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Abstract: A recent author’s fractal fluid-dynamic dispersion theory in porous media has focused
on the derivation of the associated nonergodic (or effective) macrodispersion coefficients by a 3-D
stochastic Lagrangian approach. As shown by the present study, the Fickian (i.e., the asymptotic
constant) component of a properly normalized version of these coefficients exhibits a clearly detectable
minimum in correspondence with the same fractal dimension (d ∼= 1.7) that seems to characterize
the diffusion-limited aggregation state of cells in advanced stages of cancerous lesion progression.
That circumstance suggests that such a critical fractal dimension, which is also reminiscent of the
colloidal state of solutions (and may therefore identify the microscale architecture of both living and
non-living two-phase systems in state transition conditions) may actually represent a sort of universal
nature imprint. Additionally, it suggests that the closed-form analytical solution that was provided
for the effective macrodispersion coefficients in fractal porous media may be a reliable candidate as a
physically-based descriptor of blood perfusion dynamics in healthy as well as cancerous tissues. In
order to evaluate the biological meaningfulness of this specific fluid-dynamic parameter, a preliminary
validation is performed by comparison with the results of imaging-based clinical surveys. Moreover,
a multifractal extension of the theory is proposed and discussed in view of a perspective interpretative
diagnostic utilization.

Keywords: biological tissue architecture; diffusion-limited fractal dimension; stochastic solute
transport models; cancerous tissue mapping

1. Introduction

As shown by recent studies (e.g., [1,2]), oncogenesis is associated with the pathologic
evolution of cellular (and, as a consequence, microvascular) clustering, driven by leader-
cell inter-cluster migration and progressive empty space filling. Indeed, as the cancerous
cell proliferation proceeds, the microvascular bed experiences a similar morphological
evolution, targeted to the feeding of the new cells by repeated branching. This process
proves to be responsible for the gradual increase in tissue fractal dimension (1.5 < d < 1.6
the healthy value) up to about 1.7. In a nutshell, one can say that fractality is a synonym
of self-similarity, i.e., of the systematic replication of a given deterministic or random
structure at all (or at a part of) the associated spatial or temporal scales. In the case of spatial
distributions, the fractal dimension may be defined as a global index of their geometrical
complexity and, ultimately, as a measure of the capability of the given pattern to fill
the space.

A recent author’s theoretical investigation ([3]) focused on fluid-dynamic dispersion
in fractal geologic formations by a 3-D first-order stochastic Lagrangian approach according
to [4,5]. In this study, effective (or nonergodic) macrodispersion coefficients were derived as
the half time-rate of change of the expected central inertia moments of a tracer plume that
originates from a point solute pulse. The fully analytical treatment, which was corroborated
by comparison with field survey observations, interpreted medium isotropic fractal log-
conductivity Y = ln K as a double continuous hierarchy of mutually independent stationary
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random fields. All the derivations were performed in dimensionless terms by subdividing
the associated unbounded frequency domain into a medium/high-frequency core and
a low-frequency tail and by adopting the inverse of the boundary frequency k0 as the
reference geometric scale. The ensemble-mean velocity magnitude U was used as the
kinematic scale.

As is well known, a stationary random distribution is identified by a single scale of
heterogeneity (e.g., [6]). The hierarchical log-conductivity field medium/high-frequency
core (which contributes to fluid macrodispersion with the medium/smaller scales of the
heterogeneity) yielded large-time constant, Fickian-like macrodispersion coefficients; the
low-frequency tail (which represents the larger scales of the heterogeneity) was responsible
for the time-increasing, “anomalous” counterparts.

When applied to fluid-dynamic dispersion in biological tissues, porous media flow
and transport theory (see [7] for a discussion about the soundness of such an approach to
the investigation of the related processes), which was already successfully applied by the
author to ventricle wall perfusion by a single-scale deterministic approach ([8]), must refer
to an upper-bounded sequence of heterogeneity scales even in the presence of fractal-like
architectures. As a matter of fact, the existence of an intrinsic upper limit of tissue (and
micro-vessels) self-similar geometry is implied by the necessarily finite largest scale of the
pre-existing cell clusters. Hence, the perfusion-related dispersion of solutes in biological
tissues may consistently be modelled and investigated by the above-described Fickian
component of the macrodispersion coefficients in fractal porous media, as arising from
the heterogeneity scales that are smaller than the typical cell cluster dimension. Note
that, in the hydrogeologic analogy, cells, extracellular matrix and blood vessel walls are
functionally represented by the sedimentary skeleton, while blood has to be thought of as
flowing through the more or less tortuous canaliculi formed by the connected pores.

The present investigation was inspired by the author’s finding that the pathologic,
diffusion-limited fractal dimension that characterizes most late-stage cancerous tissues was
exactly the same as the one that identified the minimum of both the longitudinal and the
transverse normalized macrodispersion coefficient in fractal, anti-persistently correlated ge-
ologic formations. Its first objective is to demonstrate the biological meaningfulness of such
fluid-dynamic parameters. The second is represented by a multi-fractal extension of the
macrodispersion theory that may encompass dispersion coefficients spatial heterogeneity,
and may therefore allow for an indirect estimation of tissue fractal dimension variability
(or, in other words, of tumor progression stage).

The rest of the manuscript is organized as follows: In the Section 2, the fundamental
steps for the derivation of the normalized macrodispersion coefficients are outlined ac-
cording to [3], along with the needed extension in terms of log-conductivity and related
velocity spectra in the case of multi-fractality. Note that such multi-fractality has to be
intended as a locally simply fractal log-conductivity distribution with a superposed slow
deterministic fractal dimension trend. In the Section 3, a preliminary validation of the
simply fractal approach is proposed by comparing perfusion-related dispersion coefficients
obtained from imaging-based clinical surveys, available in the literature and related to a
single-value estimation for the whole tissue, to the theoretical predictions. Additionally, the
multi-fractal extension of the theory is operatively described and discussed by resorting to
the detection cell-scale numerical Lagrangian simulation of the heterogeneously diffusive
transport (and the associated dispersion coefficient evaluation procedure). Finally, the
Section 4 summarizes the main results, framing them in a more general natural context, and
proposes possible further steps of the research that may lead to routine clinical applications.

2. Materials and Methods

In the vast majority of cases, the detailed deterministic analytical description of flow
and transport processes taking place within saturated natural porous structures is pre-
vented by their typically marked heterogeneity. In the last few decades of the twentieth
century, the stochastic approach to the problem, in both the Eulerian and the Lagrangian
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formulation, became very popular as a useful and reasonably affordable mathematical tool
for its solution, at least in terms of first statistical moments of the involved variables. An
exhaustive review of the great quantity of valuable studies that it has been producing since
then would practically be impossible. Later on, the specific investigations to which the key
results that constitute the starting points of the present mathematical treatment are due
will be referenced where appropriate.

The most common stochastic models of subsurface flow and transport assume that
the space-dependent medium log-conductivity (i.e., the natural logarithm of the hydraulic
conductivity of the ensemble porous matrix/permeating fluid) is a statistically stationary
and normally distributed random variable. As mentioned in the Introduction, the stationary
assumption implies the existence of a single scale of the heterogeneity. However, in several
cases, the experimental evidence suggested the possibility that the porous matrix exhibited
a self-similar organization, i.e., that it reproduced itself over all the involved physical
scales (no frequency cutoff) or, more likely, over a part of them (lower and/or upper
frequency cutoff).

The outcome of recent clinical investigations seems to authorize the assumption that
the micro-structure of many biological tissues (typical multi-phase systems) also exhibits
a self-similar organization, which can pathologically evolve from basic, relatively empty
clusters to dense aggregates of cells. The scope of the present section is to synthetically
illustrate the mathematical formulation, borrowed from hydrogeology and geostatistics,
that may help model tissue perfusion-related dispersion in the presence of micro-scale
fractal structures represented by a uniform or a space-dependent aggregation degree.

A statistically stationary space-dependent random function (in the case under inves-
tigation, the hydraulic log-conductivity Y(x) = ln K(x)) is by definition represented by a
constant ensemble mean ⟨Y⟩ = ⟨Y(x)⟩, a covariance function that just depends (typically
by a negative exponential or a Gaussian law) on the distance between the points whose
degree of correlation is being evaluated (e.g., [6]):

RY = RY(r) =
〈
Y′(x)Y′(x + r)

〉
(1)

and by a constant variance σ2
Y = RY(0). In the above formulas and in what follows, angle

brackets ⟨·⟩ identify ensemble averaging and the prime indicates the deviation about the
mean: Y′(x) = Y(x)− ⟨Y⟩. In the isotropic case, the correlation functions depend on the
magnitude of the vector distance r = |r| only. The semi-variogram represents the (half)
variance of the spatial increments of the given function (in this case Y) (e.g., [6]):

γY(r) =
1
2

〈
[Y(x + r)− Y(x)]2

〉
r=|r|

= σ2
Y − RY(r) (2)

and tends to σ2
Y when r approaches infinity, at a rate that depends on the magnitude of the

correlation length.
Fully evolving-scale or fractal random structures (e.g., [9]) exhibit self-similarity

over all scales of heterogeneity, which prevents the asymptotic stabilization of the semi-
variogram and makes it behave like a power law. For values of the related scaling exponent
b that range between 0 and 1 (extremes excluded), i.e., for a less than linearly increasing
semi-variogram, the given random evolving-scale distribution is said to be characterized by
“anti-persistent” correlations; for 1 ≤ b < 2, i.e., for a linearly or more than linearly increasing
semi-variogram, it is said to be characterized by “persistent” correlations (e.g., [10]). The
normalized large-time Fickian longitudinal (DmL) and transverse (DmT) macrodispersion
coefficient derived by [3] for ensemble mean velocity U = (U, 0, 0), and here reported as a
function of the fractal dimension d = 2 − b/2 for 0 < b < 1, reads:

DmL =
DmLk0

U
=

B
(

7−2d
2 , 2d−3

2

)
(6 − 2d)4(5−2d)/2π5−2d

(
1
2
− 20

3Pe

)
(3)
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DmT =
DmTk0

U
=

B
(

7−2d
2 , 2d−3

2

)
3(6 − 2d)4(5−2d)/2π5−2dPe

(4)

In Equations (3) and (4), italics indicate the dimensional coefficients, Pe = U/k0D0 the
typically very large Péclet number (a fluid-mechanical measure of the relative importance
of advective and purely diffusive transport mechanisms), D0 the pure diffusion coefficient,
and B the Beta function (e.g., [11]):

B(α, β) =
∫ 1

0
ξα−1(1 − ξ)β−1dξ (5)

The hierarchical log-conductivity semi-variogram was obtained from the following
linear combination:

∼
γY(r) = arb =

∫ ∞

0

∂

∂λ
[γY(r, λ)]dλ =

∫ ∞

0

ϕ

λ1+b [1 − exp(−rλ)]dλ 0 < b < 1 (6)

In Equation (6), γY(r, λ) = σ2
Y(λ)−RY(r, λ) indicates the stationary, primary-hierarchy

single-component semi-variogram; σ2
Y(λ) and RY(r, λ) respectively indicate the stationary,

primary-hierarchy single-component log-conductivity variance and covariance; ϕ is a di-
mensional constant, and λ = 1/IYλ is the inverse of the single-component integral scale
(or correlation length). Additionally, here and in what follows, the tilde accent indicates
quantities that are obtained by the linear combination of the single-scale counterparts. Note
that, for 0 < b < 1, the scaling exponent and the scaling coefficient are related by:

a = −ϕΓ(−b) = −kb
0Γ(−b) (7)

with Γ indicating the Gamma function (e.g., [11]):

Γ(α) =
∫ ∞

0
exp(−ξ)(1 − ξ)α−1dξ (8)

The Lagrangian derivation of the nonergodic macrodispersion coefficients in
Equations (3) and (4) starts by recognizing that for stationary log-conductivity distributions
and solute point pulses (see [5] for the details):

Dmii(t) =
1
2

d⟨Iii⟩
dt

=
1
2

dXii
dt

− 1
2

dΘii
dt

= DmiiE(t)−
1
2

dΘii
dt

i = 1, 2, 3 (9)

where ⟨Iii⟩ indicates the ith expected central inertia moment, and Xii and Θii the ith one-
and two-particle trajectory variance/covariance, respectively:

Xii(t) =
〈

X′2
i (t)

〉
=

〈
(Xi(t)− ⟨Xi(t)⟩)2

〉
=

〈
(Xi(t)− Uit)

2
〉

(10)

Θii
(
t
)
=

〈
X′

i
(
t
)
Z′

i
(
t
)〉

=
〈(

Xi
(
t
)
−

〈
Xi

(
t
)〉)(

Zi
(
t
)
−

〈
Zi
(
t
)〉)〉

=
〈(

Xi
(
t
)
− Uit

)(
Zi
(
t
)
− Uit

)〉 (11)

X = X(t) and Z = Z(t) are two different trajectories, and DmiiE is the ergodic component
of Dmii (which coincides with the half time-rate of change of Xii). It is worth noting that, in
the present context, the rather general concept of ergodicity (e.g., [12]) has to do with the
possibility of considering particle dispersion evaluated from a single trajectory over the
ensemble of possible flow field realizations as coinciding with particle dispersion evaluated
from an ensemble of trajectories in a single flow field realization (see [13] for a discussion
about the implications of the ergodic hypothesis in subsurface solute transport analysed in
a Lagrangian framework).
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The generic particle trajectory is represented by the following integral-differential equation:

X(t) =
∫ t

0
u[X(s)]ds = Ut + X′(t) + XB(t) (12)

where u is the steady actual velocity

u(x) = U + u′(x) (13)

XB is the pure diffusion-related Brownian component, and

X’(t) =
∫ t

0
u’[X(s)]ds (14)

is the advective deviation about the mean. Thus,

dXii
dt

=

〈
2X′

i
dX′

i
dt

〉
+ 2D0ii = 2

∫ t

0

〈
u′

i[X(s)]u
′
i[X(t)]

〉
ds + 2D0ii = 2

∫ t

0
Ruii[X(t)− X(s)]ds + 2D0ii (15)

and

dΘii
dt

=

〈
Z′

i
dX′

i
dt

〉
+

〈
X′

i
dZ′

i
dt

〉
=

∫ t

0

〈
u′

i[Z(s)]u
′
i[X(t)]

〉
ds +

∫ t

0

〈
u′

i[X(s)]u
′
i[Z(t)]

〉
ds = 2

∫ t

0
Ruii[X(t)− Z(s)]ds (16)

where Ruii indicates the ith stationary velocity covariance function, and the Brownian
components of two different trajectories are uncorrelated by definition. The first-order
(linearized) combination of Darcy’s law (e.g., [14]):

u(x) = −K(x)
η

∇h(x) (17)

and continuity:
∇·u(x) = 0 (18)

that is:
∇2h(x) +∇Y(x)·∇h(x) ∼= ∇2h′(x)− J·∇Y′(x) = 0 (19)

where K = exp(Y) indicates the hydraulic conductivity, h the hydraulic head,
J = −∇⟨h(x)⟩ the mean head gradient, η medium porosity, and only the terms
that are proportional to the first power of the deviations are retained, allows each
Ruii(r, λ) =

〈
u′

i(x; λ)u′
i(x + r; λ)

〉
to relate to each RY(r, λ) appearing in Equation (6). Note

that, by virtue of the superposition principle, the linear combination of stationary co-
variances and semi-variograms as expressed by Equation (6) is still representative of a
stationary statistical distribution. As a consequence, and in order to solve Equations (15)
and (16) in the presence of hierarchical media, the needed log-conductivity covariance was
obtained from the integration of the single-scale exponential component over the whole
hierarchy of scales according to Equation (6):

∼
RY(r) =

∫ ∞

0

∂

∂λ
[RY(r, λ)]dλ =

∫ ∞

0

ϕ

λ1+b exp(−rλ)dλ 0 < b < 1 (20)

The spectral representation of the hierarchical velocity covariance came from a straight-
forward generalization of the single-scale counterpart according to [3]:

∼
Ruii(r) =

〈∼
u
′
i(x)

∼
u
′
i(x + r)

〉
=

∫
k

∼
Suii(k)exp(j2πk·r)dk (21)
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where
∼
Suii(k) indicates the ith hierarchical velocity spectrum. The relationship between

the velocity spectrum
∼
Suii(k) and the log-conductivity spectrum

∼
SY(k) was derived from

the hierarchical version of the stationary, single-scale spectral solution of Equation (19) for
U = (U, 0, 0) as reported by [14,15]:

∼
Suii(k) = U2

(
δi1 −

k1ki
|k|

)2∼
SY(k) (22)

where δij indicates Kronecker’s Delta and k = |k| the wave-number vector magnitude.
The integral-differential form of the generic hierarchical nonergodic macrodispersion

coefficient then reads:

Dmii(t) =
1
2

d
∼
Xii
dt

− 1
2

d
∼
Θii
dt

=
∫ t

0

{∼
Ruii

[∼
X(t)−

∼
X(s)

]
−

∼
Ruii

[∼
X(t)−

∼
Z(s)

]}
ds + D0ii (23)

Starting from Equation (23), reducing the argument of the velocity covariances to:

∼
X(t)−

∼
X(s) ∼= U(t − s) + XB(t)− XB(s) (24)

and ∼
X(t)−

∼
Z(s) ∼= U(t − s) + XB(t)− ZB(s) (25)

in order to consistently linearize the integral-differential equation, and assuming the
Brownian trajectories as characterized by independent normal distributions (with D0ii
invariably equal to D0), led to the following general result, here expressed in a spherical
reference system:

Dmii(t) =
∞∫

k0

π∫
0

2π∫
0

∼
Suii(k, θ, φ)4π2k2[1 + exp

(
−8π2D0k2t

)
− 2cos (2πkUsin θcos φt) exp

(
−4π2D0k2t

)]
(2πkUsin θcos φ)2 + 16π4D2

0k4
ksin θdθdφdk (26)

In Equation (26), θ is the polar angle, φ the azimuthal angle, and the typically very
small additive pure-diffusion contribution expressed by D0 was neglected. The analytical
details of the derivation of the asymptotic Equations (3) and (4) starting from Equation (26)
can be found in the open-access publication [3].

In the case of non-stationary distributions associated with the space-dependent scaling
exponent and fractal dimension, and assuming that this dependence consists of a slow (at
the detection-cell scale) deterministic trend, Equation (19) can be solved by local spectral
methods for each hierarchical component. All the involved correlation functions have to be
intended as conditional on the specific detection cell coordinate Xn = nl (where n indicates
a vector of integers and l the detection grid spacing). The locally stationary version of
Equation (22) then reads:

∼
Suii(k|Xn ) = U2

(
δi1 −

k1ki
|k|

)2∼
SY(k|Xn) (27)

with ∼
Suii(k|Xn ) =

∫
r

∼
Ruii(r|Xn )exp(−j2πk·r)dr (28)

∼
SY(k|Xn) =

∫
r

∼
RY(r|Xn)exp(−j2πk·r)dr (29)

∼
Ruii(r|Xn ) =

〈∼
u
′
i(x)

∼
u
′
i(x + r)

∣∣∣Xn

〉
(30)

and
∼
RY(r|Xn) =

〈∼
Y
′
(x)

∼
Y
′
(x + r)

∣∣∣∣Xn

〉
r=|r|

(31)
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3. Results

Figures 1 and 2 respectively show DmL (3) and DmT (4).
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Figure 2. Normalized transverse macrodispersion coefficient in evolving-scale, anti-persistently
correlated (0 < b < 1) log-conductivity distributions as a function of the corresponding (single) fractal
dimension (Equation (4), from [3]).

As one can clearly see from these figures, both DmL and DmT exhibit a minimum ex-
actly at d ∼= 1.7, meaning that, in the so-called anti-persistent range (0 < b < 1, 1.5 < d < 2),
macrodispersion intensity in fractal porous formations does not vary monotonically as
a function of their self-similar geometrical complexity, and (more importantly) that the
clinically detected diffusion-limited fractal dimension in late-stage cancerous lesions (which
is also reminiscent of the colloidal state of solutions (e.g., [1])) likely constitutes a universal
nature imprint. In Figures 1 and 2, and based on the typical values of mean velocity U,
pure diffusion coefficient D0, and representative dimension of the related fractal domain
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L = 1/k0, the Péclet number was assumed equal to 104. Note that, with the functional
dependence on d and Pe in Equations (3) and (4) being completely decoupled, a smaller or
a larger Péclet number would in no way compromise the existence of the relative minimum
at d ∼= 1.7. Additionally, as can be inferred from the following simple example, the domi-
nant longitudinal macrodispersion coefficient is practically independent of a ubiquitous,
reasonably large Péclet. In an aqueous solution, typical pure-diffusion coefficients are in the
range of 10−10 to 10−9 m2/s. In [3], the well-known 1985–1988 Cape Cod, Massachusetts,
solute transport experiment was revisited in terms of a fractal sand/gravel log-conductivity
distribution, with a physical upper cutoff represented by the depth of the sedimentary
layer where plume transport took place (30 m). The structural anisotropy ratio (vertical
to horizontal single-scale correlation length) was equal to 0.19; the average longitudinal
velocity U was equal to about 2.8 × 10−6 m/s. The corresponding Peclét number would
be, in this case, Pe = 2.8·10−630/

(
0.19·10−10) ∼= 4.4·106, with (0.5 − 20/3Pe) = 0.499998

in Equation (3). It has to be emphasized that even a Pe precautionarily assumed to be equal
to the order of 104 would lead to (0.5 − 20/3Pe) = 0.499333.

From a phenomenological point of view, one may infer that solute spreading in geo-
logic formations undergoes a gradual transition in terms of driving mechanisms, spanning
from highly channelized flow and transport in fractured carbonate rocks (smaller fractal
dimensions) to Darcian flow and transport in evolving-scale cohesionless deposits (larger
fractal dimensions). The minimum would manifest itself in correspondence with the
aggregation-state transition when, while the magnitude of the channel-like dispersion is
decreased due to the reduction in fracture width, the number, the tortuosity, and the degree
of connectivity of the micro-channels is still not sufficient to trigger a truly two-phase
medium dispersion.

Similarly, as already argued by [1], the advanced stages of cancerous tissue evolution
seem to intriguingly represent a sort of intermediate condition between two ideal extremes:
the suspension (with the cells that would practically be dispersed in the extracellular
matrix and fed by a large mesh-size vascular network characterized by reduced branching
and tortuosity) and the gel (with the cells that would be very densely aggregated and
fed by a small mesh-size vascular network characterized by pronounced branching and
tortuosity). Following the proposed hydrogeologic analogy, one might conclude that, in
the first ideal limiting case, oxygen and nutrient dispersion would almost exclusively be
an intravascular process; conversely, in the second ideal limiting case, it would almost
exclusively be an extravascular process, with frequent two-way capillary/cell exchanges
and very poor tissue oxygenation. As a consequence, the diffusion-limited fractal dimension
characterizing the advanced stages of cancerous lesion progression may be representative
of a tissue architecture characterized by the maximum cell aggregation that still allows for
the (minimum) vital metabolic supply.

3.1. Comparison with the Outcome of Clinical Surveys

Figure 3 shows (with the mean velocity U and fractality scale 1/k0 being the same)
the evolution of the Fickian DmL (Equation (3)) as a function of the average fractal dimen-
sions reported by [2] and referring to four different types of cancerous tissue (pancreas,
breast, colon and prostate) at four different progression stages, including the healthy
(pre-cancerous) condition.
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progression stages as a function of the corresponding average fractal dimensions reported by [2] (Pa:
pancreas; Br: breast; Co: colon; Pr: prostate).

As the figure highlights, a drastic reduction in the longitudinal dispersion coefficient
would take place between the pre-cancerous and the first cancerous stage, with a subsequent
residual decrease toward almost constant values. Tables 1 and 2 numerically quantify the
global percentage reduction ∆DmL = (DmL4 − DmL1)/DmL1 of the longitudinal and the
transverse dispersion coefficient as calculated from Equations (3) and (4).

Table 1. Percentage reduction in the normalized longitudinal macrodispersion coefficient for the
different types of cancer shown in Figure 3.

Type of Cancer DmL1 ∆DmL%

Pancreas 0.0346 −17.05
Breast 0.0583 −50.08
Colon 0.0499 −42.69

Prostate 0.0408 −29.9
Average 0.0459 −34.93

Table 2. Percentage reduction in the normalized transverse macrodispersion coefficient for the
different types of cancer whose longitudinal counterparts are shown in Figure 3.

Type of Cancer DmL1 ∆DmL%

Pancreas 0.0023074 −17.06
Breast 0.0038929 −50.05
Colon 0.0033278 −42.57

Prostate 0.0027255 −29.83
Average 0.0030634 −34.99

The values listed in the third column of the two tables are compared here, where
available, with the outcome of imaging-based clinical surveys. Results from contrast ultra-
sound dispersion imaging (CUDI) for the assessment of the perfusion-related dispersion
parameter K = U2/D in prostate cancer (the symbols are here reported in their original
version) were proposed by [16]. The detected dispersion values D, which were obtained
by adopting a locally one-dimensional transport model, were in line with the disper-
sion parameter K increasing in the presence of cancer. Specifically, the authors reported
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K = 0.37 ± 0.08 s−1 for benign and K = 1.01 ± 0.77 s−1 for malignant tissue, allowing (in
the case of almost constant advective velocity U) for an estimation of an average 63.3%
reduction in D due to the pathologic condition. Tables 1 and 2 in the present study, in
which the mean velocity is evaluated at the tissue scale, respectively yield, for prostate,
the more conservative −29.9% and −29.83%, respectively. The overall decrease in the
perfusion-related dispersion coefficient estimated by diffusion weighted imaging (DWI)
from a low to high Ki-67 marker (a routinely employed global indicator of cancerous
lesion progression) can also be assessed from Table 2 in [17]. The reported lung cancer
values were D∗ = 0.0231 ± 0.0127 mm2/s at low Ki-67 and D∗ = 0.0167 ± 0.00807 mm2/s
at high Ki-67, leading to an average percentage reduction ∆D∗% = −27.7. No specific
comparison could be performed in this case, since lung cancer was not covered by the
pioneer fractal dimension investigation [2]. Nevertheless, a 27.7% D∗ reduction seems to
be reasonably in line with the values listed in Tables 1 and 2 of the present study, which
provide average values of around −35%. A similar estimation can be made for pancreatic
cancer from Table 3 in [18]. The reported DWI perfusion-related dispersion coefficients in
this case were D∗ = 0.001356 ± 0.000573 mm2/s in normal pancreatic parenchyma and
D∗ = 0.001128 ± 0.000566 mm2/s in pancreatic tumor, with an average ∆D∗% = −16.8.
Note, in this third case, the very good agreement between the reported D∗ average per-
centage reduction and the percentage reduction given in Table 1 (−17.05%) and Table 2
(−17.06%) of the present study for longitudinal and transverse macrodispersion coefficient
in the presence of pancreatic cancer. The reason for the definitely better agreement between
clinical observations and theoretical predictions in the case of DWI measurements (pancre-
atic cancer results presented by [18]) compared to the CUDI counterpart (prostate cancer
results presented by [16]) may precisely be due to the different methodology. As a matter
of fact, and as mentioned above, measurements from CUDI (which is an intravascular
contrast-agent dynamic investigation) are interpreted based on a 1-D, conduit-like transport
model. DWI dispersion measurements are obtained after a filtering operation that sepa-
rates water apparent diffusion coefficient ADC into a perfusion-related pseudo-diffusion
coefficient D∗ and a true-diffusion coefficient D. The mathematical operative relationship
(see [18]), here reported in the original notation, is:

S(b) = S0 exp(−bADC) = S0[(1 − f ) exp(−bD) + f exp(−bD∗)] (32)

where S is the magnetic resonance signal at the given radio-frequency b, S0 the signal in
the absence of radio-frequency saturation, and f the pseudo-diffusion fraction. In other
words, DWI methodology treats the tissue like an equivalent continuous medium made of
micro-vessels (fraction f, which contributes with D∗) and cells/extracellular matrix (fraction
1 − f, which contributes with D). This is clearly more similar to what the geostatistical
approach does, with medium porosity η that plays the role of f. The only difference is
that the aquifer solid fraction 1 − η is totally impervious and is not subject to any kind of
diffusion process.

Overall, the uncalibrated porous media fluid-dynamic model seems to be able to prop-
erly grasp the order of magnitude of the percentage reduction in the tissue perfusion-related
dispersion coefficient due to cancerous conditions, and to reproduce the unambiguously
detected negative trend that characterizes its relationship with disease progression. This
negative trend is confirmed by almost all the documented experimental investigations,
where it is concordantly explained by an increase in microvascular tortuosity, and the
consequent limitation of the dispersion kinetics represented by the dispersion coefficient.
A few exceptions are reported in the literature for specific types of tumors, like those in the
brain (e.g., [19]).

3.2. Perspective Utilization—Multifractal Extension of the Macrodispersion Theory

As explained by [16], the local (voxel-scale) evaluation of the perfusion-related disper-
sion coefficient may allow for the detailed mapping of tissue architecture. A multi-fractal
extension of the above-discussed fluid-dynamic dispersion theory may therefore help
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decode the resulting maps by mathematically relating the local values of the macrodisper-
sion coefficients to the local (voxel-scale) tissue/micro-vessel network fractal dimension.
The key transformation consists in switching from a continuous hierarchy of stationary
log-conductivity fields to a non-stationary one. Note that, in geostatistics, the term “non-
stationary” refers to random variable correlation functions that depend on both the distance
between the correlated points and the exact position of one of them. The suitable general-
ization of Equation (6) then reads:

∼
γY(r, X) = a(X)rb(X) =

∫ ∞

0

∂

∂λ
[γY(r, λ, X)]dλ =

∫ ∞

0

ϕ(X)
λ1+b(X)

[1 − exp(−rλ)]dλ (33)

where b(X) indicates the space-dependent scaling exponent, and the single-scale variance
and covariance are now respectively given by:

dσ2
Y(X, λ) =

ϕ(X)
λ1+b(X)

dλ; dRY(r, X, λ) =
ϕ(X)

λ1+b(X)
exp(−rλ)dλ (34)

It is considered that:

ϕ(X) = − a(X)
Γ[−b(X)]

= kb(X)
0 (35)

with k0 here indicating the wave-length cutoff related to the cell cluster representative
dimension 1/k0.

In view of the detection grid discretization, the absolute coordinate X is assumed
to be given by the sum of a local (voxel-scale) coordinate x and a global coordinate nl
identifying the center of each voxel: X = x + nl. The single-scale random log-conductivity
Y(X, λ) = ⟨Y⟩+ Y′(X, λ) is considered to be stationary in x and to be affected by a slow
deterministic trend in n. In other words, the single log-conductivity hierarchical component
is considered to be approximately stationary at the detection-cell scale, with:

dRY(r, λ|Xn) =
ϕ(Xn)

λ1+b(Xn)
exp(−rλ)dλ (36)

In these conditions, and by virtue of the superposition principle, each detection cell
turns out to be characterized by a practically constant scaling exponent and associated
fractal dimension. The plausible condition 1/k0 ≪ l (note that 1/k0 is a characteristic
cellular scale, whereas l is a by-eye visible length) then enables the locally (intra-detection
cell) asymptotic transport approach. The resulting nonergodic macrodispersion coefficients
are obtained as the local (voxel-scale) declination of Equation (3) and Equation (4) based on
the locally stationary generalization expressed by Equations (27)–(31):

DmL(Xn) =
DmL(Xn)k0

U
=

B
(

7−2d(Xn)
2 , 2d(Xn)−3

2

)
(6 − 2d(Xn))4(5−2d(Xn))/2π5−2d(Xn)

(
1
2
− 20

3Pe

)
(37)

DmT(Xn) =
DmT(Xn)k0

U
=

B
(

7−2d(Xn)
2 , 2d(Xn)−3

2

)
3(6 − 2d(Xn))4(5−2d(Xn))/2π5−2d(Xn)Pe

(38)

Equations (37) and (38) practically interpret the macroscopic dispersion coefficients in
multifractal log-conductivity distributions as sort of constitutive variables that synthesize,
at grid scale, the effects of the sub-grid fractal heterogeneity.

Once the experimental dispersion coefficient map is obtained, it has to be normalized
by taking its ratio to the healthy counterpart DH (note that this operation is needed in order
to make the map independent of the scale k0/U, which would likely be of rather difficult
experimental determination):

(D1, D2, . . . , DM)

DH
= (D1, D2, . . . , DM) (39)
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where M indicates the total number of detection cells. The experimental assessment of
the longitudinal dispersion coefficients may be pursued by evaluating, at a time large
enough to allow for the complete tissue saturation, the variation in the longitudinal central
inertia moment ILn (during a properly small time-discretization interval ∆t) of the labelled
contrast agent particles that happen to lie within each detection cell:

ILn(t + ∆t) = ILn(t) + 2Dn∆t =
Nn

∑
p=1

[
X1p(t + ∆t)− X1(t + ∆t)

]2

N
(40)

In Equation (40), X1p indicates the longitudinal coordinate of the generic particle, Nn

is their total number, and the barycentre X1 is given by:

X1(t + ∆t) =
N

∑
p=1

X1p(t + ∆t)
N

(41)

Since DmL is much larger than DmT, it can therefore be considered exhaustively repre-
sentative of solute spreading dynamics. Then, from Equation (39), with:

(D1, D2, . . . , DM) =
DmL[d(Xn)]

DmL(dH)
(42)

one should be able to reconstruct the spatial distribution of d by simple algebraic algorithms.
It is worth noting that the branch of the curve DmL = DmL(d) in Figure 1 to be used for
the estimation procedure is the descending one, provided that cancer lesion progression
is a fractal dimension-increasing process, with an upper threshold associated with the
diffusion-limited condition. As an illustrative example referring to pancreatic cancer stages
as reported by [2], a hypothetical Gaussian-shaped distribution of fractal dimensions was
built by:

d(X) = d1 + (d4 − d1)
3

∏
i=1

1√
2π∆2

i

exp

[
− (Xi − Xci)

2

2∆2
i

]
(43)

where Xci indicates the ith component of the neoplasm center and ∆2
i the associated inertia

moment. In the reported case, d1 = 1.5984 (pre-cancerous average fractal dimension)
and d4 = 1.7047 (fourth-stage average fractal dimension). The selected anomaly center
coordinates were Xc1 = Xc2 = Xc3 = 20l. Figure 4a,b and Figure 5 respectively show the
maps of the (X1, X2) slice of this distribution, the surface-plot of the associated longitudinal
macrodispersion coefficients, and the corresponding frequency histogram of DmL(Xn) as a
function of the number of cells characterized by the different classes of its values within
the selected 40l × 40l × 40l detection grid, for ∆1 = 4l, ∆2 = ∆3 = 2l. Figure 6a,b and
Figure 7 respectively show the maps of the (X1, X2) slice of this distribution, the surface-
plot of the associated longitudinal macrodispersion coefficients, and the corresponding
frequency histogram of DmL(Xn) as a function of the number of cells characterized by
the different classes of its values within the selected 40l × 40l × 40l detection grid, for
∆1 = 8l, ∆2 = ∆3 = 4l. Finally, Figure 8a,b and Figure 9 respectively show the maps
of the (X1, X2) slice of this distribution, the surface-plot of the associated longitudinal
macrodispersion coefficients, and the corresponding frequency histogram of DmL(Xn) as a
function of the number of cells characterized by the different classes of its values within
the selected 40l × 40l × 40l detection grid, for ∆1 = 16l, ∆2 = ∆3 = 8l. Note that the
choice of the pancreas progression sequence was suggested by the above-discussed almost
perfect agreement between the detected and predicted average percentage reduction in the
dispersion coefficients.
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Figure 8. (a) Shading-interpolated map of the hypothetical Gaussian-shaped anomalous distribution
of fractal dimensions in a partially cancerous tissue, built by combining the data referring to the
4 different progression stages reported by [2] for pancreas; the detection grid spacing l is used as the
spatial scale; ∆1 = 16l, ∆2 = ∆3 = 8l. (b) Surface-plot of the distribution of normalized macrodis-
persion coefficients corresponding to the distribution of fractal dimensions shown in Figure 8a; the
detection grid spacing l is used as the spatial scale.
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Figure 9. Frequency histogram of function DmL(Xn) as a function of the number of cells (Nc)
characterized by the different classes of its values within the selected 40l × 40l × 40l detection grid.
∆1 = 16l, ∆2 = ∆3 = 8l.

As one can see from comparison between the fractal dimension maps and the macrodis-
persion coefficient surface-plots, this sort of fluid-dynamic “transfer function” has the
advantage of emphasizing the anomaly fringe gradient (the surface-plot sinking is clearly
more extended than the map’s lit area, particularly for the smaller ∆i) while returning a
flatter central core. Therefore, it proves to be potentially more efficient in assessing anomaly
effective contours, especially at early progression stages. The DmL(Xn) histograms display
initially almost one side Dirac-like distributions centered around the maximum (healthy)
DmL value. As the dimensions of the anomaly increase, a marked bimodality tends to
manifest itself, with the gradual increase of a second peak at the lower extreme of the DmL
range and a simultaneous though slower gain in the intermediate classes. Note that the
simple calculation of the percentage of detection cells sampling the different DmL values
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may straightforwardly be related to the percentage of the monitored tissue characterized
by different values of the fractal dimension (and, therefore, by different cancerous lesion
progression stages).

Finally, as an example of a detection cell-scale fractal dimension estimate based on
the suggested procedure, Figure 10a,b respectively show (for ∆1 = 4l, ∆2 = ∆3 = 2l
and ∆1 = 16l, ∆2 = ∆3 = 8l) the frequency histogram of particles’ longitudinal po-
sition obtained from a 3-D particle tracking that started from a randomly uniform dis-
tribution (simulating a local equilibrium condition) in the detection cell centered on
X1 = X2 = X3 = 17.5l after the time interval ∆t = 0.1l/U. It was assumed that l = 10/k0
and, therefore, ∆t = 1/k0U. For the sake of comparison, Figure 11 shows the frequency
histogram of the initial positions.
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Figure 10. (a) Frequency histogram of particles’ longitudinal position obtained from 3-D parti-
cle tracking that started from a randomly uniform distribution in the detection cell centered on
X1 = X2 = X3 = 17.5l; ∆t = 0.1l/U, ∆1 = 4l, ∆2 = ∆3 = 2l. (b) Frequency histogram of particles’
longitudinal position obtained from 3-D particle tracking that started from a randomly uniform distri-
bution in the detection cell centered on X1 = X2 = X3 = 17.5l; ∆t = 0.1l/U, ∆1 = 16l, ∆2 = ∆3 = 8l.
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The number of particles used to reproduce the movement of the tracer spot was
N = 500,000. This high number was justified by the need to stabilize the results. An
alternative approach would have been considering a lower number of particles that started
at the given cell, and then computing the longitudinal macrodispersion coefficient as the
ensemble average over multiple realizations of the experiment. The numerical algorithm
that simulated the movement of particles due to a unit velocity U, a unit grid spacing l, and
the space-varying DmL(X) = DmL(X)/(lk0), DmT(X) = DmT(X)/(lk0) was:

X1p(t + ∆t) = X1p(t) + U∆t +
√

2DmL
[
X1p(t), X2p(t), X3p(t)

]
∆tN (0, 1) (44)

X2p(t + ∆t) = X2p(t) +
√

2DmT
[
X1p(t), X2p(t), X3p(t)

]
∆tN (0, 1) (45)

X3p(t + ∆t) = X3p(t) +
√

2DmT
[
X1p(t), X2p(t), X3p(t)

]
∆tN (0, 1) (46)

where N (0, 1) indicates the generic element of a standard normal distribution. The above
Brownian non-Gaussian random walk scheme should be viewed as an extension of the truly
Gaussian case, with trajectory-fluctuating dispersion coefficients and locally symmetric
steps in space. See [20,21] for an exhaustive discussion about Brownian non-Gaussian
diffusion in heterogeneous media. Based on Equations (40) and (41), the following was
obtained:

DmLn

DmL(dH)
=

0.0032
0.0034

= 0.94 (47)

for ∆1 = 4l, ∆2 = ∆3 = 2l (Figures 4a,b and 5) and

DmLn

DmL(dH)
=

0.0029
0.0034

= 0.853 (48)

for ∆1 = 16l, ∆2 = ∆3 = 8l (Figures 8a,b and 9). From Equation (3), the reduction in the
healthy longitudinal macrodispersion coefficient (fractal dimension d = 1.5984) of 6% and
14.7%, respectively, resulted in an estimated altered fractal dimension d = 1.62 in the first
case and d = 1.69 in the second, with the detection cell being the same.

4. Discussion

The present study aimed at suggesting the existence of a universal diffusion/dispersion-
limited aggregation-state of two-phase systems that may authorize the adoption of the
mathematical expression of the normalized nonergodic macrodispersion coefficients (which
were previously derived by the author for upper-bounded fractal log-conductivity dis-
tributions in saturated porous media) as physically-based descriptors of blood perfusion
dynamics in cancerous tissues.

The author’s recent stochastic investigation indeed demonstrated that tracer dis-
persion in evolving-scale, anti-persistently correlated log-conductivity distributions is
non-monotonically related to the corresponding fractal dimension d. Instead, it showed
that the Fickian (and, therefore, asymptotically constant) component of both the effective
longitudinal and the transverse macrodispersion coefficient exhibit a clearly detectable
minimum at d ∼= 1.7. Based on recent clinical surveys, the same critical fractal dimen-
sion (besides being notoriously representative of the colloidal state of solutions) seems to
characterize the late stages of cellular arrangement in cancerous tissues.

One may therefore conclude that both geological formations and evolving biologi-
cal tissues undergo a gradual transition from one perfusion-related dispersion driving
mechanism to the other. As a matter of fact, geological formations range from fractured
carbonate rocks, where dispersion essentially takes place within large subsurface channels
that are spaced well apart, to cohesionless sedimentary deposits where dispersion is a truly
two-phase process. Similarly, biological tissues may ideally be thought of as ranging from
weakly aggregated populations of cells fed by large mesh-size vessel networks within the
extracellular matrix to densely and pathologically aggregated populations of cells fed by
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small mesh-size vessel networks. In the first case, perfusion would mainly be intravascu-
larly controlled; in the second case, perfusion would mainly be extra-vascularly controlled
by anoxia-prone multiple capillary/cell exchanges. The diffusion-limited fractal dimension
characterizing the advanced stages of cancerous lesions might therefore be interpreted as
the expression of a tissue architecture characterized by the maximum cell aggregation that
still allows for the minimum vital metabolic supply.

In natural flow fields there exist at least two striking examples of dynamic system
micro-structural adjustments targeted to the optimization of the underlying driving mech-
anism: (1) according to Kolmogorov’s equilibrium theory (e.g., [22]), the adaptation of
the turbulent micro-scales to the energy transmitted by the largest scales of vorticity to
guarantee a commensurate dissipation, and (2) the tendency of rivers to modify local slope
and morphology in such a way as to achieve an equilibrium condition (e.g., [23]) in which
neither erosion nor deposition takes place.

Although the current stochastic analytical framework and the current clinical survey
set-up are characterized by somehow different underlying conceptual models, a quantita-
tive comparison in terms of perfusion-related dispersion coefficients between theoretical
predictions and the outcome of CUDI and DWI measurements was attempted. Besides the
full agreement about the negative average correlation between perfusion-related dispersion
intensity and cancer progression (in the present study, expressed by the increasing tissue
fractal dimension), the comparison revealed the overall good performance of the theory also
in capturing the order of magnitude of the corresponding average percentage reduction.

Going into detail, magnetic resonance (DWI) measurements seem to be definitely
more in line with theoretical model predictions. The reason has to be searched for in the
specificity of this methodology, which interprets the biological tissue as an equivalent
continuum characterized by a pseudo-diffusive fraction (micro-circulation domain) and a
truly diffusive fraction (cell/extracellular matrix domain). The approach of the continuum
equivalent precisely constitutes the landmark assumption of the geostatistical hydrogeology
and the associated macro-dispersion theory.

Finally, a multi-fractal extension of this theory was proposed to encompass its possible
perspective utilization as an interpretative diagnostic tool. Interestingly enough, the
tissue map obtained from the space-dependent version of the nonergodic longitudinal
macrodispersion coefficient for a hypothetical Gaussian-shaped neoplasm (and, therefore,
a Gaussian-shaped fractal dimension anomaly) suggests that this important fluid-dynamic
“transfer function” has the advantage of emphasizing the tissue anomaly fringe gradient,
thus proving to be particularly efficient in more clearly assessing neoplasm contours,
especially at early progression stages.

To the author’s knowledge, systematic clinical point estimates of the perfusion-related
dispersion coefficient in biological tissues are still not available. Therefore, the most
straightforward and logical expansion of the present investigation would consist of its
validation against the outcome of detailed experimental surveys, possibly performed
according to the suggested methodology in the presence of heterogeneous fractal dimension
distributions. The results of this validation could also inspire suitable model calibration,
improvements, and modifications.
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