whence

$$\|\nabla \pi\|_{L^2} \le C \|\nabla u\|_{L^{\infty}} + C \|\nabla b\|_{L^2}. \tag{21}$$

Taking rot to (20) and denoting the vorticity $\omega := \operatorname{rot} u$, we obtain

$$\partial_t \omega + u \cdot \nabla \omega = \omega \cdot \nabla u - \nabla \frac{1}{\rho} \times \nabla \pi + \operatorname{rot} \left(\frac{\operatorname{rot} b}{\rho} \times b \right). \tag{22}$$

Testing (22) by ω and using (4), (17) and (19), we compute

$$\frac{1}{2} \frac{d}{dt} \int |\omega|^{2} dx$$

$$= \int \omega \cdot \nabla u \cdot \omega dx - \int \left(\nabla \frac{1}{\rho} \times \nabla \pi \right) \omega dx + \int \operatorname{rot} \left(\frac{\operatorname{rot} b}{\rho} \times b \right) \cdot \omega dx$$

$$\leq \|\nabla u\|_{L^{\infty}} \int |\omega|^{2} dx + \|\nabla \frac{1}{\rho}\| \|\nabla \pi\|_{L^{2}} \|\omega\|_{L^{2}}$$

$$+ C \|\nabla \rho\|_{L^{\infty}} \|b\|_{L^{\infty}} \|\nabla b\|_{L^{2}} \|\omega\|_{L^{2}} + C \|b\|_{L^{\infty}} \|\Delta b\|_{L^{2}} \|\omega\|_{L^{2}} + C \|\nabla b\|_{L^{4}}^{2} \|\omega\|_{L^{2}}$$

$$\leq C \|\nabla u\|_{L^{\infty}} \int |\omega|^{2} dx + C \|\nabla \pi\|_{L^{2}} \|\omega\|_{L^{2}} + C \|\nabla b\|_{L^{2}} \|\omega\|_{L^{2}}$$

$$+ \frac{\eta}{4} \|\Delta b\|_{L^{2}}^{2} + C \|\omega\|_{L^{2}}^{2}.$$
(23)

Here, we have used the Gagliardo-Nirenberg inequality

$$\|\nabla b\|_{L^4}^2 \le C\|b\|_{L^\infty}\|\Delta b\|_{L^2}. (24)$$

Mathematics **2024**, 12, 1510 4 of 8

On the other hand, testing (3) by $-\Delta b$ and using (4) and (19), we achieve

$$\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \int |\nabla b|^2 \mathrm{d}x + \eta \int |\Delta b|^2 \mathrm{d}x$$

$$= \sum_{j} \int (u \cdot \nabla)b\partial_{j}^{2}b \mathrm{d}x - \int (b \cdot \nabla)u \cdot \Delta b \mathrm{d}x$$

$$= -\sum_{j} \int \partial_{j}u \cdot \nabla b \cdot \partial_{j}b \mathrm{d}x - \int b \cdot \nabla u \cdot \Delta b \mathrm{d}x$$

$$\leq C \|\nabla u\|_{L^{\infty}} \|\nabla b\|_{L^{2}}^{2} + \|b\|_{L^{\infty}} \|\nabla u\|_{L^{2}} \|\Delta b\|_{L^{2}}$$

$$\leq \frac{\eta}{4} \|\Delta b\|_{L^{2}}^{2} + C \|\nabla u\|_{L^{\infty}} \|\nabla b\|_{L^{2}}^{2} + C \|\omega\|_{L^{2}}^{2}.$$
(25)

Here, we have used the inequality

$$\|\nabla u\|_{L^r} \le C\|\omega\|_{L^r} \text{ with } 1 < r < \infty.$$

Summing up (23) and (25) and using (21) and the Gronwall inequality, we reach

$$\|\omega\|_{L^2} + \|\nabla b\|_{L^2} \le C. \tag{27}$$

Taking div to (20) and using (4), we observe that

$$-\Delta \pi = f := \rho \operatorname{div} \left(u \cdot \nabla u \right) + \rho \nabla \frac{1}{\rho} \cdot \nabla \pi - \rho \operatorname{div} \left(\frac{\operatorname{rot} b}{\rho} \times b \right), \tag{28}$$

from which, with (17), (19), (21) and (27), we have

$$\begin{split} \|\Delta\pi\|_{L^{4}} & \leq \|f\|_{L^{4}} \leq C\|\nabla u\|_{L^{\infty}}\|\nabla u\|_{L^{4}} + C\|\nabla\rho\|_{L^{\infty}}\|\nabla\pi\|_{L^{4}} \\ & + C\|\nabla\rho\|_{L^{\infty}}\|b\|_{L^{\infty}}\|\operatorname{rot} b\|_{L^{4}} + C\|\Delta b\|_{L^{4}}\|b\|_{L^{\infty}} + C\|\nabla b\|_{L^{8}}^{2} \\ & \leq C\|\nabla u\|_{L^{\infty}}\|\omega\|_{L^{4}} + C\|\nabla\pi\|_{L^{4}}^{4} + C\|\operatorname{rot} b\|_{L^{4}} + C\|\Delta b\|_{L^{4}} \\ & \leq C\|\nabla u\|_{L^{\infty}}\|\omega\|_{L^{4}} + C\|\nabla\pi\|_{L^{2}}^{\frac{4}{7}}\|\Delta\pi\|_{L^{4}}^{\frac{3}{7}} + C\|\operatorname{rot} b\|_{L^{4}} + C\|\Delta b\|_{L^{4}} \\ & \leq \frac{1}{2}\|\Delta\pi\|_{L^{4}} + C\|\nabla u\|_{L^{\infty}}\|\omega\|_{L^{4}} + C\|\nabla u\|_{L^{\infty}} + C + C\|\operatorname{rot} b\|_{L^{4}} + C\|\Delta b\|_{L^{4}}, \end{split}$$

which yields

$$\|\Delta \pi\|_{I^4} \le C \|\nabla u\|_{L^{\infty}} \|\omega\|_{I^4} + C \|\nabla u\|_{L^{\infty}} + C + C \|\operatorname{rot} b\|_{I^4} + C |\Delta b|_{I^4}. \tag{29}$$

Here, we have used the Gagliardo-Nirenberg inequalities

$$\|\nabla b\|_{L^8}^2 \leq C\|b\|_{L^\infty}\|\Delta b\|_{L^4},\tag{30}$$

$$\|\nabla \pi\|_{L^4} \le C \|\nabla \pi\|_{L^2}^{\frac{4}{7}} \|\Delta \pi\|_{L^4}^{\frac{3}{7}}. \tag{31}$$

Testing (22) by $|\omega|^2\omega$ and using (4), (17), (19), (29), (30) and (31), we have

$$\begin{split} \frac{1}{4} \frac{\mathrm{d}}{\mathrm{d}t} \|\omega\|_{L^{4}}^{4} & \leq C \|\nabla u\|_{L^{\infty}} \|\omega\|_{L^{4}}^{4} + C \|\nabla \frac{1}{\rho}\|_{L^{\infty}} \|\nabla \pi\|_{L^{4}} \|\omega\|_{L^{4}}^{3} \\ & + C (\|b\|_{L^{\infty}} \|\Delta b\|_{L^{4}} + \|\nabla b\|_{L^{8}}^{2}) \|\omega\|_{L^{4}}^{3} + C \|\nabla \frac{1}{\rho}\|_{L^{\infty}} \|b\|_{L^{\infty}} \|\operatorname{rot} b\|_{L^{4}} \|\omega\|_{L^{4}}^{3} \\ & \leq C \|\nabla u\|_{L^{\infty}} \|\omega\|_{L^{4}}^{4} + C \|\nabla \pi\|_{L^{4}} \|\omega\|_{L^{4}}^{3} + C (\|\Delta b\|_{L^{4}} + \|\operatorname{rot} b\|_{L^{4}}) \|\omega\|_{L^{4}}^{3}, \end{split}$$

Mathematics **2024**, 12, 1510 5 of 8

which implies

$$\frac{\mathrm{d}}{\mathrm{d}t} \|\omega\|_{L^{4}}^{2} \leq C \|\nabla u\|_{L^{\infty}} \|\omega\|_{L^{4}}^{2} + C(\|\nabla u\|_{L^{\infty}} + 1 + \|\operatorname{rot} b\|_{L^{4}} + \|\Delta b\|_{L^{4}}) \|\omega\|_{L^{4}} \\
\leq C \|\nabla u\|_{L^{\infty}} \|\omega\|_{L^{4}}^{2} + C(\|\nabla u\|_{L^{\infty}} + 1 + \|\operatorname{rot} b\|_{L^{4}}) \|\omega\|_{L^{4}} + C \|\omega\|_{L^{4}}^{2} + C \|\Delta b\|_{L^{4}}^{2},$$

and thus

$$\|\omega\|_{L^{4}}^{2} \leq \|\omega_{0}\|_{L^{4}}^{2} + C \int_{0}^{t} [(\|\nabla u\|_{L^{\infty}} + 1)\|\omega\|_{L^{4}}^{2} + (\|\nabla u\|_{L^{\infty}} + 1 + \|\operatorname{rot} b\|_{L^{4}})\|\omega\|_{L^{4}}] ds + \int_{0}^{t} \|\Delta b\|_{L^{4}}^{2} ds.$$
(32)

On the other hand, using the $L^2(0, T; W^{2,4})$ -theory of the heat equation, it follows that

$$\int_{0}^{t} \|\Delta b\|_{L^{4}}^{2} ds \leq C + C \int_{0}^{t} \|u \cdot \nabla b - b \cdot \nabla u\|_{L^{4}}^{2} ds$$

$$\leq C + C \int_{0}^{t} (\|u\|_{L^{\infty}}^{2} \|\nabla b\|_{L^{4}}^{2} + \|b\|_{L^{\infty}}^{2} \|\nabla u\|_{L^{4}}^{2}) ds$$

$$\leq C + C \int_{0}^{t} (\|u\|_{L^{6}}^{\frac{4}{3}} \|\nabla u\|_{L^{\infty}}^{\frac{2}{3}} \|\operatorname{rot} b\|_{L^{4}}^{2} + \|\omega\|_{L^{4}}^{2}) ds$$

$$\leq C + C \int_{0}^{t} (\|\nabla u\|_{L^{\infty}}^{\frac{2}{3}} \|\operatorname{rot} b\|_{L^{4}}^{2} + \|\omega\|_{L^{4}}^{2}) ds. \tag{33}$$

Here, we have used the inequality

$$\|\nabla b\|_{L^p} \le C\|\operatorname{rot} b\|_{L^p} \text{ with } 1$$

Inserting (33) into (32), we have

$$\|\omega\|_{L^{4}}^{2} \leq C + C \int_{0}^{t} (\|\nabla u\|_{L^{\infty}} +)\|\omega\|_{L^{4}}^{2} ds + C \int_{0}^{t} (\|\nabla u\|_{L^{\infty}} + \|\operatorname{rot} b\|_{L^{4}}) \|\omega\|_{L^{4}} ds + C \int_{0}^{t} \|\nabla u\|_{L^{\infty}}^{\frac{2}{3}} \|\operatorname{rot} b\|_{L^{4}}^{2} ds.$$

$$(35)$$

Taking rot to (3) and denoting the current I := rot b, we infer that

$$\partial_t I - \eta \Delta I + \operatorname{rot} \left(u \cdot \nabla b - b \cdot \nabla u \right) = 0. \tag{36}$$

Testing (36) by $|J|^2 J$, using (17), (19) and (34), we derive

$$\frac{1}{4} \frac{d}{dt} ||J||_{L^{4}}^{4} + \eta \int |J|^{2} |\nabla J|^{2} dx + \eta \int \frac{1}{2} \nabla |J|^{2} \cdot \nabla |J|^{2} dx
= \int (b \cdot \nabla u - u \cdot \nabla b) \operatorname{rot} (|J|^{2} J) dx
= \int (b \cdot \nabla u - u \cdot \nabla b) (|J|^{2} \operatorname{rot} J + \nabla |J|^{2} \times J) dx
\leq ||b \cdot \nabla u - u \cdot \nabla b||_{L^{4}} ||J||_{L^{4}} ||J| \cdot |\nabla J|||_{L^{2}}
\leq C(||b||_{L^{\infty}} ||\nabla u||_{L^{4}} + ||u||_{L^{\infty}} ||\nabla b||_{L^{4}} ||J||_{L^{4}} ||J| \cdot |\nabla J|||_{L^{2}}
\leq \frac{\eta}{2} \int |J|^{2} |\nabla J|^{2} dx + C(||\omega||_{L^{4}}^{2} + ||u||_{L^{\infty}}^{2} ||J||_{L^{4}}^{2}) ||J||_{L^{4}}^{2},$$

which implies

$$\frac{\mathrm{d}}{\mathrm{d}t} \|J\|_{L^4}^2 \le C \|\omega\|_{L^4}^2 + C \|\nabla u\|_{L^\infty}^{\frac{2}{3}} \|J\|_{L^4}^2.$$

Mathematics **2024**, 12, 1510 6 of 8

Integrating the above inequality, one has

$$\|\operatorname{rot} b\|_{L^{4}}^{2} \leq C + C \int_{0}^{t} (\|\omega\|_{L^{4}}^{2} + \|\nabla u\|_{L^{\infty}}^{\frac{2}{3}} \|\operatorname{rot} b\|_{L^{4}}^{2}) ds. \tag{37}$$

Summing up (35) and (37), using the Gronwall inequality, we arrive at

$$\|\nabla u\|_{L^4} + \|\nabla b\|_{L^4} + \int_0^T \|\Delta b\|_{L^4}^2 dt \le C, \tag{38}$$

$$||u||_{L^{\infty}} + \int_{0}^{T} ||\nabla b||_{L^{\infty}}^{2} dt \le C.$$
 (39)

Applying Λ^3 to (1), testing by $\Lambda^3 \rho$ and using (4) and (10), we obtain

$$\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \int (\Lambda^3 \rho)^2 \mathrm{d}x = -\int (\Lambda^3 (u \cdot \nabla \rho) - u \cdot \nabla \Lambda^3 \rho) \Lambda^3 \rho \mathrm{d}x$$

$$\leq C(\|\nabla u\|_{L^\infty} \|\Lambda^3 \rho\|_{L^2} + \|\nabla \rho\|_{L^\infty} \|\Lambda^3 u\|_{L^2}) \|\Lambda^3 \rho\|_{L^2}.$$
(40)

Applying Λ^3 to (2), testing by $\Lambda^3 u$ and using (1) and (4), we have

$$\frac{1}{2} \frac{d}{dt} \int \rho |\Lambda^3 u|^2 dx = \int (\Lambda^3 (b \cdot \nabla b) - b \cdot \nabla \Lambda^3 b) \Lambda^3 u dx + \int b \cdot \nabla \Lambda^3 b \cdot \Lambda^3 u dx
- \int (\Lambda^3 (\rho \partial_t u) - \rho \Lambda^3 \partial_t u) \Lambda^3 u dx - \int (\Lambda^3 (\rho u \cdot \nabla u) - \rho u \cdot \nabla \Lambda^3 u) \Lambda^3 u dx
= : I_1 + I_2 + I_3 + I_4.$$
(41)

Applying Λ^3 to (3), testing by $\Lambda^3 b$ and using (4), we have

$$\frac{1}{2} \frac{d}{dt} \int |\Lambda^3 b|^2 dx + \eta \int |\Lambda^4 b|^2 dx$$

$$= \int (\Lambda^3 (b \cdot \nabla u) - b \cdot \nabla \Lambda^3 u) \Lambda^3 b dx + \int b \cdot \Lambda^3 u \cdot \Lambda^3 b dx$$

$$- \int (\Lambda^3 (u \cdot \nabla b) - u \cdot \nabla \Lambda^3 b) \Lambda^3 b dx =: I_5 + I_6 + I_7. \tag{42}$$

Summing up (41) and (42) and noting that $I_2 + I_6 = 0$, we have

$$\frac{1}{2}\frac{d}{dt}\int (\rho|\Lambda^3 u|^2 + |\Lambda^3 b|^2)dx + \eta\int |\Lambda^4 b|^2dx = I_1 + I_3 + I_4 + I_5 + I_7.$$
(43)

Using (10) and (11), we bound I_1 , I_4 , I_5 and I_7 as follows.

$$\begin{split} I_{1} & \leq C \|\nabla b\|_{L^{\infty}}(\|\Lambda^{3}b\|_{L^{2}}^{2} + \|\Lambda^{3}u\|_{L^{2}}^{2}); \\ I_{4} & \leq C(\|\nabla(\rho u)\|_{L^{\infty}}\|\Lambda^{3}u\|_{L^{2}} + \|\nabla u\|_{L^{\infty}}\|\Lambda^{3}(\rho u)\|_{L^{2}})\|\Lambda^{3}u\|_{L^{2}} \\ & \leq C(\|\nabla u\|_{L^{\infty}} + 1)\|\Lambda^{3}u\|_{L^{2}}^{2} + C\|\nabla u\|_{L^{\infty}}(\|\Lambda^{3}u\|_{L^{2}} + \|u\|_{L^{\infty}}\|\Lambda^{3}\rho\|_{L^{2}})\|\Lambda^{3}u\|_{L^{2}} \\ & \leq C(\|\nabla u\|_{L^{\infty}} + 1)\|\Lambda^{3}u\|_{L^{2}}^{2} + C\|\nabla u\|_{L^{\infty}}\|\Lambda^{3}\rho\|_{L^{2}}^{2}; \\ I_{5} + I_{7} & \leq C(\|\nabla b\|_{L^{\infty}}\|\Lambda^{3}u\|_{L^{2}} + \|\nabla u\|_{L^{\infty}}\|\Lambda^{3}b\|_{L^{2}})\|\Lambda^{3}b\|_{L^{2}}. \end{split}$$

Mathematics **2024**, 12, 1510 7 of 8

To bound I_3 , we proceed as follows.

$$I_{3} \leq C(\|\partial_{t}u\|_{L^{\infty}}\|\Lambda^{3}\rho\|_{L^{2}} + \|\nabla\rho\|_{L^{\infty}}\|\Lambda^{2}\partial_{t}u\|_{L^{2}})\|\Lambda^{3}u\|_{L^{2}}$$

$$\leq C\left\|u \cdot \nabla u + \frac{1}{\rho}\nabla\pi - \frac{\operatorname{rot}b}{\rho} \times b\right\|_{L^{\infty}}\|\Lambda^{3}\rho\|_{L^{2}}\|\Lambda^{3}u\|_{L^{2}}$$

$$+ C\left\|\Delta\left(u \cdot \nabla u + \frac{1}{\rho}\nabla\pi - \frac{\operatorname{rot}b}{\rho} \times b\right)\right\|_{L^{2}}\|\Lambda^{3}u\|_{L^{2}}$$

$$\leq C(\|\nabla u\|_{L^{\infty}} + \|\nabla\pi\|_{L^{\infty}} + \|\nabla b\|_{L^{\infty}})\|\Lambda^{3}\rho\|_{L^{2}}\|\Lambda^{3}u\|_{L^{2}}$$

$$+ C\left(\|u\|_{L^{\infty}}\|\Lambda^{3}u\|_{L^{2}} + \|\Lambda^{2}\nabla\pi\|_{L^{2}} + \|\nabla\pi\|_{L^{3}}\|\Lambda^{2}\frac{1}{\rho}\|_{L^{6}}\right)$$

$$+ \left\|\Delta\frac{1}{\rho}\right\|_{L^{6}}\|\operatorname{rot}b\|_{L^{3}}\|b\|_{L^{\infty}} + \|b\|_{L^{\infty}}\|\Lambda^{3}b\|_{L^{2}}\right)\|\Lambda^{3}u\|_{L^{2}}$$

$$\leq C(\|\nabla u\|_{L^{\infty}} + \|\nabla\pi\|_{L^{\infty}} + \|\nabla b\|_{L^{\infty}})\|\Lambda^{3}\rho\|_{L^{2}}\|\Lambda^{3}u\|_{L^{2}}$$

$$+ C(\|\Lambda^{3}u\|_{L^{2}} + \|\nabla\pi\|_{L^{\infty}} + \|\nabla b\|_{L^{\infty}})\|\Lambda^{3}\rho\|_{L^{2}}\|\Lambda^{3}u\|_{L^{2}}$$

$$\leq C(\|\nabla u\|_{L^{\infty}} + \|\nabla\pi\|_{L^{\infty}} + \|\nabla b\|_{L^{\infty}})\|\Lambda^{3}\rho\|_{L^{2}}\|\Lambda^{3}u\|_{L^{2}}$$

$$\leq C(\|\nabla u\|_{L^{\infty}} + \|\nabla\pi\|_{L^{\infty}} + \|\nabla b\|_{L^{\infty}})\|\Lambda^{3}\rho\|_{L^{2}}\|\Lambda^{3}u\|_{L^{2}}$$

$$+ C(\|\Lambda^{3}u\|_{L^{2}} + \|\nabla f\|_{L^{2}} + \|\nabla \pi\|_{L^{3}}\|\Lambda^{3}\rho\|_{L^{2}} + \|\Lambda^{3}\rho\|_{L^{2}} + \|\Lambda^{3}b\|_{L^{2}})\|\Lambda^{3}u\|_{L^{2}}. \tag{44}$$

On the other hand, we have

$$\|\nabla \pi\|_{L^{\infty}} \leq C\|\nabla \pi\|_{L^{2}} + C\|\Delta \pi\|_{L^{4}}$$

$$\leq C\|\nabla u\|_{L^{\infty}} + C + C\|\Delta b\|_{L^{4}}; \tag{45}$$

$$\begin{split} \|\nabla\Delta\pi\|_{L^{2}} &= \|\nabla f\|_{L^{2}} \\ &\leq C\|\nabla\rho\|_{L^{\infty}}\|\nabla u\|_{L^{4}}^{2} + C\|u\|_{L^{\infty}}\|\Lambda^{3}u\|_{L^{2}} + C\|\nabla\rho\|_{L^{\infty}}\|\nabla^{2}\pi\|_{L^{2}} \\ &\quad + C\|\Delta\rho\|_{L^{6}}\|\nabla\pi\|_{L^{3}} + C\|\nabla\rho\|_{L^{\infty}}(\|\Delta b\|_{L^{2}}\|b\|_{L^{\infty}} + \|\nabla b\|_{L^{4}}^{2} + \|\nabla\rho\|_{L^{\infty}}\|\nabla b\|_{L^{2}}) \\ &\quad + C\|b\|_{L^{\infty}}\|\Lambda^{3}b\|_{L^{2}} + C\left\|\Delta\frac{1}{\rho}\right\|_{L^{6}}\|b\|_{L^{\infty}}\|\nabla b\|_{L^{3}} \\ &\leq C + C\|\Lambda^{3}u\|_{L^{2}} + C\|\nabla^{2}\pi\|_{L^{2}} + C\|\Lambda^{3}\rho\|_{L^{2}}\|\nabla\pi\|_{L^{3}} + C\|\Lambda^{3}b\|_{L^{2}} + C\|\Lambda^{3}\rho\|_{L^{2}} \\ &\leq \frac{1}{2}\|\nabla f\|_{L^{2}} + C\|\nabla\pi\|_{L^{2}} + C + C\|\Lambda^{3}u\|_{L^{2}} \\ &\quad + C\|\Lambda^{3}\rho\|_{L^{2}} + C\|\Lambda^{3}b\|_{L^{2}} + C\|\Lambda^{3}\rho\|_{L^{2}}\|\nabla\pi\|_{L^{3}}, \end{split}$$

which gives

$$\begin{split} \|\nabla f\|_{L^{2}} & \leq C + C\|\nabla u\|_{L^{\infty}} + C\|\Lambda^{3}\rho\|_{L^{2}} + C\|\Lambda^{3}u\|_{L^{2}} \\ & + C\|\Lambda^{3}b\|_{L^{2}} + C\|\Lambda^{3}\rho\|_{L^{2}} (\|\nabla\pi\|_{L^{2}} + \|\Delta\pi\|_{L^{4}}) \\ & \leq C + C\|\nabla u\|_{L^{\infty}} + C\|\Lambda^{3}(\rho, u, b)\|_{L^{2}} + C\|\Lambda^{3}\rho\|_{L^{2}} (\|\nabla u\|_{L^{\infty}} + 1 + \|\Delta b\|_{L^{4}}). \end{split}$$

Inserting the above estimates into (44), we obtain

$$I_{3} \leq C(\|\nabla u\|_{L^{\infty}} + 1 + \|\nabla b\|_{L^{\infty}} + \|\Delta b\|_{L^{4}})(\|\Lambda^{3}\rho\|_{L^{2}}^{2} + \|\Lambda^{3}u\|_{L^{2}}^{2}) + C\|\Lambda^{3}(\rho, u, b)\|_{L^{2}}^{2}$$

$$\leq C(\|\nabla u\|_{L^{\infty}} + 1 + \|\nabla b\|_{L^{\infty}} + \|\Delta b\|_{L^{4}})\|\Lambda^{3}(\rho, u, b)\|_{L^{2}}^{2}.$$

Inserting the above estimates of I_1 , I_3 , I_4 , I_5 and I_7 into (43), we have

$$\frac{1}{2} \frac{d}{dt} \int (\rho |\Lambda^3 u|^2 + |\Lambda^3 b|^2) dx + \eta \int |\Lambda^4 b|^2 dx
\leq C(\|\nabla u\|_{L^{\infty}} + 1 + \|\nabla b\|_{L^{\infty}} + \|\Delta b\|_{L^4}) \|\Lambda^3 (\rho, u, b)\|_{L^2}^2.$$
(46)

Summing up (40) and (46) and using the Gronwall inequality, we conclude that

$$\|\Lambda^3(\rho,u,b)\|_{L^2} + \int_0^T \int |\Lambda^4 b|^2 \mathrm{d}x \mathrm{d}t \le C.$$

Mathematics **2024**, 12, 1510 8 of 8

This completes the proof. \Box

3. Conclusions

In this paper, we prove a refined blow-up criterion for the inhomogeneous incompressible MHD system with zero viscosity, which is important and can be used for the simulation of MHD. For $\rho = 1$ and $\eta = 0$, Caflisch et al. [12] showed the following regularity criterion:

$$rot u, rot b \in L^1(0, T; L^\infty). \tag{47}$$

Since the problem is very challenging, we are unable to present further developments.

Author Contributions: Writing—original draft, K.S. and J.F.; Writing—review & editing, G.N. All authors have read and agreed to the published version of the manuscript.

Funding: J. Fan is partially supported by the NSFC (No. 11971234). The authors are indebted to the referees for their valuable suggestions.

Data Availability Statement: The data in this study are available from the corresponding author upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Beirão da Veiga, H.; Valli, A. On the Euler equations for the nonhomogeneous fluids II. *J. Math. Anal. Appl.* **1980**, 73, 338–350. [CrossRef]
- 2. Beirão da Veiga, H.; Valli, A. Existence of C[∞] solutions of the Euler equations for nonhomogeneous fluids. Commun. *Partial Differ. Equ.* **1980**, *5*, 95–107. [CrossRef]
- 3. Valli, A.; Zajaczkowski, W.M. About the motion of nonhomogeneous ideal incompressible fluids. *Nonlinear Anal. TMA* **1988**, 12, 43–50. [CrossRef]
- 4. Berselli, L. On the Global Existence of Solution to the Equation of Ideal Fluids. Master's Thesis, 1995; Unpublished. (In Italian)
- 5. Danchin, R. On the well-posedness of the incompressible density-dependent Euler equations in the L^p framework. J. Differ. Equ. **2010**, 248, 2130–2170. [CrossRef]
- 6. Danchin, R.; Fanelli, F. The well-posedness issue for the density-dependent Euler equations in endpoint Besov spaces. *J. Math. Pures Appl.* **2011**, *96*, 253–278. [CrossRef]
- 7. Chae, D.; Lee, J. Local existence and blow-up criterion of the inhomogeneous Euler equations. *J. Math. Fluid Mech.* **2003**, *5*, 144–165. [CrossRef]
- 8. Zhou, Y.; Xin, Z.P.; Fan, J. Well-posedness for the density-dependent incompressible Euler equations in the critical Besov spaces. *Sci. China Math.* **2010**, *40*, 950–970. (In Chinese)
- 9. Bae, H.; Lee, W.; Shin, J. A blow-up criterion for the inhomogeneous incompressible Euler equations. *Nonlinear Anal.* **2020**, *196*, 111774. [CrossRef]
- He, F.; Fan, J.; Zhou, Y. Local existence and blow-up criterion of the ideal density-dependent flows. Bound. Value Probl. 2016, 2016, 101. [CrossRef]
- 11. Kato, T.; Ponce, G. Commutator estimates and the Euler and Navier-Stokes equations. *Commun. Pure Appl. Math.* 1988, 41, 891–907. [CrossRef]
- 12. Caflisch, R.E.; Klapper, I.; Steele, G. Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD. *Commun. Math. Phys.* **1997**, *184*, 443–455. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.