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Abstract: This study introduces a novel process identification method aimed at overcoming the
challenge of accurately estimating process models when faced with deterministic disturbances,
a common limitation in conventional identification methods. The proposed method tackles the
difficult modeling problems due to deterministic disturbances by representing the disturbances as
a linear combination of Laguerre polynomials and applies an integral transform with frequency
weighting to estimate the process model in a numerically robust and stable manner. By utilizing a
least squares approach for parameter estimation, it sidesteps the complexities inherent in iterative
optimization processes, thereby ensuring heightened accuracy and robustness from a numerical
analysis perspective. Comprehensive simulation results across various process types demonstrate the
superior capability of the proposed method in accurately estimating the model parameters, even in the
presence of significant deterministic disturbances. Moreover, it shows promising results in providing
a reasonably accurate disturbance model despite structural disparities between the actual disturbance
and the model. By improving the precision of process models under deterministic disturbances, the
proposed method paves the way for developing refined and reliable control strategies, aligning with
the evolving demands of modern industries and laying solid groundwork for future research aimed
at broadening application across diverse industrial practices.

Keywords: disturbance modeling; deterministic disturbance; process identification; integral transform;
Laguerre polynomials

1. Introduction

The landscape of modern industrial processes is becoming increasingly complex, and
the objectives guiding these operations are diversifying rapidly. This evolving environment
underscores the critical importance of implementing effective control strategies, which
are essential not only for ensuring economic and environmental sustainability but also
for accommodating inevitable fluctuations in operating schedules. Against this backdrop,
model-based approaches, such as model predictive and adaptive controls, have emerged as
promising solutions for achieving optimal control performance [1–8]. However, the efficacy
of these approaches heavily relies on the accuracy of the employed process model. The
accuracy of these models, therefore, becomes a cornerstone for the successful application of
model-based control strategies, catalyzing the development and deployment of various
process identification methods. Consequently, various process identification methodologies
have been developed and implemented across diverse industrial domains [9–20].

Since the pioneering introduction of the relay feedback method for identifying the ulti-
mate frequency response data of processes, the field has seen the emergence of numerous
advanced techniques within the literature [21–24]. These methodologies have made notable
strides in enhancing the precision of frequency response data estimation, particularly for
the desired frequency regions [25–29]. Among the array of techniques developed, paramet-
ric identification methods such as subspace, prediction error, and instrumental variable
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methods stand out for their efficacy and widespread application [30–37]. Furthermore,
the advent of parametric identification techniques utilizing various weight functions and
integral transforms represents an advancement in the identification of continuous-time
processes [38–42]. In parallel, the development of nonparametric identification methods
has introduced a new dimension of flexibility and robustness [43–48]. These methods
distinguish themselves by not necessitating prior knowledge of the process dynamics, thus
offering a powerful tool for accurate modeling.

However, despite these advances, the array of previous process identification methods
reveals limitations when confronted with the complexity of real-world processes. This is
predominantly due to the inherent challenges associated with uncertainty, an inescapable
aspect of determining the process model for industrial applications, which remains a critical
hurdle to overcome. While certain published identification methods consider un-certainties
such as measurement noise and disturbances during parameter estimation [49–53], the
majority have been built upon the assumption of stochastic disturbances. This assumption
tends to overlook the prevalence and impact of deterministic disturbances in practical
processes, a reality that can significantly undermine the effectiveness of an estimated model.
These deterministic disturbances can significantly degrade the performance of estimated
process models.

Addressing this critical gap, we introduce a novel process identification method aimed
at explicitly neutralizing the influence of deterministic disturbances during parameter
estimation. By embracing a novel approach that models deterministic disturbances as
linear combinations of Laguerre polynomials and employing an integral transform with
frequency weighting for the estimation of parameters, our proposed method stands out
for its exceptional accuracy. This is further complemented by numerical stability and
robustness from strategic use of the least squares method for parameter estimation, which
can eliminate the reliance on complex iterative search-based nonlinear optimization meth-
ods. The performance of the proposed method was confirmed through a simulation study,
which attests to the remarkable ability of the method to accurately model processes, even
processes heavily corrupted by deterministic disturbances. The proposed method heralds a
significant leap forward from the previous identification methods, which encounter diffi-
culties in guaranteeing model accuracy in the face of deterministic disturbance, showcasing
the potential of our method to substantially improve the fidelity of process models.

2. Theoretical Development of the Proposed Method

This study adopts a continuous-time differential equation as the process model, per-
turbed by a deterministic disturbance, represented as the following:

y(t) + a1
dyp(t)

dt + · · ·+ an−1
dn−1yp(t)

dtn−1 + an
dnyp(t)

dtn

= b0u(t) + b1
du(t)

dt + · · ·+ bm−1
dm−1u(t)

dtm−1 + bm
dmu(t)

dtm

(1)

y(t) = yp(t) + D(t) (2)

where yp, y, and u represent the disturbance-free process output, the measured pro-
cess output disturbed by deterministic disturbances, and the process input, respectively.
ai, i = 1, 2, · · · , n and bi, i = 0, 1, · · · , m are the model parameters that the proposed iden-
tification method should provide. This study assumes that the disturbance D(t) can be
expressed by the linear combination of basis functions as follows:

D(t) = d0 f0(t) + d1 f1(t) + · · ·+ dp−1 fp−1(t) + dp fp(t) (3)

Here, fi(t), i = 0, 1, · · · , p denotes the i-th basis function and di, i = 0, 1, · · · , p are the
model parameters of the disturbance model that the proposed identification method should
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provide. The basis function for the proposed method can be a variety of formulae [54], but
this study adopts the following Laguerre polynomials in Equation (4).

fi(t) = Li(t) =
i

∑
k=0

(
(−1)k

k!
i!

k!(i − k)!
tk

)
, i = 0, 1, 2, · · · , p (4)

Substituting Equation (2) into Equation (1), we obtain the following:

y(t) + a1
dy(t)

dt + · · ·+ an
dny(t)

dtn + an−1
dn−1y(t)

dtn−1

= b0u(t) + b1
du(t)

dt + · · ·+ bm−1
dm−1u(t)

dtm−1 + bm
dmu(t)

dtm +

D(t) + a1
dD(t)

dt + · · ·+ an−1
dn−1D(t)

dtn−1 + an
dnD(t)

dtn

(5)

This equation can be further manipulated by substituting Equation (3) into Equa-
tion (5) and considering that D(t) is a linear combination of polynomials, as shown in
Equations (3) and (4), resulting in the following:

y(t) + a1
dy(t)

dt + · · ·+ an
dny(t)

dtn + an−1
dn−1y(t)

dtn−1

= b0u(t) + b1
du(t)

dt + · · ·+ bm−1
dm−1u(t)

dtm−1 + bm
dmu(t)

dtm +

c0 f0(t) + c1 f0(t) + · · ·+ cp−1 fp−1(t) + cp fp(t)

(6)

Traditional methods have primarily focused on accurately identifying process models
perturbed by stochastic disturbances, typically in the form of high-frequency noise with a
mean of zero. However, disturbances in practical processes often exhibit characteristics such
as fluctuating means and irregular low-frequency dynamics. Consequently, the accuracy of
process models derived using earlier identification techniques is significantly degraded
when deterministic disturbances are present. In this study, a novel process identification
method is developed to overcome the limitations of existing approaches.

2.1. Integral Transform

This study employs an integral transform from t = 0. and t = tend. to estimate model
parameters with frequency weighting [55].

Y(n, m, ω) =
∫ tend

0

dnw(ω, τ)

dtn
dmy(τ)

dtm dτ (7)

U(n, m, ω) =
∫ tend

0

dnw(ω, τ)

dtn
dmu(τ)

dtm dτ (8)

Fi(0, 0, ω) =
∫ tend

0
w(ω, τ) fi(τ)dτ, i = 1, 2, · · · , p (9)

Here, w(ω, t) represents a frequency weight function aimed at mitigating the effects of
the initial and final values of the signal. By applying integration by parts to Equations (7)
and (8), the following properties are derived:

Y(n − 1, m, ω) = −Y(n, m − 1, ω) +
dn−1w(ω, t)

dtn−1
dm−1y(t)

dtm−1

∣∣∣∣
t=tend

− dn−1w(ω, t)
dtn−1

dm−1y(t)
dtm−1

∣∣∣∣
t=0

(10)

U(n − 1, m, ω) = −U(n, m − 1, ω) +
dn−1w(ω, t)

dtn−1
dm−1u(t)

dtm−1

∣∣∣∣
t=tend

− dn−1w(ω, t)
dtn−1

dm−1u(t)
dtm−1

∣∣∣∣
t=0

(11)

Simplification of Equations (10) and (11) is possible under the condition that the weight
function satisfies

diw(ω, t)
dti

∣∣∣∣
t=0

=
diw(ω, t)

dti

∣∣∣∣
t=tend

= w(ω, 0) = w(ω, tend) = 0, i = 1, 2, · · · , n (12)
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This results in
Y(n − 1, m, ω) = −Y(n, m − 1, ω) (13)

U(n − 1, m, ω) = −U(n, m − 1, ω) (14)

Repeating Equations (13) and (14) leads to the following expressions:

Y(0, k, ω) = (−1)kY(k, 0, ω), k = 1, 2, · · · , n − 1 (15)

U(0, k, ω) = (−1)kU(k, 0, ω), k = 1, 2, · · · , n − 1 (16)

Consequently, a significant observation emerges: the integral transform of the n-th
derivative of a signal (e.g., dny(t)/dtn) can be determined from the integral transform of
the 0-th derivative of the signal (e.g., y(t)), without the need to consider the signal’s initial
and final values.

This study adopts the weight function proposed by Sung in their work [54], defined
as follows:

w(ω, t) =
tq(t − tend)

q

t2q
end

exp(−iωt) (17)

Here,q represents the order of the weight function, which must be greater than the
process order n.

2.2. Process Identification Using Least Squares Method

The process model provided in Equation (6) can be transformed into Equation (18) by
applying the integral transform outlined in Equations (7)–(9) to Equation (6):

Y(0, 0, ω) + a1Y(0, 1, ω) + a2Y(0, 2, ω) + · · ·+ anY(0, n, ω)
= b0U(0, 0, ω) + · · ·+ bmU(0, m, ω) + c0F0(0, 0, ω) + · · ·+ cpFp(0, 0, ω)

(18)

By utilizing Equations (15)–(16) and (18), we arrive at Equation (19):

Y(0, 0, ω) = −a1(−1)Y(1, 0, ω)− a2(−1)2Y(2, 0, ω)− · · · − an(−1)nY(n, 0, ω)+
b0U(0, 0, ω) + b1(−1)U(1, 0, ω) + · · ·+ bm(−1)mU(m, 0, ω)+
c0F0(0, 0, ω) + · · ·+ cpFp(0, 0, ω)

(19)

where

Y(0, 0, ω) =
∫ tend

0
w(ω, τ)y(τ)dτ (20)

Y(k, 0, ω) =
∫ tend

0

dkw(ω, τ)

dtk y(τ)dτ, k = 1, 2, · · · , n (21)

U(0, 0, ω) =
∫ tend

0
w(ω, τ)u(τ)dτ (22)

U(k, 0, ω) =
∫ tend

0

dkw(ω, τ)

dtk u(τ)dτ, k = 1, 2, · · · , m (23)

Fi(0, 0, ω) =
∫ tend

0
w(ω, τ) fi(τ)dτ, i = 0, 1, 2 · · · , p (24)

Given that the analytic derivatives of the weight function (dkw(ω, τ)/dtk) are easily
derived, the values of Equations (20)–(24) can be computed through numerical integration
with process input and output data, yielding nω equations of Equation (19) corresponding
to multiple frequencies (ω = ωk, k = 1, 2, · · · , nω). Since these equations are valid for both
the real and imaginary parts of the complex number, 2nω equations are obtained. Conse-
quently, the model parameters ai, i = 1, 2, · · · , n and bj, j = 0, 1, · · · , m can be estimated
straightforwardly by applying a simple least squares method to the 2nω equations.
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2.3. Disturbance Modeling and Initial State Estimation

In this section, a novel identification method is proposed to estimate the initial values
of state variables and the model parameters (d0, d1, · · · , dp) of the disturbance model based
on the model parameters (ai, i = 1, 2, · · · , n and bj, j = 0, 1, · · · , m) of the process model
estimated in the previous section. Equation (5) can be represented as a state–space model:

dx(t)
dt

= Ax(t) + Bu(t), yp(t) = Cx(t) (25)

y(t) = yp(t) + d0 f0(t) + d1 f1(t) + · · ·+ dp fp(t) (26)

A =



0 0 0 · · · 0 −1/an
1 0 0 · · · 0 −a1/an
0 1 0 · · · 0 −a2/an

...
0
0

...
0
0

...
0
0

. . .
1
0

...
0
1

...
−an−2/an
−an−1/an


, B =



b0/an
b1/an
b2/an

...
bm−1/an

bm/an


, C =



0
0
0
0
0
1



T

, x(0) =



x1,0
x2,0
x3,0

...
xn−1,0

xn,0


(27)

where x(0) denotes the initial value of state variables at time t = 0.
This study estimates the disturbance model parameters (d0, d1, · · · , dp) and the initial

state values (x0,0, x1,0, · · · , xn,0) by solving an optimization problem where the cost func-
tion V(x1,0, x2,0, · · · , xn,0, d0, d1, · · · , dp) is the sum of the squares of the modeling errors.

min
[
V(x1,0, x2,0, · · · , xn,0, d0, d1, · · · , dp)

]
= 0.5

N
∑

k=1

(
y(k∆t)− yp(k∆t)− d0 f0(k∆t)− d1 f1(k∆t)− · · · − dp fp(k∆t)

)2 (28)

The optimal solution minimizing V(x1,0, x2,0, · · · , xn,0, d0, d1, · · · , dp) can be analyti-
cally derived, since Equation (28) is a quadratic function with respect to the initial values
and the model parameters, as shown in the following proof:

∂V
∂θ

= −
N

∑
k=1

(
y(k∆t)− yp(k∆t)− d0 f0(k∆t)− · · · − dp fp(k∆t)

)
Z(k∆t) (29)

∂2V
∂θ2 = Z(k∆t)ZT(k∆t) (30)

Here, Z(t) and θ are defined as follows:

Z(t) =
[

∂yp(t)
∂x1,0

∂yp(t)
∂x2,0

· · · ∂yp(t)
∂xn,0

f0(t) f1(t) · · · fp(t)
]

(31)

θ =
[
x1,0 x2,0 · · · xn,0 d0 d1 · · · dp

]T (32)

Additionally, the derivatives of the state variable (x(t)) with respect to xi,0 at time 0
are constant, as indicated by Equation (34).

d
dt

(
∂x(t)
∂xi,0

)
= A

(
∂x(t)
∂xi,0

)
,

∂yp(t)
∂xi,0

= C
(

∂x(t)
∂xi,0

)
, i = 1, 2, · · · , n (33)

[
∂x(t)
∂xi,0

]
t=0

= [0 0 · · · 0 1︸ ︷︷ ︸
i

0 0 · · · 0]T, i = 1, 2, · · · , n (34)

Therefore, the first-order derivatives of the state variable (x(t)) with respect to the
initial values of the state variable (xi,0) at time 0 are constant, which leads to the fact that
the second- or higher-order derivatives are zero via Equation (33). As a result, the cost
function can be formulated in a quadratic form.
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The first derivative of the cost function can be represented as follows:

∂V(θ)

∂θ
=

[
∂V
∂θ

]
θ=θ0

+

[
∂2V
∂θ2

]
θ=θ0

(θ − θ0), θ0 = [0 0 · · · 0]T (35)

Since ∂V(θ)/∂θ = 0 at the optimal solution, Equation (35) can be written as follows:

θ1 = θ0 −
[

∂2V
∂θ2

]−1

θ=θ0

[
∂V
∂θ

]
θ=θ0

(36)

While θ1 represents the theoretical optimal solution, θ2 is chosen as the practical
optimal solution to mitigate the effects of numerical errors:

θ2 = θ1 −
[

∂2V
∂θ2

]−1

θ=θ1

[
∂V
∂θ

]
θ=θ1

(37)

In summary, the model parameters of the disturbance model and the initial values of
the state variables can be estimated straightforwardly with Equations (36) and (37).

3. Simulation Study

The performance of the proposed identification method was validated through simu-
lation studies, juxtaposed with that of a previous identification method.

3.1. Case 1: Low-Order Process with Measurement Noises

Consider the below low-order plus time delay process with a deterministic disturbance:

G(s) =
yp(s)
u(s)

=
1

s2 + 2s + 1
, yp(0) = 0.3,

dyp(t)
dt

∣∣∣∣
t=0

= 0.5 (38)

y(s) = yp(s) + D(s) (39)

D(t) = 2(3t/80) exp(−3t/80) (40)

The process measurement is contaminated by uniformly distributed random noises
between −0.05 and 0.05. The process is excited by the following PI controller with kc = 1.5
and τi = 3.0, as represented in Figure 1.

u(t) = kc(ys(t)− y(t)) +
kc

τi

∫ t

0
(ys(τ)− y(τ))dτ (41)

ys(t) = 0 for t < 20, ys(t) = 2 for 20 ≤ t < 50, and ys(t) = 1 for t ≥ 50 (42)
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The estimated model parameters from each method are enumerated in Table 1. While
the previous method fails to address the effects of the deterministic disturbance, resulting in
inaccurate models (Figure 2a), the proposed method effectively deals with the deterministic
disturbance, yielding accurate frequency estimates even under significant disturbance.

Table 1. Estimated process model and disturbance model for Case 1.

Previous Method

a1 6.1250 a2 6.2385 a3 3.9880
b0 1.4235 b1 1.9224 b2 −0.7699
d0 − d1 − d2 −
d3 − d4 − d5 −

Proposed Method

a1 2.1501 a2 1.3265 a3 0.1534
b0 0.9926 b1 −0.3280 b2 0.0356
d0 0.0902 d1 –0.0591 d2 –0.0039
d3 –0.0002 d4 0.0000 d5 0.0000
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The parameters of the disturbance model in Equation (3) and the initial values of the
state variable x are estimated by the proposed method as follows:

x(0) = [6.7543 2.9181 0.2720]T

d0 = 0.0902, d1 = −0.0591, d3 = −0.0039, d4 = −0.0002, d5 = 0.000, d6 = 0.000

As confirmed in Figure 2b, the proposed method can provide a fairly accurate distur-
bance model despite the structural difference between the actual deterministic disturbance
and the disturbance model using Laguerre polynomials. Moreover, the proposed method
can estimate the initial values of the state variable without any complicated iterative
searching-based optimization.
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3.2. Case 2: High-Order Process

Consider the fifth-order process with a deterministic disturbance:

G(s) = yp(s)
u(s) = 1

s5+5s4+10s3+10s2+5s+1 ,

yp(0) =
dyp(t)

dt

∣∣∣
t=0

=
d2yp(t)

dt2

∣∣∣∣
t=0

=
d3yp(t)

dt3

∣∣∣∣
t=0

=
d4yp(t)

dt4

∣∣∣∣
t=0

= 0.0
(43)

D(t) = 2(3t/80) exp(−3t/80) (44)

Figure 3 displays the process input and output data excited by the PI controller with
kc = 1.5 and τi = 10 with the setpoint (ys) as ys(t) = 0 for t < 30, ys(t) = 2 for 30 ≤ t < 60,
and ys(t) = 1 for t ≥ 60. The parameters of the process model estimated by the proposed
method and previous method, along with disturbance model parameters, are enumerated
in Table 2. The performance comparison in Figure 4a underscores the superiority of the
proposed method in providing accurate models, unlike the previous method. Additionally,
Figure 4b confirms the proposed method’s ability to estimate disturbance models and initial
state variables (x(0) = [−0.0777 − 0.0885 − 0.0877]T) with satisfactory precision.
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Table 2. Estimated process model and disturbance model for Case 2.

Previous Method

a1 −38.945 a2 −120.08 a3 −259.76
b0 −0.2592 b1 −36.252 b2 26.913
d0 − d1 − d2 −
d3 − d4 − d5 −

Proposed Method

a1 4.3151 a2 6.5867 a3 4.1972
b0 1.0084 b1 −0.7186 b2 0.2726
d0 0.0902 d1 –0.0591 d2 –0.0039
d3 –0.0002 d4 0.0000 d5 0.0000

3.3. Case 3: Non-Minimum-Phase Process

Consider the second-order non-minimum-phase process:

G(s) =
yp(s)
u(s)

=
(1 − 0.3s)
s2 + 2s + 1

exp(−0.2s), yp(0) = 0.3,
dyp(t)

dt

∣∣∣∣
t=0

= 0.5 (45)

D(t) = 2(3t/80) exp(−3t/80) (46)

The process is excited by the PI controller, of which the proportional gain kc = 1.5
and the integral time τi = 3.0, with the set point designed as ys(t) = 0 for t < 20, ys(t) = 2
for 20 ≤ t < 50, and ys(t) = 1 for t ≥ 50, as shown in Figure 5. The estimated model and
disturbance parameters are represented in Table 3. As anticipated, the proposed method
exhibits significantly better model performance compared to the previous method, as evi-
denced in Figure 6a. Moreover, Figure 6b underscores the proposed method’s proficiency in
estimating disturbance models and initial state variables (x(0) = [7.0505 2.9391 0.3060]T).
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Table 3. Estimated process model and disturbance model for Case 3.

Previous Method

a1 6.0117 a2 6.1022 a3 4.0156
b0 1.4276 b1 1.3971 b2 −1.3956
d0 − d1 − d2 −
d3 − d4 − d5 −

Proposed Method

a1 2.1493 a2 1.2983 a3 0.1545
b0 1.0005 b1 −0.6464 b2 0.0757
d0 0.0746 d1 –0.0633 d2 –0.0045
d3 –0.0002 d4 0.0000 d5 0.0000
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3.4. Case 4: Underdamped Process

Consider the underdamped process:

G(s) =
yp(s)
u(s)

=
exp(−0.5s)
s2 + 1.4s + 1

, yp(0) = 0.3,
dyp(t)

dt

∣∣∣∣
t=0

= 0.5 (47)

D(t) = 2(3t/80) exp(−3t/80) (48)

Figure 7 shows the process input and output data excited by the PI controller with
kc = 2.0 and τi = 3.0. The set point (ys) is designed as ys(t) = 0 for t < 5, ys(t) = 1
for 5 ≤ t < 15, and ys(t) = 0 for t ≥ 15. Table 4 lists the model parameters esti-
mated by both methods. Frequency responses in Figure 8a demonstrate the proposed
method’s superior model performance. Furthermore, Figure 8b reaffirms the accuracy
of the proposed method in estimating disturbance models and initial state variables
(x(0) = [5.0361 2.5354 0.3043]T).
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Table 4. Estimated process model and disturbance model for Case 4.

Previous Method

a1 7.0575 a2 7.1168 a3 5.9039
b0 1.4314 b1 3.5842 b2 −1.4273
d0 − d1 − d2 −
d3 − d4 − d5 −

Proposed Method

a1 1.5794 a2 1.2514 a3 0.1829
b0 1.0004 b1 −0.3160 b2 0.0366
d0 0.0357 d1 –0.0320 d2 –0.0023
d3 –0.0001 d4 0.0000 d5 0.0000
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4. Conclusions

This study presents a novel process identification method designed to effectively
overcome the prominent challenges of accurately modeling industrial processes in the
presence of deterministic disturbances. This challenge represents a significant limitation
of previous identification methods, which often fall short in practical applications where
disturbances do not follow predictable stochastic disturbance. Our method introduces a
unique conceptualization of deterministic disturbances as a linear combination of Laguerre
polynomials, coupled with integral transformation featuring frequency weighting for
precise model parameter estimation, significantly enhancing overall model accuracy as well
as robustness. A notable aspect of our approach is its reliance on the least squares method
for parameter estimation. By circumventing the complexities associated with iterative
nonlinear optimization, this method improves robustness and accuracy, particularly from a
numerical analysis perspective.

Through extensive simulation studies encompassing a wide variety of process types,
including lower-order, higher-order, non-minimum phase, and underdamped processes,
we have unequivocally demonstrated exceptional performance of our method in faithfully
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modeling processes, even in the face of significant deterministic disturbances. Our simula-
tions unequivocally illustrate that our method outperforms existing process identification
techniques by accurately estimating both process and disturbance models under challeng-
ing conditions, marking a substantial advancement over previous approaches that often
struggle with accuracy in the presence of deterministic disturbances.

Moreover, the capability of our approach to precisely identify initial state variables
alongside the disturbance model is particularly noteworthy, offering comprehensive in-
sight into process dynamics. Remarkably, the proposed method demonstrated the ability
to estimate the behavior of disturbances, achieving near-accurate results even when the
structure of the proposed disturbance model differs from the actual disturbance. This
characteristic is especially advantageous for industrial processes where the exact nature of
disturbances remains unknown, potentially enhancing the practical utility of our method
significantly. For example, many chemical processes frequently encounter deterministic
disturbances such as variations in feed composition and fluctuations in utility supplies.
Under these real operational conditions, the proposed method can provide a fairly accu-
rate process model. Then, it is possible to design a high-performance control system or
control performance-monitoring system on the basis of the process model the proposed
method provides, resulting in improving the product quality and yield as well as increas-
ing production rate. By enhancing the accuracy of process models under deterministic
disturbances, our method creates new possibilities for developing refined and dependable
control strategies that align with the evolving needs of modern industries. This work sets
a solid foundation for future research endeavors aimed at further refining its application
across diverse industrial scenarios and seamlessly integrating it with advanced control
systems. Furthermore, the proposed method can effectively identify unknown determin-
istic disturbances, suggesting potential applications beyond industry, including various
social phenomena.
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