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Abstract: Surface-enhanced Raman spectroscopy (SERS) is a powerful tool for elucidating the
molecular makeup of materials. It possesses the unique characteristics of single-molecule sensitivity
and extremely high specificity. However, the true potential of SERS, particularly in capturing the
biochemical content of particles, remains underexplored. In this study, we harnessed transformer
neural networks to interpret SERS spectra, aiming to discern the amino acid profiles within proteins.
By training the network on the SERS profiles of 20 amino acids of human proteins, we explore the
feasibility of predicting the predominant proteins within the µL-scale detection volume of SERS. Our
results highlight a consistent alignment between the model’s predictions and the protein’s known
amino acid compositions, deepening our understanding of the inherent information contained within
SERS spectra. For instance, the model achieved low root mean square error (RMSE) scores and
minimal deviation in the prediction of amino acid compositions for proteins such as Bovine Serum
Albumin (BSA), ACE2 protein, and CD63 antigen. This novel methodology offers a robust avenue not
only for protein analytics but also sets a precedent for the broader realm of spectral analyses across
diverse material categories. It represents a solid step forward to establishing SERS-based proteomics.

Keywords: SERS; biosensing; neural networks; proteomics; plasmonics; Raman spectroscopy

1. Introduction

Surface-enhanced Raman spectroscopy (SERS) plays a pivotal role in molecular studies,
particularly in analyzing amino acids and proteins [1]. Its capability to intensify the highly
specific Raman signals from molecules on rough metal surfaces like gold or silver has
made it widely applicable across various disciplines [2]. This specificity arises from the
inelastic scattering of light, where photons interact with molecular vibrations, producing
a distinct spectral fingerprint unique to each molecule [3]. SERS’s unique ability for high
sensitivity and specificity in biomolecular fingerprinting is notable. It enables detailed
exploration of molecular structures with exceptional precision, especially in differentiating
subtle molecular compositions [2] and even secondary configurations [4,5]. This ability
to distinguish minute differences in molecular compositions and configuration makes it
an invaluable tool in the study of biomolecules, unveiling layers of complexity that were
previously inaccessible, and in a non-destructive manner. The intricate detail SERS offers
in analyzing complex molecules like amino acids and proteins, which are fundamental to
life, is remarkable [1,6].

Understanding amino acid composition in proteins is critical in advancing fields like
biotechnology and medical research [7]. Amino acids, the building blocks of proteins, define
their structure, impact their functionality, and affect their interactions within biological
systems. This comprehension is essential for protein identification, and understanding
structural complexities, and functionalities [8–10].
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In medical research, analyzing amino acid composition in proteins is key to under-
standing the molecular basis of diseases. It is not only the amino acid composition of
proteins, but their secondary folding configuration also that plays a very important role in
their biological functionalities [4,11]. For example, in hemoglobin, changes in amino acid
composition and structure can lead to disorders like sickle cell anemia [12]. The amino acid
composition also provides insights into disease mechanisms, leading to targeted therapies
with the potential for greater efficacy and fewer side effects [13,14]. In biotechnology and
food science, protein engineering—altering amino acid sequences—enables the creation of
proteins with specific properties, crucial in industrial processes, food production, and phar-
maceutical development. For instance, proteins designed for thermostability can enhance
efficiency in various applications. Additionally, in antimicrobial peptides (AMPs), amino
acid composition is critical for effectiveness, and in food science, it is vital for nutritional as-
sessment and development [14–17]. Furthermore, in view of SERS being a non-destructive
method that possesses sensitivity to the secondary structure but also has demonstrated
capability in rendering detailed conformational information, as illustrated in our study of
Aβ40 and Aβ42 [4,18], it in principle could be a powerful proteomics tool.

Despite its importance, current methods for determining amino acid composition,
essentially proteomic methods, face challenges. Techniques like amino acid analysis
(AAA) [19] and mass spectrometry (MS) [20], are some of the prominent techniques. While
MS, in its various forms including tandem MS, ion mobility, and high-resolution MS, repre-
sents a highly powerful methodology for the detection, identification, and quantification of
proteins, peptides, and amino acids, challenges persist in certain contexts. These techniques
may require extensive sample preparation, and processing time, and often do not provide
direct information about the protein’s functional state or its interactions within a cellular
context. These methods often necessitate the destruction of the sample, which can be a sig-
nificant limitation. The requirement for hydrolysis (in AAA) or ionization (in MS) can lead
to the loss of spatial information and potentially alter the native state of proteins or peptides.
Furthermore, both AAA and MS demand specialized equipment, technical expertise, and
often costly reagents, making them less accessible for rapid or field-based applications.
Hence, despite the undeniable capabilities of AAA and MS, there is a pressing need for alter-
native, or even complementary, technologies that provide a rapid, non-destructive, direct,
and cost-effective method to determine amino acid composition. This study introduces a
novel [20–23] approach by leveraging the power of Surface-Enhanced Raman Spectroscopy
(SERS) combined with transformer neural networks. Table 1 gives an overview of MS,
AAA, and SERS in proteomic research, where we mention the opportunities and limitations
for each.

But first, there is a need to acknowledge certain limitations of SERS itself, which
highlight the need for the present study. SERS signal strength can vary significantly with
slight changes in the experimental setup, including substrate composition, laser wavelength,
and sample preparation, making reproducibility a challenge [24,25]. The richness of SERS
spectra, while a potential advantage, also poses a challenge for extracting specific proteomic
information due to overlapping signals from complex biological mixtures. Additionally,
unlike MS, where extensive databases exist for peptide and protein identification, SERS
lacks a comparable, comprehensive spectral library for proteins and peptides, hindering
its ability to identify and quantify them directly from SERS spectra. All these limitations
combined, represent the difficulty and uncertainties in realizing SERS-based proteomics.

Much of these limitations can be addressed, to some extent, by utilizing machine
learning-based data analysis. Historically, the study of complex biomolecules using SERS
was challenging due to the subtle nuances in their spectral signatures. These nuances, often
representing minute conformational changes or structural variations, are of paramount im-
portance, especially when decoding biological processes or discerning between molecular
isoforms [3]. Modern SERS instruments with high-resolution capabilities produce complex
spectra, demanding sophisticated analytical techniques. Machine learning shows promise
in handling these complex datasets, especially relevant being the ability to identify and
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“learn” interrelation between complex features in the data [26]. Hence, the synergy of SERS
and machine learning forms the core of our study.

The rapid advancement of spectroscopic methods has generated data of increasing
quantity and complexity, which has brought forth a pressing need for equally sophisticated
analytical techniques. Machine learning, with its promise of discerning patterns in large
datasets, has shown immense potential in image recognition, natural language processing,
and predictive analytics [27]. Within this domain, a newer paradigm, transformer neural
networks, originally designed to handle sequences in language processing tasks, has shown
outstanding promise [28]. We explore whether this architecture, which has revolutionized
natural language processing, holds the key to decoding the rich tapestries of SERS spectra.

By harnessing the analytical prowess of transformer neural networks, we aspire to
address the challenge of identifying hidden intricacies within the spectra, fostering a novel
approach to proteomic analysis that is both sophisticated and efficient. Originally designed
to manage sequential data in natural language processing tasks, transformers brought
the concept of “attention”—allowing the model to focus on different parts of the input
data differently, akin to how humans pay attention to specific words or phrases when
understanding a sentence [28]. Similarly, we could utilize this mechanism to identify the
important features in specific SERS spectra presented to the model.

Our goal was to leverage the synergistic potential of SERS and artificial intelligence to
revolutionize our understanding of protein compositions and functions. Firstly, we aimed
to leverage the prowess of transformer neural networks to aid in spectral analysis. Given the
sequential nature of spectra, where each data point (wavenumber) has a relationship with
its neighbors, transformers, with their attention mechanisms, seemed a natural fit [29]. Our
second objective was to showcase how AI-driven techniques, particularly when decoding
complex SERS spectra, could lead the way toward methodologies that are non-destructive
and non-invasive, ensuring the integrity and sanctity of samples.

Our methodology promises to make positive strides in the analysis of amino acid
composition in proteins, offering a swift, direct, and non-invasive alternative to traditional
techniques. The implications of this research promise significant advancements in protein
analytics and disease understanding.

Table 1. Comparative overview of SERS, mass spectrometry, and amino acid analysis for proteomic research.

Aspect SERS [30,31] + ML Mass Spectrometry (MS)
[20,23]

Amino Acid Analysis (AAA)
[19,32]

Method Overview

Utilizes Raman scattering to
identify molecules based on
their vibrational modes.
Enhanced by metallic
nanostructures for
increased sensitivity.

Separates and identifies
compounds based on their
mass-to-charge ratio. Can be
coupled with chromatography
for complex mixtures.

Relies on the separation and
quantification of free amino
acids, typically involving
pre-column derivatization
followed by HPLC.

Specificity

High specificity, with
molecular fingerprints
providing unique
spectral signatures.

High, especially when
combined with tandem MS for
structural analysis.

High for individual amino
acids but does not provide
information on sequence or
modifications.

Sample Preparation

Minimal. Direct analysis
possible with little to no
sample preparation for
certain samples.

Often requires extensive
sample preparation, including
purification and
concentration steps.

Requires hydrolysis (which
can lead to destruction or loss
of certain amino acids),
followed by derivatization.

Analysis Time
Rapid, with spectra
acquisition in seconds to
minutes per sample.

Can vary from minutes to
hours, depending on the
complexity of the sample and
the setup.

Lengthy, with hydrolysis
taking several hours to
complete, followed by the
derivatization and
separation process.
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Table 1. Cont.

Aspect SERS [30,31] + ML Mass Spectrometry (MS)
[20,23]

Amino Acid Analysis (AAA)
[19,32]

Limitations

Sensitivity and reproducibility
can be influenced by the
substrate and
experimental setup.

High operational costs and
complex sample preparation.
Requires expert operation
and maintenance.

Destruction of the sample
through hydrolysis. Does not
provide information on
protein folding
or conformation.

Potential for Proteomics

Demonstrated potential for
amino acid and protein
composition analysis. May
require further development
for complex
proteomic applications.

Widely used in proteomics for
identifying and quantifying
proteins and peptides,
including post-
translational modifications.

Primarily used for
quantitative amino acid
analysis; limited utility in
proteomics without additional
techniques for
protein identification.

2. Materials and Methods
2.1. SERS Substrate Fabrication

The SERS substrate utilized in this study is based on our previously developed plat-
form, detailed in references [33–36]. Our “gold nanopyramid platform” is a thin film
substrate of gold (Au) with an array of pyramidal nanostructures. We have provided the
scanning electron microscopy (SEM) images of our Au Nanopyramid SERS Substrate in
Section S3 of the supplementary file. The fabrication steps were as follows:

I. Formation of Polystyrene Ball Layer: A monolayer of polystyrene (PS) balls, each
500 nm in diameter, was formed on a water surface through Langmuir–Blodgett
patterning for self-assembly.

II. Transfer and Deposition: This PS ball layer was transferred onto a 4-inch (001) sili-
con wafer pre-coated with a 50 nm layer of SiO2, followed by the sputter deposition
of a 50 nm chromium (Cr) layer.

III. PS Ball Removal: The PS balls were removed using chloroform, exposing the SiO2
layer, which was then etched using reactive-ion etching to reveal the desired pattern.

IV. Silicon Etching: The silicon substrate was etched with KOH, creating inverted
nanopyramids with 57.5◦ angle sidewalls by exploiting the differential etching
rates of the [001] and [111] crystal directions.

V. Gold Film Deposition: Finally, a 200 nm thick gold film was deposited onto the
etched surface using electron beam deposition, and the substrate was bonded to a
carrier wafer with epoxy before the gold film was lifted off.

2.2. Raman Spectroscopy

The Raman mapping parameters were tailored to suit the specific requirements of
this study:

I. Sample Preparation: 5 µL of each sample solution was deposited on the SERS
substrate and dried before Raman testing.

II. Spectrometer: Measurements were performed using a Renishaw inVia Raman
spectrometer at room temperature, with a laser excitation wavelength of 785 nm
and a power of 5 mW.

III. Calibration: The system was calibrated using the 520 cm−1 peak of silicon.
IV. Coarse Mapping: This is to first identify the locations on the substrate with high

signal density from the analyte, an initial scouting for particle locations was
performed at a step width of 2 µm, with an exposure time of 0.2 s to prevent
sample overheating.

V. Fine Mapping: After spotting particles, fine mapping was performed at a step
width of 0.1 µm to collect characteristic spectra from the sample, maintaining the
exposure time of 0.2 s to avoid overheating. This allowed for a more detailed



Bioengineering 2024, 11, 482 5 of 21

spectral map of the locations identified in the previous step, with a higher signal
quality, which were subsequently used to train ML models.

Additionally, to compare our experimental results with previous data and to showcase
both the internal spectral consistency within a fixed experimental setup and the spec-
tral variance due to changes in experimental conditions, we overlaid amino acid spectra
obtained from previous studies [37,38] with our own spectra. These comparisons are
presented in Figure 1.
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Figure 1. Averaged SERS spectra of the 20 amino acids.

The SERS data collection was carried out in 2 batches for each amino acid—first, to
obtain dataset to train and test the machine learning models; second, to obtain an indepen-
dent dataset to validate the model performance. The data are presented in Section S2 of the
supplementary file.

2.3. Data Collection and Preprocessing

Our study began with the systematic collection of SERS spectra from 20 amino acids,
each prepared in a 0.2 milli-molar (mM) solution using deionized (DI) water to ensure
uniformity and consistency in the spectral analysis. The use of DI water as a solvent was
crucial for maintaining the purity and integrity of each solution, minimizing potential
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interference from impurities. To address spectral signature fluctuations caused by sample
variations, SERS platform heterogeneity, and instrument fluctuations, we applied specific
preprocessing techniques. This included fluorescence background subtraction using asym-
metric least square fitting and noise reduction via Savitzky–Golay filtering, both conducted
through batch processing to effectively isolate the Raman signal from the fluorescence
component and smooth the spectra while preserving critical features. Subsequent min–max
normalization proportionally compressed the original intensity range to a [0, 1] scale, har-
monizing the data scale. This normalization, alongside other preprocessing methods like
wavelet-based methodologies for signal-to-noise ratio enhancement and baseline correction
for background noise elimination [39–41], was essential in ensuring the spectra’s quality
and suitability for analysis with our sophisticated machine learning models. Furthermore,
since the amino acids do not contain peptide bonds, but the proteins under consideration
do, the SERS peaks corresponding to peptide bonds [11] were removed for the purpose of
analysis, to ensure biochemical accuracy in model training and application.

Furthermore, given the initial collection of 2420 spectra, with each of the 20 amino
acids contributing 121 spectra obtained via Raman mapping, the variability in signal quality
was a significant concern. To address this, we employed a signal-to-noise ratio (SNR) based
sorting method as a criterion for data quality assessment and filtration.

Signal-to-Noise Ratio Assessment and Thresholding: Each spectrum’s SNR was calcu-
lated and assessed to identify and exclude data compromised by excessive noise. Through
a combination of trial and error and visual analysis of the spectra, an SNR threshold of
50 was established as the optimal balance between data quality and quantity. Spectra
falling below this threshold were considered unsuitable for reliable analysis due to their
diminished signal clarity and were thus excluded from the dataset.

Selection of High-Quality Spectra: Post-SNR assessment, the top 33 spectra for each
amino acid, meeting or exceeding the SNR threshold, were selected for further analysis.
This decision was informed by the need to maintain a uniform number of spectra per
amino acid to avoid potential data imbalance that could skew the clustering results. This
uniformity ensures that the subsequent analysis is not biased towards amino acids with
initially higher numbers of high-SNR spectra.

2.4. Clustering Analysis Using t-SNE

In our study, we conducted a comprehensive clustering analysis to examine the intrin-
sic groupings within the high-dimensional amino acid spectra, where ‘high-dimensional’
refers to the 1117 Raman shifts per spectrum. We utilized t-Distributed Stochastic Neighbor
Embedding (t-SNE), a machine learning algorithm for dimensionality reduction well-suited
for visualizing high-dimensional datasets. The aim was to reduce the dimensions to a
3D space that preserves the local structure and relationships inherent in the amino acid
spectral data, facilitating an understanding of the similarities and distinctions among
the different amino acids. The dimensionality reduction through t-SNE transformed the
1117-dimensional space into a 3-dimensional representation, which enabled a more com-
prehensive view of the data structure for subsequent analysis. The open-source scikit-learn
library in Python was utilized for this purpose.

2.5. Neural Network Model Architecture for Classification

We employed the transformer architecture, a model adept at processing sequential
data, originally from natural language processing [28]. Its self-attention mechanism is well-
suited for identifying patterns in SERS spectra. The model includes multiple encoder layers
with multi-head self-attention mechanisms and feed-forward neural networks, enhanced
by layer normalization and residual connections for stability [42]. The model architecture
utilized is presented in Section S1 of the supplementary information file.
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2.6. Training Procedure

Our training process was designed to address a dataset comprising 660 amino acid
spectra, each characterized by 1117 Raman shifts. We employed the Adam optimizer,
known for its efficiency in handling large-scale datasets [43]. The optimizer started with
an initial learning rate of 0.001, and we adopted a dynamic approach to adjust this rate
during training for optimal model performance. In order to mitigate the risk of overfitting,
a dropout rate of 0.3 was applied after each dense layer. This strategy maintained a
balance between the model’s complexity and its generalization ability, which is critical for
predictive accuracy.

The dataset was segmented into training (80%) and test (20%) sets. This dataset
division was meticulously performed using the “train_test_split” function from the scikit-
learn library in Python. This method ensures random shuffling of the data prior to the
split, promoting a fair and unbiased distribution of samples across both datasets. The
chosen 80–20 split optimally balances the need for a substantial amount of data for training
the model, ensuring it learns the complex patterns within the SERS spectra, while still
reserving enough unique samples to rigorously evaluate the model’s predictive accuracy on
unseen data. This distribution was crucial for robust training, allowing for precise tuning
of hyperparameters during validation and providing a comprehensive evaluation of the
model on unseen data. The test set consisted of protein spectra, which differed from the
amino acid spectra used in training, thereby testing the model’s predictive capabilities in a
distinct context.

The model was configured for a 20-class classification task, reflecting the 20 standard
amino acids. The output layer of the model produced 20 probabilities, each corresponding
to one of the 20 amino acids. This design enabled the model to predict the likelihood of
each amino acid’s presence in the given spectra. Throughout the training, early stopping
and model checkpointing were implemented as callbacks. Early stopping monitored the
validation loss with patience of five epochs, halting the training at the most effective point
to prevent overfitting. Model checkpointing ensured the retention of the best model version
based on the minimum validation loss.

Post-training, the model was utilized to predict amino acid compositions in protein
spectra from the test set. These predictions were then compared with actual amino acid
compositions from the Uniprot [44] database of proteins, which contains peer-reviewed data
on amino acid sequences of proteins. This comparative analysis was pivotal in evaluating
the model’s accuracy and practical utility in deducing protein structures and functions
based on their constituent amino acids.

The machine learning approach offers significant strengths, such as the ability to
process complex, high-dimensional data, and provide advanced analysis and prediction
capabilities beyond traditional methods. This is particularly beneficial in spectral analysis
for obtaining detailed insights into molecular structures, where identifying patterns and
meaning behind the data is non-trivial. The utilization of dynamic learning rate adjustments
and dropout strategies enhances the model’s generalization across datasets. However,
challenges in interpretability arise from the opaque nature of deep learning, limiting the
clarity of insights derived from the model, especially in intricate biochemical contexts.
Additionally, our model’s effectiveness is heavily dependent on the quality and diversity
of the training data, with limited or biased datasets potentially undermining accuracy
and reliability.

2.7. Calculating Coefficient of Variation

To quantitatively calculate reproducibility from your spectral data, a commonly used
metric is the coefficient of variation (CV), which is the ratio of the standard deviation (σ) to
the mean (µ) of a dataset, expressed as a percentage:
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CV =

(
σ

µ

)
× 100%

The CV provides a standardized measure of dispersion of a probability distribution or
frequency distribution. In the context of SERS spectra, it can be applied to the intensities of
specific Raman peaks across multiple spectra to assess their reproducibility [45,46].

This threshold is often considered acceptable in analytical chemistry and bioanalytical
assays, indicating that the data are sufficiently consistent across multiple measurements.
However, the acceptability of a specific CV value can depend on the context of the exper-
iment and the inherent variability of the method being used. In cases where extremely
precise measurements are required, a lower CV threshold might be more appropriate.

2.8. Error Metrics

In the evaluation of our machine learning model’s performance, two critical statistical
measures were employed: the root mean square error (RMSE) and the mean squared error
(MSE) [47]. These metrics are paramount for assessing the accuracy of the model’s predic-
tions in relation to the actual amino acid compositions obtained from the SERS spectra.

The mean squared error (MSE) is defined as the average of the squared differences
between the predicted values (ŷi) and the actual values (yi). Mathematically, it is repre-
sented as: MSE = 1

n ∑n
i=1(ŷi − yi)

2, where n is the number of observations. The squaring
of the errors ensures that larger errors are penalized more heavily, making MSE a robust
measure of model performance, particularly in highlighting significant deviations between
predicted and observed values.

The root mean square error (RMSE) further builds on the MSE by taking its square
root, thus bringing the error metrics back to the original units of the data, facilitating easier

interpretation: RMSE =
√

1
n ∑n

i=1(ŷi − yi)
2. RMSE offers a straightforward measure of the

average magnitude of the model’s prediction errors, providing insights into how accurately
the model can predict the amino acid compositions from SERS spectra.

3. Results
3.1. SERS Spectra of Amino Acids

Our exploration of the surface-enhanced Raman spectroscopy (SERS) spectra of
20 amino acids revealed a comparison between the averaged spectra from our labora-
tory experiments and those reported in the existing literature, as shown in Figure 1. The
spectra we obtained, illustrated in blue, exhibited discrepancies when compared with
previous studies’ spectra, shown in red.

We present averaged SERS spectra for each amino acid, based on 75 individual spectra
per amino acid. Notable observations include tryptophan’s strong Raman bands around
1552 cm−1 and 760 cm−1, alanine’s peak around 1445 cm−1, and phenylalanine’s bands at
approximately 1000 cm−1 and 1033 cm−1.

The coefficient of variation (CV) for the ten major Raman bands’ peak intensities across
measurements for each amino acid was calculated. While most amino acids showed CV
values below 10%, indicating high reproducibility [37,38,48,49].

3.2. Clustering of Amino Acid Spectra

Through the utilization of t-SNE for clustering analysis, our study has identified
20 distinct clusters from a dataset of 2420 SERS spectra, encompassing 121 spectra from
each of the 20 amino acids. These clusters, depicted in Figure 2a, illuminate the inherent
groupings within our spectral data, offering a visual representation of the amino acids’
distinctiveness.

Further refinement was achieved by enhancing data quality through SNR-based
selection, narrowing down to the top 33 spectra for each amino acid. This refined clustering,
visible in Figure 2b, resulted in clearer and more distinct cluster formations. This process
underlines the significant role of data quality in the discernment of amino acid spectra.



Bioengineering 2024, 11, 482 9 of 21

Bioengineering 2024, 11, x FOR PEER REVIEW 10 of 24 
 

3.2. Clustering of Amino Acid Spectra 
Through the utilization of t-SNE for clustering analysis, our study has identified 20 

distinct clusters from a dataset of 2420 SERS spectra, encompassing 121 spectra from each 
of the 20 amino acids. These clusters, depicted in Figure 2a, illuminate the inherent group-
ings within our spectral data, offering a visual representation of the amino acids’ distinc-
tiveness. 

Further refinement was achieved by enhancing data quality through SNR-based se-
lection, narrowing down to the top 33 spectra for each amino acid. This refined clustering, 
visible in Figure 2b, resulted in clearer and more distinct cluster formations. This process 
underlines the significant role of data quality in the discernment of amino acid spectra. 

 
Figure 2. Unsupervised clustering of the amino acid dataset (a) before filtering, and (b) after filtering 
by signal-to-noise ratio. 

3.3. Model Training and Performance on Amino Acids  
Our investigation utilized t-SNE clustering to illustrate the distinctness between 

amino acid datasets, which served as a precursor for more detailed analysis. The subse-
quent step involved training a transformer neural network model capable of predicting 
amino acid compositions from SERS spectra. The training process and its outcomes are 
depicted in Figure 3, showcasing loss and accuracy metrics throughout the training pe-
riod. Initial results with an unfiltered dataset yielded high accuracy and low loss rates on 
a test set that constituted 20% of the amino acid data, as shown in Figure 3a,b. Significant 
enhancements in model performance were recorded upon employing a filtered dataset—
comprising the top 33 spectra for each amino acid—resulting in smoother learning curves 
and reduced loss, as shown in Figure 3c,d, indicative of a more efficient training regime. 
The model was then tested on an independent validation dataset obtained through addi-
tional experiments, and the prediction accuracies are shown in Figure 3e. 

Figure 2. Unsupervised clustering of the amino acid dataset (a) before filtering, and (b) after filtering
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3.3. Model Training and Performance on Amino Acids

Our investigation utilized t-SNE clustering to illustrate the distinctness between amino
acid datasets, which served as a precursor for more detailed analysis. The subsequent step
involved training a transformer neural network model capable of predicting amino acid
compositions from SERS spectra. The training process and its outcomes are depicted in
Figure 3, showcasing loss and accuracy metrics throughout the training period. Initial
results with an unfiltered dataset yielded high accuracy and low loss rates on a test set that
constituted 20% of the amino acid data, as shown in Figure 3a,b. Significant enhancements
in model performance were recorded upon employing a filtered dataset—comprising the
top 33 spectra for each amino acid—resulting in smoother learning curves and reduced
loss, as shown in Figure 3c,d, indicative of a more efficient training regime. The model was
then tested on an independent validation dataset obtained through additional experiments,
and the prediction accuracies are shown in Figure 3e.

3.4. Evaluating the Predictive Accuracy of Machine Learning Models for Amino Acid Composition
in Mixed Samples

Figure 4 showcases the model’s capacity to deduce amino acid compositions from
simulated SERS spectra involving pairs of amino acids, such as aspartic acid and histidine,
cysteine and methionine, aspartic acid and valine, and isoleucine and asparagine. The
simulations were conducted on clean and pre-processed spectra, and the model accurately
determined the constituents of these complex mixtures. Predictive outcomes, illustrated
through green bars in Figure 4, matched well with the known compositions of these simulated
peptides, marked by blue bars. In quantifying the model’s precision, root mean square error
(RMSE) and mean squared error (MSE) were employed as the primary evaluative metrics. The
RMSE values, under 0.1 or 10%, suggest a high degree of accuracy in the model’s predictions,
resonating with the rigorous standards set for medical device evaluations.
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3.5. Analysis of Real-Life, Disease-Relevant Proteins and Composition Predictions

Figure 5 presents the model’s predictions for the amino acid compositions of three
well-characterized proteins: bovine serum albumin (BSA), ACE2 protein, and CD63 anti-
gen. These proteins were selected for their relevance to laboratory research, SARS-CoV-2
virus studies, and immune response investigations, respectively. The model’s predictions,
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depicted as green bars in Figure 5, were compared to known amino acid compositions from
the Uniprot database, shown as blue bars. The comparison demonstrated a notably low
normalized root mean square error (RMSE) across all three proteins, indicating a high level
of accuracy in the model’s predictions. The model was also successful in identifying the
most abundant amino acid within each protein sample.
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4. Discussion
4.1. Analysis of SERS Spectra

In exploring the surface-enhanced Raman spectroscopy (SERS) spectra of the 20 amino
acids, our initial findings present an intriguing juxtaposition between the averaged spectra
derived from our laboratory experiments and those reported in existing literature. As
depicted in Figure 1, the spectra we obtained (illustrated in blue) display some discrepan-
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cies when compared with spectra derived from previous studies [37,38] (shown in red).
This variance underscores a pivotal aspect of SERS-based analyses: the outcome is heavily
influenced by the experimental setup, including the spectrometer used, its operational
parameters, and the substrate employed. These findings highlight the necessity of es-
tablishing our own spectral database to ensure accuracy and reliability in our analyses,
acknowledging that spectra variability can arise from subtle differences in experimental
conditions [48].

The initial set of results presents the averaged surface-enhanced Raman spectroscopy
(SERS) spectra for each of the 20 amino acids. Figure 1 displays these spectra, with each
representing an average of 75 individual spectra per amino acid. This comprehensive collec-
tion provides a foundational understanding of the characteristic spectral signatures of each
amino acid, setting the stage for further analysis and model training. Notably, tryptophan
is distinguished by its strong Raman bands around 1552 cm−1, which is attributed to the
indole ring breathing mode, and a band near 760 cm−1, related to the C-H bending out of
the plane of the indole ring [49]. Alanine, on the other hand, shows a characteristic peak
around 1445 cm−1, associated with the CH3 deformation. Phenylalanine is characterized by
Raman bands at approximately 1000 cm−1 and 1033 cm−1, corresponding to the breathing
modes of the benzene ring [38,49]. These unique peaks are crucial for the identification and
differentiation of these amino acids in SERS analysis.

The CV values were calculated for the amino acid dataset, and they reveal a variable
degree of reproducibility across the different amino acids. As seen in Figure 1, while several
amino acids demonstrate CV values below the 10% benchmark, indicating high repro-
ducibility, others exceed this threshold, suggesting areas for improvement in experimental
consistency or specificity of peak selection. Though all CV values are below 20%.

In summary, by calculating the CV for the peak intensities of the ten major Raman
bands across the measurements for each amino acid and comparing these values against a
benchmark CV of less than 10%, we can quantitatively assess and argue the reproducibility
of our experimental setup. This approach provides a clear, standardized metric for eval-
uating the consistency of our spectral data, ensuring the reliability of our findings. The
nuanced discrepancies observed between our spectra and those from the literature reinforce
the importance of a standardized experimental setup for reproducibility and reliability
in SERS analyses. The utility of our findings lies in their reproducibility within a fixed
experimental setup, as evidenced in Figure 1. The blue spectra, each an average of 50 mea-
surements, underscore the rigor of our experimental process, highlighted by the clarity and
consistency of the distinct peaks, with none being canceled out or averaged away. This level
of reproducibility, quantitatively supported by the coefficient of variance values presented
in the figure indicating minimal fluctuation, showcases the meticulousness of our method-
ology. For a more detailed visual comparison and to further affirm the reproducibility and
accuracy of our data, supplementary data Sections S2 and S4 feature a side-by-side spectral
comparison for all amino acids, emphasizing that within our experimental conditions, the
spectral data remains remarkably consistent.

4.2. Unsupervised Clustering of Amino Acid Spectra

Subsequent results focused on clustering analysis using t-SNE. In Figure 2a, we show-
cased the formation of 20 distinct clusters through unsupervised clustering of 2420 spectra,
with each amino acid contributing 121 spectra obtained via Raman mapping. This visualiza-
tion illustrated the natural groupings within the spectral data. In Figure 2b, we presented
enhanced clustering results achieved by sorting the data based on the signal-to-noise ratio
and selecting the 33 best spectra for each amino acid. This refinement in data selection
further improved the clarity and distinction of the clusters. Each cluster correlates with
one of the 20 amino acids in the study, suggesting a high degree of specificity in the SERS
spectral data for amino acid identification. This unsupervised clustering not only reinforces
the reliability of SERS as an analytical tool for amino acid differentiation but also validates
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the potential of using unsupervised machine learning techniques in processing complex
spectral data.

A critical aspect of our methodology was the data cleaning and preprocessing phase.
Initial clustering of 121 spectra per amino acid produced discernible clusters; however,
we observed that the inclusion of all spectra introduced a degree of variability likely
attributable to a lower signal-to-noise ratio in some measurements. By implementing a data
cleaning process that filtered out these spectra, we refined our dataset to the 33 highest-
quality spectra per amino acid. This step was crucial in reducing noise and improving the
clarity of our data, thereby enhancing the subsequent training and performance of our
neural network models.

The impact of this preprocessing was significant; the neural network models trained
on this cleaner, high signal-to-noise ratio dataset demonstrated superior performance in
predicting amino acid composition within protein samples. This underscores the impor-
tance of rigorous data preprocessing in spectroscopic studies, where the quality of the input
data is paramount. By focusing on high-quality, high-signal-to-noise spectra, we were able
to train models that could more accurately interpret the complex SERS spectra of proteins
and estimate their amino acid compositions.

This distinction between internal (within each amino acid data) and external (between
different amino acids’ data) variability is crucial. It demonstrates beyond reasonable
doubt that, within the confines of our experimental setup, amino acids produce highly
distinguishable SERS spectra. The external variability between different amino acids’
spectra far exceeds the minor internal variations observed within repetitions of the same
amino acid. This finding is instrumental in validating the use of SERS combined with
machine learning for accurate amino acid and protein analysis. It highlights the importance
of considering both the quality of spectral data and the analytical techniques employed to
interpret such data.

Hence, our study not only showcases the importance of data preprocessing in enhanc-
ing the clarity and reliability of clustering analysis but also confirms the distinctiveness of
amino acid spectra despite internal fluctuations. By demonstrating that intra-amino acid
spectral variations are minimal compared to the variations between different amino acids,
we affirm the robustness of our approach. This work sets the stage for further advance-
ments in proteomics, offering a scalable and repeatable method for amino acid and protein
characterization using SERS spectra.

4.3. Model Training and Performance on Test Data

Figure 2b establishes the distinguishability between amino acid data, but it does not
allow us to achieve what we have set out to do—train the machine learning models on this
data to estimate the composition of amino acids in complex molecules, such as proteins.
In the t-SNE clustering model used above, due to the coordinate transformation, we are
making the physical significance of the model output difficult to decide. Hence, t-SNE is
utilized only to demonstrate clear distinctions between the complex amino acid datasets,
which is a necessary precursor to the goal of this paper. Subsequently, we hypothesize that
a classification model would be more suitable for depicting amino acid compositions of
proteins from their SERS spectra. Specifically, when the model is well-trained on a diverse
dataset of amino acid spectra, these confidence levels can be interpreted as reflective of
the relative abundance of each amino acid in the sample, assuming that higher spectral
contributions from an amino acid result in higher probabilities.

The neural network model’s training process is illustrated in Figure 3, which shows
the loss and accuracy curves over the training duration. For the unfiltered dataset, the
accuracy and loss curves (Figure 3a,b) indicated that the model performed commendably,
as demonstrated by the high accuracy and low loss on the test dataset, which comprised
20% of the amino acid data.

However, a notable improvement was observed when the model was trained with
the filtered dataset, where the 33 highest-quality spectra per amino acid were used. The
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corresponding accuracy and loss curves (Figure 3c,d) revealed smoother convergence and
a lower loss, indicating a more stable and effective training process. This improvement can
be attributed to the refinement of input data through rigorous preprocessing, which filtered
out spectra with lower signal-to-noise ratios, thereby enhancing the quality of the dataset.

The model’s enhanced performance with the filtered dataset, as depicted in Figure 3c,d,
showcases the value of high-quality input data in neural network training. Noise reduction
in the preprocessing stage ensures that the spectral features are distinct and characteristic,
allowing the model’s attention mechanism to accurately focus on informative aspects
of the spectra. This leads to a reduction in overfitting risks, as the model is less likely
to interpret noise as a part of the signal, thereby enhancing its ability to generalize to
new data. Moreover, the stability of the training process is improved, reflected in the
smoother convergence of the loss and accuracy curves, which facilitates optimization
and may result in computational efficiency gains. The preprocessing of data, by filtering
out low-quality spectra, not only contributes to a more robust learning process but also
underscores the critical role of data quality in the interpretation of complex SERS spectra
for proteomic analysis.

The attention mechanism’s ability to discern and prioritize critical features in spectral
data was augmented by the high quality of the input data. This synergy between sophisti-
cated model architecture and meticulous data preprocessing underscores the importance of
data quality in the field of machine learning, especially in applications where precision is
paramount, such as in the interpretation of complex SERS spectra for proteomic analysis.

This section demonstrates the crucial role of data quality and preprocessing in training
neural network models for the precise interpretation of complex SERS spectra, underscoring
the paper’s theme that advanced machine learning techniques, when applied to high-
quality, carefully pre-processed datasets, can accurately estimate amino acid compositions
in proteins, reflecting the broader potential of these methods in proteomic analysis.

Furthermore, the model performance was validated on an independent dataset of
amino acids obtained through separate experiments. The dataset contained 50 spectra for
each amino acid, and predictions were made for each spectrum. The average values of
prediction accuracies are presented in Figure 3e, and most accuracies are above 95%, with
the average across the entire validation dataset being 95.4%. Hence, the performance on
a completely external, unique, and diverse dataset shows that the model trained on all
20 amino acids can identify each of the amino acids independently. This strong validation
performance shows that the model has effectively been trained on the amino acid data and
can be used for the next step in our study—predicting amino acid composition in proteins.

4.4. Evaluating the Predictive Accuracy of Machine Learning Models for Amino Acid Composition
in Mixed Samples

Figure 4 presents the model’s capability to predict amino acid compositions from
simulated spectra. This simulation involved combining SERS spectra of amino acid pairs:
aspartic acid and histidine (Figure 4a), cysteine and methionine (Figure 4b), aspartic acid
and valine (Figure 4c), and isoleucine and asparagine (Figure 4d). The inset figures present
examples of the simulated spectra on which the model makes amino acid predictions.
The model, trained on clean and pre-processed individual amino acid spectra, accurately
identifies the constituents within these complex mixtures. As mentioned above, this is a
20-class classification task, and the predictions are probabilistic. In the figure, the green
bars correspond to the model output, and the blue bars are the actual composition of the
simulated peptide. The height of the green bars represents the model’s confidence. In each
case, the model correctly identifies the constituent amino acids, with the highest peaks
aligning with the amino acids known to be present in the doublets. The ability to predict
amino acid compositions from SERS spectra of mixtures indicates that this tool can be
utilized for inferring the presence and concentration of amino acids in protein samples,
which is shown below.
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In our analysis, the root mean square error (RMSE) and mean squared error (MSE)
were selected as the primary metrics for evaluating the precision of our model due to
their ability to effectively capture the average magnitude of errors between predicted and
actual values. RMSE, by taking the square root of the average of squared differences,
provides a directly interpretable measure in the same units as the original measurements,
making it exceptionally useful for assessing the model’s accuracy in predicting amino
acid compositions. Meanwhile, MSE offers a squared quantification of the average error,
emphasizing larger errors more significantly than smaller ones, which is crucial for fine-
tuning our model’s performance by identifying and minimizing large prediction errors.
Quantitatively, the model’s precision, with a root mean square error (RMSE) of less than 0.1
or 10%, demonstrates high quantitative accuracy, akin to the stringent standards observed
in medical device evaluations, such as continuous glucose monitoring (CGM) systems
in diabetes management. In this context, the mean absolute relative difference (MARD),
a common accuracy measure where values below 10% are considered excellent [50], is
comparable to our model’s performance. Regulatory standards from the U.S. Food and
Drug Administration (FDA) and the International Organization for Standardization (ISO)
provide further benchmarks: ISO 15197:2013 (updated in 2021) requires 95% of glucose mea-
surement results to be within ±15 mg/dL for concentrations <100 mg/dL and within ±15%
for concentrations ≥100 mg/dL [51], while the FDA mandates similar clinical evaluations,
accuracy comparisons, and user testing for CGM devices and blood glucose meters [52].
Our model’s achievement highlights its potential reliability and accuracy for scientific and
medical applications, aligning with the precision criteria of these regulatory evaluations.

Applying a similar emphasis on accuracy to our model, achieving an RMSE of less than
0.1 in predicting amino acid compositions from complex SERS spectra signifies not only the
model’s computational efficiency but also its potential applicability in precise biochemical
analyses. This level of accuracy, comparable to the stringent criteria used in evaluating
medical devices, underscores the reliability of our approach for detailed proteomic studies
and other applications requiring fine-grained molecular analysis. Hence, based on the
results in this section, at least for the limited number of variations we produced, the ML
model successfully finds agreement with the true composition of the samples.

4.5. Analysis of Real-Life, Disease-Relevant Proteins and Composition Predictions

Figure 5 illustrates the model’s prediction results for three well-characterized proteins:
Bovine Serum Albumin (BSA), a commonly used protein in various lab applications due
to its stability and lack of interference within biological reactions; ACE2 protein, known
for its role as the receptor for the SARS-CoV-2 virus entry into cells; and CD63 antigen,
typically associated with cellular processes like signal transduction and development of
immune responses. The model’s predictions for these proteins are represented by green bars
and contrasted with the actual amino acid compositions extracted from the Uniprot [53]
database (shown in blue bars) within the double bar plots of Figure 5a–c.

The normalized root mean square error (RMSE) is notably low in each case, suggesting
a high level of accuracy in the model’s predictions. Furthermore, the model correctly
identifies the most abundant amino acid within each protein, underscoring its efficacy.
However, there are deviations observed between the predicted and actual compositions.
From a machine learning perspective, these deviations could stem from the absence of
peptide bonds and the complexities of protein conformations in the training dataset, which
are inherently present in the protein samples. Biochemically, variations in peak intensities
due to protein conformations, which alter the physical and chemical environment of amino
acid residues, are not represented in the training set of free amino acids [1,4]. Such factors
highlight the intricacies of protein structures that may affect SERS spectra, including the
orientation of amino acids, their interactions within the protein matrix, and modifications
that occur post-translationally, all of which can contribute to the observed discrepancies.
These points suggest avenues for further refining the training datasets and the model to
better account for the complexities of protein structures in SERS-based proteomic analysis.
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Nevertheless, the overall results are encouraging, demonstrating the model’s substantial
potential as a tool for proteomic analysis. It suggests that, with further refinement to
incorporate the diverse aspects of protein biochemistry and structure, such models can be
instrumental in advancing non-invasive, rapid proteomic techniques.

Additionally, Raman spectroscopy is widely recognized for its ability to provide de-
tailed chemical information, particularly about the atomic and molecular bonds within
a substance. However, the ability of the model to closely approximate the amino acid
composition of complex proteins from their SERS spectra highlights how this chemical
information, typically analyzed at the atomic or molecular level, is preserved, and inter-
preted at the macromolecular scale in SERS spectra. Proteins, which are complex assemblies
of amino acids, themselves compounds of intricately arranged atoms, present a higher
order of structural organization, beyond atomic bonding. The SERS technique (due to
its chemical characterization ability) not only delineates the various bonds and atomic
interactions within amino acids but also retains holistic information on how many of these
amino acids are present within proteins. Thus, this study demonstrates that SERS is not
limited to identifying individual chemical bonds; it effectively maps out the higher-order
structures of amino acids as they are configured in proteins. This insight underscores the
potential of SERS, revealing not just the atomic or molecular specifics but also how groups
of these entities assemble to form larger, functionally significant biological structures.

4.6. Interpretation and Implications of Findings

The utilization of SERS spectra of 20 amino acids has enabled us to explore the
predictive capabilities of the transformer neural networks in identifying the predominant
proteins within the sampling volume of SERS. The distinctiveness in the spectral data, as
demonstrated through our comparative analysis between laboratory-derived spectra and
those from existing literature (Figure 1), underscores the influence of experimental setups
on the outcomes of SERS-based analyses. This variance necessitates the establishment of a
specific spectral database to ensure the reliability and accuracy of analyses, addressing a
crucial aspect of SERS-based studies.

The quantitative reproducibility assessment of our spectral data, employing the coeffi-
cient of variation (CV) across the characteristic Raman peaks, underlines the imperative
for precision in experimental consistency. Although some amino acids demonstrated high
reproducibility within the benchmark of less than 10% CV, indicating the robustness of
our experimental setup, variations suggest areas for refinement in experimental conditions
or peak selection criteria. These findings not only affirm the reproducibility within our
standardized setup but also highlight the nuanced discrepancies that could emerge from
subtle differences in experimental protocols.

The clustering analysis (in Figure 2), particularly the enhanced distinction achieved
through data preprocessing, further illustrates the specificity and reliability of SERS as an
analytical tool for amino acid differentiation. By demonstrating the significant improve-
ment in model performance with cleaner, high-quality datasets, our study emphasizes the
importance of data quality in the interpretation of complex SERS spectra. This not only
validates the potential of machine learning in processing spectral data but also reinforces
the need for rigorous data preprocessing in spectroscopic studies.

Moreover, our findings from the predictive accuracy assessment of amino acid com-
positions in mixed samples (Figure 4), alongside the analysis of real-life, disease-relevant
proteins (Figure 5), offer compelling evidence of the model’s utility in proteomic analysis.
The model’s ability to closely approximate the amino acid composition of proteins from
their SERS spectra, despite observed deviations, underscores its potential in non-invasive,
rapid proteomic techniques. These deviations, potentially stemming from the absence of
peptide bonds or protein conformation complexities in the training dataset, highlight areas
for future refinement.

The methodological advantages of combining SERS with AI technologies extend
beyond the analytical improvements; they encompass the potential for non-invasive or min-
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imally invasive sample analysis, rapid results delivery, and high specificity and sensitivity,
which could revolutionize molecular diagnostics and analysis in biological laboratories.
However, the interpretability of deep learning models and the uniqueness of SERS spectral
features pose notable challenges, emphasizing the need for continued research to enhance
the precision and applicability of these methods.

Furthermore, while our study showcases the potential of SERS for detailed molecular
analysis, it’s important to recognize the complementary role it plays alongside established
proteomic techniques such as mass spectrometry. Sophisticated mass spectrometry meth-
ods, including tandem MS and high-resolution MS, remain indispensable for the detection,
identification, and quantification of proteins, peptides, and amino acids due to their depth
of analysis and precision. Our findings suggest that SERS, augmented by AI-driven spectral
decomposition, offers a non-invasive, rapid approach that could enhance the proteomics
toolkit, especially in scenarios where traditional MS may be limited by sample preparation
requirements or the need for direct functional state information of proteins.

4.7. Discussion on Methodological Advantages and Limitations

From the clinical perspective, should this technique become successful, it harbors a
series of significant advantages that could benefit the landscape of molecular diagnostics
and analysis in biological laboratories. Firstly, the SERS + AI method stands out for its
non-invasiveness or minimal invasiveness, offering a stark contrast to the conventional
invasive sample collection methods. Secondly, it promises rapid analysis and results
delivery, crucial in clinical settings where timely decision-making can be crucial. Thirdly,
the technique’s potential for high specificity and sensitivity could lead to more accurate
diagnoses. Fourthly, its adaptability to various sample types broadens its application
range, making it a versatile tool in the clinical arsenal. Finally, a major benefit of an
ML-based approach is the digitalization of spectral data, which enables the creation of a
permanent record of molecular fingerprints. This not only streamlines the analytical process
by reducing the need for repeated reagent use in each test—a common requirement in
traditional methods—but also ensures the perpetual availability of molecular fingerprints
for scalable and sustainable research.

A key advantage of this technique over traditional methods used in biological labs
lies in its information richness. Whereas typical biological assays, like antigen–antibody
tests, might rely on a single dimension of data, our approach taps into a wealth of over a
thousand dimensions obtained in the spectral data. This richness in data dimensions offers
a fundamentally more nuanced view of the molecular composition of samples. However,
the advantage of information richness comes with its own set of challenges. While having
a multitude of data dimensions allows for a detailed analysis, it also raises the question of
whether this information primarily reflects the target molecules or if it’s influenced by other
factors. The crux of leveraging such information-rich technologies lies in their ability to
discern and accurately identify the molecules of interest, amidst a backdrop of potentially
confounding variables, such as the presence of impurities. Extracting the relevant factors
with a high correlation to the target condition or molecule, amidst a sea of rich but complex
data, can indeed be challenging. Another challenge is the interpretability of deep learning
models, often described as a “black box” due to their opaque nature [54,55]. In scientific
contexts, it’s crucial to understand the rationale behind model predictions, but explaining
and interpreting these predictions can be complex. Additionally, while the choice of neural
network architecture can influence accuracy, the physics of SERS signal intensity at the
molecular level may result in non-unique spectral features [2,24,56]. These challenges
require careful consideration and ongoing research.

The application of our findings may contribute positively to several areas, particu-
larly in enhancing the efficiency of proteomic analysis. The combination of SERS and AI
techniques suggests a pathway toward more precise, non-invasive diagnostics, potentially
enabling earlier detection and ongoing monitoring of diseases at a molecular level. The
specificity and sensitivity demonstrated by our model also indicate its usefulness in iden-
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tifying biomarkers, which could inform drug development and tailored treatment plans.
Moreover, the technique’s adaptability to different sample types, coupled with the reduc-
tion in preparation needs, could simplify laboratory workflows and reduce operational
costs, reflecting a logical step forward in both clinical and research environments.

Finally, our study reinforces the notion that SERS spectra are rich in biochemical
content information. This finding is crucial as it suggests that SERS can be a reliable tool
for detailed molecular analysis, capturing subtle biochemical changes that other techniques
might miss.

5. Conclusions

Our study underscores the potential of combining Surface-Enhanced Raman Spec-
troscopy (SERS) with transformer neural networks as a supplementary tool for proteomic
analysis, particularly in predicting protein compositions from SERS spectra. This novel
approach could complement established techniques such as mass spectrometry, offering
advantages in scenarios where traditional methods are limited by sample preparation
requirements or the need for direct functional state information. We highlight the impor-
tance of refining our model for improved accuracy and interpretability and emphasize
the need for ongoing efforts to enhance SERS and AI methodologies in molecular diag-
nostics. Nevertheless, we acknowledge the challenges ahead, including the critical need
for model interpretability and the adaptation to the dynamic nature of molecular struc-
tures. This study further illustrates that the information encapsulated in SERS spectra
encompasses key biochemical information from complex bioparticles. The ability of our
model to predict amino acid compositions from these spectra indicates its capacity to reveal
intricate biochemical insights that could be crucial for understanding the molecular basis
of diseases and facilitating the development of targeted therapies. Looking forward, we
advocate for collaborative research to further explore the capabilities of SERS in molecular
analysis, focusing on expanding the spectral database for proteins and peptides, refin-
ing data preprocessing techniques, and improving the model’s ability to handle complex
biological mixtures.
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