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Abstract: This study measured parameters automatically by marking the point for measuring each
parameter on whole-spine radiographs. Between January 2020 and December 2021, 1017 sequential
lateral whole-spine radiographs were retrospectively obtained. Of these, 819 and 198 were used for
training and testing the performance of the landmark detection model, respectively. To objectively
evaluate the program’s performance, 690 whole-spine radiographs from four other institutions were
used for external validation. The combined dataset comprised radiographs from 857 female and
850 male patients (average age 42.2 ± 27.3 years; range 20–85 years). The landmark localizer showed
the highest accuracy in identifying cervical landmarks (median error 1.5–2.4 mm), followed by
lumbosacral landmarks (median error 2.1–3.0 mm). However, thoracic landmarks displayed larger
localization errors (median 2.4–4.3 mm), indicating slightly reduced precision compared with the
cervical and lumbosacral regions. The agreement between the deep learning model and two experts
was good to excellent, with intraclass correlation coefficient values >0.88. The deep learning model
also performed well on the external validation set. There were no statistical differences between
datasets in all parameters, suggesting that the performance of the artificial intelligence model created
was excellent. The proposed automatic alignment analysis system identified anatomical landmarks
and positions of the spine with high precision and generated various radiograph imaging parameters
that had a good correlation with manual measurements.

Keywords: artificial intelligence; deep learning; radiography; spine

1. Introduction

Recently, there has been a remarkable surge in the availability of biomedical data,
presenting challenges and opportunities for healthcare research. This wealth of data
includes extensive collections of medical images, such as computed tomography (CT) scans,
magnetic resonance imaging (MRI), and radiographs, which play a crucial role in various
medical tasks, such as pathology detection and classification, as well as pinpointing vital
anatomical landmarks. Spine imaging, in particular, holds significant clinical importance
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as it enables the precise characterization of spinal alignment through angles, distances, and
shapes, proving invaluable for tasks such as surgical planning and monitoring of deformity
progression [1]. Traditionally, these parameters are measured either manually using tools
such as rulers and protractors on physical images or with specialized software for digital
images [2]. However, this approach is prone to inaccuracies and inconsistencies due to
variations in measurements by different observers.

To address these challenges, there has been a growing emphasis on developing
computer-aided diagnosis systems over the past few years. These systems aim to re-
duce errors and enhance the efficiency of image analysis; however, they often require
manual input [3]. The advent of fully automated software tools promises to eliminate
these shortcomings and revolutionize both medical research and clinical practice. Recent
advancements in deep learning (DL) technologies, coupled with the high computational
capabilities of graphics processing units (GPUs), have made it feasible to develop tools
capable of autonomously measuring spinal parameters [4,5]. These technological advances
not only streamline the analysis process but also enhance its accuracy, paving the way for
more precise and reliable medical diagnostics and treatments.

In medical imaging, the integration of artificial intelligence, particularly DL, has
significantly increased in recent times, often surpassing the expertise of human observers
in terms of performance. One notable advancement was the development of an automatic
tool for identifying vertebrae in CT scans [6]. This tool accurately pinpointed vertebral
centroids but fell short of providing practical clinical applications. In a study by Jacobsen
et al., DL was employed for the automatic segmentation of cervical vertebrae [7]. However,
their methodology exhibited non-negligible errors in locating the vertebral corners, and
the focus was limited to the cervical area with a relatively small dataset, hindering its
practicality in routine clinical environments.

To address the limitations of these studies, we aimed to develop an artificial intelli-
gence model to accurately identify points from which to perform key measurements on
whole-spine radiographs. This study aimed to measure each parameter automatically by
accurately marking the point for measuring each parameter on whole-spine radiographs.

2. Materials
2.1. Dataset

Between January 2020 and December 2021, a comprehensive collection of 1017 se-
quential lateral whole-spine radiographs was retrospectively gathered. In adherence to
the guidelines of our hospital’s institutional review board (IRB no. 2023218), a waiver for
informed consent was granted for this study. A leading radiologist meticulously reviewed
the entire set of images and excluded several categories: (1) insufficient length, failing
to capture either the C2 dens or both femoral heads; (2) anatomical variances, such as
spinal columns with less or more than the standard 25 vertebrae; and (3) compromise by
suboptimal contrast, hindering clear identification of pelvic structures.

Of the 1017 radiographs, data from 819 and 198 were used for training and testing
the performance of the landmark detection model, respectively. To objectively evaluate
the performance of the program, 690 whole-spine radiographs from four other institutions
were used for external validation. The annotated landmarks contained 26 points, as
shown in Table 1 and Figure 1. The demographic profile for these 1707 annotated images
revealed a mean patient age of 42.2 ± 27.3 years (age range: 20–85 years) at the time of the
radiographic examinations.

Table 1. Names and descriptions of landmarks annotated on whole-spine lateral X-ray.

Name Description

FH_1 Center of the Femur head
FH_2 Center of the Femur head
S_1 Anterior point of the upper endplate of the sacrum
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Table 1. Cont.

Name Description

S_2 Posterior point of the upper endplate of the sacrum
L1_1 Anterior point of the upper endplate of the L1 vertebra
L1_2 Posterior point of the upper endplate of the L1 vertebra
L4_1 Anterior point of the upper endplate of the L4 vertebra
L4_2 Posterior point of the upper endplate of the L4 vertebra
T4_1 Anterior point of the upper endplate of the T4 vertebra
T4_2 Posterior point of the upper endplate of the T4 vertebra
T12_1 Anterior point of the lower endplate of the T12 vertebra
T12_2 Posterior point of the lower endplate of the T12 vertebra

T1 Center of the T1 vertebral body
Forehead Forehead

FM_1 Anterior point of the foramen magnum
FM_2 Posterior point of the foramen magnum
ODT Odontoid
Jaw Jaw

C2_1 Anterior point of the lower endplate of the C2 vertebra
C2_2 Posterior point of the lower endplate of the C2 vertebra

C7 Center of the C7 vertebral body
C7_1 Anterior point of the lower endplate of the C7 vertebra
C7_2 Posterior point of the lower endplate of the C7 vertebra
C7_3 Posterior point of the upper endplate of the C7 vertebra
T1_1 Anterior point of the upper endplate of the T1 vertebra
T1_2 Posterior point of the upper endplate of the T1 vertebraBioengineering 2024, 11, x FOR PEER REVIEW 4 of 14 
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2.2. Learning of Heatmap-Based Landmark Detection

The model for detecting landmarks used U-Net [8], and learning was conducted based
on a heatmap. The heatmap-based method indirectly learns coordinates through heatmaps
instead of directly learning them. This method is widely used in landmark detection for
pose estimation [9] or face landmark detection [10]. Heatmap-based learning is slower
than the direct prediction of coordinates, but it is less sensitive to slight differences that
may occur owing to human annotations because it accepts the surroundings of coordinates
more generously. The proposed heatmap-based landmark detection model used a Gaussian
heatmap generated around landmark coordinates as the ground truth (Figure 2), and the
dice coefficient loss (Ldice) and weighted L1 loss (Lwl) were used as the loss functions [11].

L = αLdice + βLwl (1)
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Figure 2. As an example, if the point located in the center of 100 × 100 as in (A) is expanded to
Gaussian values and normalized to values 0 to 1, a heatmap like (B) is created. In this example, σ
was set to 10, thresholded in the ±2σ range, and visualized with a jet colormap.

L1 loss, which is the absolute difference between the ground truth and the prediction,
leads to a predicted heatmap (Ŷ) similar to the ground truth (Y). However, compared with
the overall image size, a single point is very small. Therefore, we categorized the area of the
point as the foreground and the area outside the point as the background. Subsequently,
we applied the weighted L1 loss by assigning weights that were inversely proportional to
each foreground and background area. The background (bg) and foreground ( f g) were
determined based on 2σ of the simulated Gaussian.

f g(x) =
{

0, x ≤ 2σ
1, x > 2σ

bg(x) =
{

1, x ≤ 2σ
0, x > 2σ

Lwl = ∑
(
W ∗

∣∣Y − Ŷ
∣∣ )

W = f g(Y)/∑( f g(Y))+bg(Y)/∑(bg(Y))

(2)

Dice loss was added to bring the predicted heat map closer to the ground-truth
Gaussian-distributed heat map. This loss is inversely related to the dice similarity coefficient
(DSC), which measures the similarity between two samples.

y = f g(Y) ∗ Y

ŷ = f g
(
Ŷ
)
∗ Ŷ

Ldice = 1 − DSC(y, ŷ)

(3)
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DSC has a value between 0 and 1. The higher the similarity, the closer it is to 1, and
the lower the similarity, the closer it is to 0. DSC calculates only the foreground area of each
sample, and in this case, the foreground is an area divided by 2σ as a boundary, similar to
weighted L1 loss.

DSC(y, ŷ) = ∑[(y + ŷ) ∗ (y ∗ ŷ > 0)]
∑ y + ∑ ŷ

(4)

Finally, the landmark coordinate outputs from the model were the center points of the
maximum values from the predicted heatmap.

2.3. Workflow of the Landmark Detection in Whole-Spine Lateral Radiographs

The landmark detection model in whole-spine lateral radiographs was divided into
two steps: detection of the upper cervical area above T1 and the lower thoracic–femur
area (Figure 3). This aimed to achieve precise detection of densely clustered landmarks
in the cervical area, which have a higher density than the resolution of the entire image.
The detection of the cervical area was further divided into two steps. First, the cervical
region of interest (ROI) within a whole-spine radiograph was identified. The cervical ROI
range was specified with a margin of 30% of the horizontal margin in a tightly bound box
from 13 landmarks above T1 detected on the whole-spine radiograph. In the second step,
detection was performed at a higher resolution in the cervical ROI. Finally, the predicted
landmarks of the whole-spine radiograph were derived by combining the prediction
points of the detection model in the thoracic–femur area and the detection model in the
cervical ROI.
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Figure 3. Operational flow of the landmark detection model in whole-spine lateral radiographs. For
automatic landmark detection in a single radiograph, the thoracic–lumbar and cervical spine are
localized separately. The outputs of landmark localizers for each image input are all heatmaps, and
the final output of the model is the coordinates (orange points) restored to match the original image
resolution derived from the heatmaps.

2.4. Training Details

The input image size was set to 448 × 1024, whereas the cervical ROI training model
used a 1024 × 1024 resolution image as the input. All the inputs were resized while
maintaining the aspect ratio (height/width), and pixel values were rescaled by referring
to the windowing information in the whole spine radiograph DICOM header, after which
contrast limited adaptive histogram equalization (CLAHE) was applied. All inputs were
resized by maintaining the aspect ratio and then rescaled and inputted after applying
CLAHE. Augmentation during training was shift (±10%), zoom (±10%), and rotation
(±10◦). The sigma (σ) for heatmap generation was set to 10 and 15 for the whole-spine
lateral radiograph and cervical ROI, respectively. Dice loss could be applied after a certain
amount of training, so the α in the loss function started from 0 and increased by 0.002
per epoch, while β was set as 1 − α. All models were trained in an Ubuntu 22.04.4 LTS,
Intel® Core™ i9-9900X CPU @ 3.50GHz x4ea, a single GPU environment [Quadro RTX 8000
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(48 GB)], and the TensorFlow 2.11 version was used as a framework. Of the 819 training
sets, 794 were used to update the model’s weights, and 25 were used as validation sets
during training. After running 300 epochs with a batch size of 10, the weight at the epoch
with the lowest average validation loss in the cumulative 10 epochs was selected as the
final weight of the detection model. Figure 4 shows the loss and accuracy graph monitored
for each 100 steps during the learning process.
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Figure 4. These are loss and accuracy curve graphs for 300 epochs of the training set and validation
set: (A) Accuracy curve graphs of training set; (B) accuracy curve graphs of validation set; (C) loss
curve graphs of training set; (D) loss curve graphs of validation set. The x-axis represents steps and is
plotted at every 100 steps. Blue is the curve of the model that finds thoracic–femur landmarks in the
whole spine, orange is the curve of the model that finds cervical landmarks in the whole spine, and
green is the curve of the model that finds cervical landmarks in the cervical ROI.

2.5. Measurement of Spinal Parameters

Fifteen spinal parameters were measured from the landmarks detected in whole-spine
lateral radiographs using the landmark detection model. The names and measurement
methods for these parameters are listed in Table 2.

Table 2. Names and measurement methods of spinal parameters measured from landmarks detected
in whole-spine lateral X-ray.

Name Measurement

PI Pelvic Incidence
The angle between the line connecting the center of femur heads and the center of

the sacrum’s upper endplate, and the perpendicular line of the sacrum’s
upper endplate.

PT Pelvic Tilt The angle between the line connecting the center of the femur heads and the center
of the sacrum’s upper endplate, and the vertical.

SS Sacral Slope The angle between the sacrum’s upper endplate and the horizontal.
LL Lumbar Lordosis The angle between the upper endplate of L1 and the endplate of the sacrum.

L4S1 L4S1 Lordosis The angle between the upper endplate of L4 and the endplate of the sacrum.
TK Thoracic Kyphosis The angle between the upper endplate of T4 and the lower endplate of T12.

TPA T1pelvic Angle
The angle between the line connecting the center of the T1 vertebral body and the
center of the femur heads, and the line connecting the center of the femur heads

and the center of the sacrum’s upper endplate.
CBVA Chin-Brow Vertical Angle The angle between the line connecting the forehead and chin, and the vertical.

C2C7 C2C7 Angle (Cervical
Lordosis Angle) The angle between the lower endplate of C2 and the lower endplate of C7.
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Table 2. Cont.

Name Measurement

TS T1 Slope The angle between the upper endplate of T1 and the horizontal.
TS-CL T1 Slope—Cervical Lordosis T1 slope minus cervical lordosis.

ODHA Odontoid hip axis angle The angle between the line connecting the odontoid to the center of femur heads,
and the vertical.

PI-LL Pelvic Incidence—Lumbar
Lordosis Pelvic Incidence minus Lumbar Lordosis

SSA Spino-Sacral Angle The angle between the line connecting the center of the C7 body and the center of
the sacrum’s upper endplate, and sacrum’s upper endplate.

SVA Sagittal Vertical Axis Distance between the vertical line at the center of the C7 body and a posterior
point of the sacrum’s upper endplate.

2.6. Statistical Analysis

The landmark localization errors were used to evaluate the performance of the trained
landmark localizer. Interrater reliability was used to determine the level of agreement
among the following three raters:

Rater 1 (R1): Senior neurosurgeon
Rater 2 (R2): Junior neurosurgeon
Proposed DL model (landmark localizer and numerical algorithm)
In this study, Pearson correlation coefficients were employed to assess the relationships

between the predicted radiographic parameters using a DL model and the actual ground
truth values. To determine the numerical discrepancies between the model predictions and
ground truth, Wilcoxon signed-rank tests were utilized, with a p-value threshold of <0.05
indicating statistical significance. Furthermore, the intraclass correlation coefficient (ICC)
was used to measure the interobserver reliability of three human evaluators (junior resident,
spine fellow, and senior surgeon), the DL model, and ground truth. This analysis was based
on a dataset of 198 images specifically chosen for interobserver reliability evaluation. The
reliability was categorized into four levels based on the ICC value: excellent (0.9–1.0), high
(0.7–0.9), moderate (0.5–0.7), and low (0.25–0.5). All statistical analyses and procedures in
this research were performed using SPSS version 25.0 (SPSS Inc, Chicago, IL, USA)

3. Results
3.1. Dataset Demographic

The dataset comprised radiographs from 857 female and 850 male patients, with an
average age of 42.2 ± 27.3 (range: 20–85) years. In this dataset, spinal implants were present
in 170 images (approximately 10%), with the range of instrumentation extending from C4
to the ilium, averaging 8.2 ± 3.0 levels per image.

3.2. Performance of the Landmark Localizer

The landmark localizer showed the highest accuracy in identifying cervical landmarks,
with a median error of 1.5–2.4 mm. This was followed by the lumbosacral landmarks, which
exhibited a median error of 2.1–3.0 mm. In contrast, the thoracic landmarks displayed larger
localization errors, with median values of 2.4–4.3 mm, indicating slightly reduced precision
compared with the cervical and lumbosacral regions. Figure 5 shows a visualization of
localized landmarks in the test set.
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3.3. Inter-Rater Reliability between the Two Human Experts and Developed Deep Learning Model

Table 3 shows the inter-rater reliability of the spinal curvature characteristics between
the two human experts and the developed DL model. The consistency in measurements
between the senior and junior neurosurgeons was outstanding across all spinal curvature
characteristics, with all ICCs exceeding 0.9, indicating excellent agreement. When compared
with the evaluations made by human experts, the proposed DL model showed slightly
lower reliability in accurately predicting the cervicothoracic junction point and the degree
of thoracic kyphosis. However, its performance in determining the thoracolumbar junction,
cervical and lumbar points, and lumbar lordosis was comparable with that of human
experts. Overall, the agreement between the DL model and the two experts ranged from
good to excellent, with ICC values exceeding 0.88.

Table 3. Inter-rater reliability between the two human experts and developed deep learning model.

Parameters R1 versus R2 DL versus R1 DL versus R2

PI (◦) 0.978 0.891 0.889
PT (◦) 0.981 0.923 0.915
SS (◦) 0.962 0.905 0.897
LL (◦) 0.957 0.921 0.915

L4S1 (◦) 0.961 0.901 0.894
TK (◦) 0.979 0.945 0.931

TPA (◦) 0.945 0.894 0.884
CBVA (◦) 0.951 0.907 0.901
C2C7 (◦) 0.947 0.887 0.881

TS (◦) 0.923 0.915 0.909
TS-CL (◦) 0.914 0.909 0.897
ODHA (◦) 0.928 0.903 0.891
PI-LL (◦) 0.927 0.896 0.884
SSA (◦) 0.944 0.945 0.925

SVA (mm) 0.957 0.912 0.902
PI, pelvic incidence; PT, pelvic tilt; SS, sacral slope; LL, lumbar lordosis; L4S1, L4S1 lordosis; TK, thoracic kyphosis;
TPA, T1 pelvic angle; CBVA, chin-brow vertical angle; C2C7, C2C7 angle; TS, T1 slope; TS-CL, T1 slope—cervical
lordosis; ODHA, odontoid hip axis angle; PI-LL, pelvic incidence—lumbar lordosis; SSA, spino-sacral angle; SVA,
sagittal vertical axis.

3.4. Performance Evaluation of the Spinal Parameters of the Deep Learning Model

The performance of the DL model in estimating spinopelvic parameters was rigorously
evaluated using a test dataset comprising 198 spinal radiographic images. The results,
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outlined in Table 4, show mean errors for these parameters, considering the non-normal
distribution of error values. The mean errors were accompanied by the standard deviation.

Table 4. Performance evaluation of the spinal parameters of the deep learning model.

Parameters Ground Truth Parameter Error
Correlation Analysis Wilcoxon Signed-Rank Test

R p Value p Value

PI (◦) 53.8 ± 18.8◦ 2.6 ± 3.1◦ 0.982

<0.001 *

0.497
PT (◦) 14.8 ± 11.3◦ 1.8 ± 2.2◦ 0.917 0.512
SS (◦) 39.4 ± 7.9◦ 2.2 ± 3.4◦ 0.912 0.459
LL (◦) 41.2 ± 17.3◦ 5.7 ± 3.5◦ 0.991 0.279

L4S1 (◦) 30.7 ± 11.6◦ 4.5 ± 2.8◦ 0.857 0.247
TK (◦) 27.2 ± 11.2◦ 5.5 ± 4.5◦ 0.812 0.078

TPA (◦) 24.9 ± 23.2◦ 1.8 ± 1.1◦ 0.792 0.758
CBVA (◦) 1.8 ± 5.2◦ 0.7 ± 0.6◦ 0.984 0.678
C2C7 (◦) 13.6 ± 9.7◦ 5.5 ± 6.5◦ 0.845 0.598

TS (◦) 22.8 ± 10.2◦ 5.7 ± 6.2◦ 0.784 0.084
TS-CL (◦) 9.8 ± 2.4◦ 4.1 ± 5.9◦ 0.809 0.097
ODHA (◦) 4.3 ± 5.4◦ 0.2 ± 0.2◦ 0.978 0.594
PI-LL (◦) 12.1 ± 7.5◦ 3.0 ± 4.5◦ 0.962 0.596
SSA (◦) 120.1 ± 12.4◦ 3.3 ± 2.5◦ 0.927 0.492

SVA (mm) 22.1 ± 19.2 mm 3.0 ± 2.9 mm 0.986 0.745
PI, pelvic incidence; PT, pelvic tilt; SS, sacral slope; LL, lumbar lordosis; L4S1, L4S1 lordosis; TK, thoracic kyphosis;
TPA, T1 pelvic angle; CBVA, chin-brow vertical angle; C2C7, C2C7 angle; TS, T1 slope; TS-CL, T1 slope—cervical
lordosis; ODHA, odontoid hip axis angle; PI-LL, pelvic incidence—lumbar lordosis; SSA, spino-sacral angle; SVA,
sagittal vertical axis; * p value < 0.05.

All predicted radiographic parameters demonstrated significant correlations with the
ground truth values, with p-values less than 0.001. For core spinopelvic parameters, the
mean error varied from 0.16◦ for odontoid hip axis angle (ODHA) to 5.69◦ for lumbar
lordosis. Notably, no significant differences were found between the model predictions and
ground truth values, as evidenced by all p-values > 0.05 in the Wilcoxon signed-rank tests.
The predicted Chin-Brow Vertical Angle (CBVA) and pelvic incidence (PI) were particularly
well correlated with the ground truth, exhibiting Pearson correlation coefficients (R) > 0.9.
When examining regional spinal parameters, performance varied across anatomical regions.
In the cervicothoracic region, the mean errors spanned from 0.66◦ for cervical CBVA to
5.66◦ for T1 slope (TS). In the thoracic region, the mean errors for thoracic kyphosis were
5.53◦. For the lumbosacral parameters, the mean errors were 1.87◦ for pelvic tilt (PT) and
5.69◦ for the lumbar lordosis angle.

3.5. Predicted Spinal Parameters of the External Validation Dataset

A comparative analysis was performed with four external validation datasets (Table 5).
There were no statistical differences between datasets in all parameters, suggesting that the
performance of the artificial intelligence model created was excellent.

Table 5. Predicted spinal parameters of the external validation dataset.

Parameters Ground Truth Parameter
Error

External-
Validation
Dataset 1

Error

External-
Validation
Dataset 2

Error

External-
Validation
Dataset 3

Error

External-
Validation
Dataset 4

Error

p-Value

PI (◦) 53.8 ± 18.8◦ 2.7 ± 3.1◦ 3.3 ± 2.1◦ 2.2 ± 3.9◦ 4.2 ± 2.4◦ 3.6 ± 2.1◦ 0.479
PT (◦) 14.8 ± 11.3◦ 1.9 ± 2.2◦ 2.7 ± 2.0◦ 2.2 ± 2.7◦ 2.5 ± 1.2◦ 2.3 ± 1.3◦ 0.545
SS (◦) 39.4 ± 7.9◦ 2.2 ± 3.4◦ 2.3 ± 3.3◦ 3.6 ± 2.2◦ 3.8 ± 2.4◦ 3.6 ± 3.0◦ 0.471
LL (◦) 41.2 ± 17.3◦ 5.7 ± 3.5◦ 5.1 ± 3.0◦ 6.2 ± 4.4◦ 5.6 ± 3.6◦ 4.2 ± 3.3◦ 0.784

L4S1 (◦) 30.7 ± 11.6◦ 4.5 ± 2.8◦ 5.2 ± 2.5◦ 4.2 ± 2.6◦ 4.4 ± 3.1◦ 5.0 ± 2.4◦ 0.612
TK (◦) 27.2 ± 11.2◦ 5.5 ± 4.5◦ 5.9 ± 4.4◦ 5.9 ± 5.2◦ 4.2 ± 3.8◦ 5.0 ± 4.4◦ 0.274
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Table 5. Cont.

Parameters Ground Truth Parameter
Error

External-
Validation
Dataset 1

Error

External-
Validation
Dataset 2

Error

External-
Validation
Dataset 3

Error

External-
Validation
Dataset 4

Error

p-Value

TPA (◦) 24.9 ± 23.2◦ 1.8 ± 1.1◦ 1.4 ± 1.8◦ 1.9 ± 1.7◦ 1.9 ± 1.9◦ 1.5 ± 1.1◦ 0.798
CBVA (◦) 1.8 ± 5.2◦ 0.7 ± 0.6◦ 0.6 ± 0.4◦ 0.4 ± 0.2◦ 0.8 ± 1.4◦ 0.8 ± 1.0◦ 0.571
C2C7 (◦) 13.6 ± 9.7◦ 5.5 ± 6.5◦ 4.6 ± 4.4◦ 5.4 ± 5.2◦ 4.8 ± 5.4◦ 5.8 ± 4.0◦ 0.435

TS (◦) 22.8 ± 10.2◦ 5.7 ± 6.2◦ 4.4 ± 4.4◦ 5.1 ± 6.1◦ 5.7 ± 4.6◦ 5.4 ± 6.4◦ 0.645
TS-CL (◦) 9.8 ± 2.4◦ 4.1 ± 5.9◦ 4.5 ± 6.3◦ 4.1 ± 5.3◦ 3.9 ± 4.4◦ 3.7 ± 4.8◦ 0.421
ODHA (◦) 4.3 ± 5.4◦ 0.2 ± 0.2◦ 0.1 ± 0.4◦ 0.1 ± 0.2◦ 0.1 ± 0.3◦ 0.3 ± 0.9◦ 0.764
PI-LL (◦) 12.1 ± 7.5◦ 3.0 ± 4.5◦ 3.1 ± 4.9◦ 2.0 ± 2.7◦ 2.4 ± 4.8◦ 2.1 ± 3.2◦ 0.841
SSA (◦) 120.1 ± 12.4◦ 3.3 ± 2.5◦ 3.2 ± 2.6◦ 4.0 ± 2.48◦ 3.1 ± 2.4◦ 3.9 ± 2.5◦ 0.623

SVA (mm) 22.1 ± 19.2 mm 3.0 ± 2.9 mm 2.0 ± 2.5 mm 2.9 ± 2.5 mm 2.7 ± 1.1 mm 2.9 ± 1.5 mm 0.812

PI, pelvic incidence; PT, pelvic tilt; SS, sacral slope; LL, lumbar lordosis; L4S1, L4S1 lordosis; TK, thoracic kyphosis;
TPA, T1 pelvic angle; CBVA, chin-brow vertical angle; C2C7, C2C7 angle; TS, T1 slope; TS-CL, T1 slope—cervical
lordosis; ODHA, odontoid hip axis angle; PI-LL, pelvic incidence—lumbar lordosis; SSA, spino-sacral angle; SVA,
sagittal vertical axis.

4. Discussion

Adult spinal deformity (ASD) affects a significant proportion of the elderly population,
with 32–68% of individuals over 65 experiencing this condition [12–14]. The causes of
ASD are diverse, including conditions such as de novo scoliosis, progressive adolescent
idiopathic scoliosis, degenerative hyperkyphosis, and iatrogenic flat back deformity [15].
A comprehensive radiographic assessment of the entire spine, including the hip joints, is
crucial for evaluating sagittal balance in ASD. Various studies have established the relation-
ship between key spinopelvic parameters and health-related quality of life outcomes, as
well as the success of ASD corrective surgeries [16]. These parameters, both regional and
global, are vital for disease classification and preoperative planning, offering insights into
the overall sagittal balance by considering factors such as cervical hyperlordosis, thoracic
hypokyphosis, and pelvic retroversion, independent of postural changes and body size
differences [17]. However, manually measuring these parameters can be time-consuming
and subject to interobserver variability. Our study introduced a DL model that shows
performance comparable to that of human observers in accurately measuring 15 critical
sagittal spinal parameters across various spinal conditions.

Numerous studies have applied DL techniques to analyze plain radiographs of the
lateral spine automatically. For instance, in a study conducted by Weng et al. [18], a DL
model based on an advanced ResUNet architecture was developed for the automatic mea-
surement of the sagittal vertical axis (SVA), demonstrating exceptional reliability compared
with human expert assessments. The scope of automatic measurements in whole-spine
lateral radiographs has been broadened to include various spinopelvic parameters, such as
pelvic incidence, sacral slope, and PT. These measurements have shown not only acceptable
error margins but also robust correlations with ground truth values [19]. Further, a study by
Yeh et al. [20] reported that the automatic predictions of spinopelvic parameters utilizing a
sophisticated two-stage DL model were on par with the reliability of human experts, even
in cases involving complex spinal disorders. This underscores the increasing efficacy and
reliability of DL applications in spinal radiographic analyses. Galbusera et al. attempted to
calculate the spine angles automatically using standardized biplanar images from the EOS
system [19]. Despite standardization, this approach also demonstrated the potential for
improvement in angle calculation. Other initiatives have focused on 3D spinal reconstruc-
tion using both automatic and semiautomatic models. One such study applied a statistical
model and a convolutional neural network to reconstruct the shape of the spine precisely,
assessing the model accuracy through the Euclidean distance between predictions and
actual measurements. Manual intervention was required before the relevant parameters
could be calculated.
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A key benefit of DL in medical imaging is its ability to provide rapid, objective, and
consistent interpretations. Despite advancements in Picture Archiving and Communication
Systems (PACS) and specialized commercial software, such as Surgimap (Nemaris, MA,
USA), manual identification of points still requires significant professional input and
considerable time. While a few studies have reported automatic curvature feature analyses
in various spinal imaging modalities [21], these have not been widespread. A notable
advancement in this area is the use of annotated vertebral centers for spline-based curve
angle measurements. As demonstrated in a recent study [22], this approach yields higher
intrarater and interrater reliability than traditional manual Cobb angle measurements,
especially in anteroposterior spinal radiographs. However, it is important to note that much
of this research has predominantly concentrated on analyzing the frontal plane curvature,
with less emphasis on the sagittal plane, highlighting a potential area for development in
spinal imaging analysis.

Weng et al. created an artificial intelligence model that analyzed the curvature of the
entire spine by detecting the inflection points and apices [23]. Point detection in spinal
sagittal curvatures has been the subject of extensive research in both healthy and patho-
logical contexts [24]. Biomechanically, inflection points signify transitional areas between
different sagittal curves, while apices influence the distribution of lumbar lordosis [25].
Therefore, achieving accurate relocation of the inflection points and apices and restoring
the ideal sagittal profile are critical for spinal surgical procedures. However, because it
does not find points to accurately measure parameters, it has the limitation of estimating
parameters using a virtual curvature line through inflection points and apices. In this study,
we increased the efficiency of angle measurements by directly detecting the points required
for angle measurement using artificial intelligence. Although our DL model significantly
reduces manual labeling efforts, incorporating a human review process into real clinical
settings is advisable.

This study had some limitations. First, although radiological examinations from a
multicenter study were used for external validation, the overall dataset size was small.
Second, images with atypical vertebral counts were excluded, implying that the model
may not accurately predict cases with anomalies such as lumbosacral transitional vertebrae.
Third, the predictions were based solely on lateral radiographs, whereas a biplanar EOS
system with 3D reconstruction might offer more comprehensive assessments of spinal
deformities. Fourth, the performance of the DL model may vary across different spinal
conditions as radiographs include a wide range of spinal issues. Despite these limitations,
our DL model demonstrated the ability to interpret sagittal spinal curves automatically
and consistently.

5. Conclusions

The landmark localizer showed the highest accuracy in identifying cervical landmarks,
with a median error of 1.5–2.4 mm. External validation was performed using data from
four other institutions and good results were obtained. The proposed automatic alignment
analysis system identified the positions of the anatomical landmarks of the spine with
high precision and generated various radiograph imaging parameters that had a good
correlation with manual measurements.
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