Next Article in Journal
The Autophagy-Related Protein ATG8 Orchestrates Asexual Development and AFB1 Biosynthesis in Aspergillus flavus
Next Article in Special Issue
A Taxonomic and Phylogenetic Contribution on Inosperma Section Inosperma (Agaricales, Inocybaceae) in Europe: Calamistratum and Geraniodorum Groups
Previous Article in Journal
Sequential Induction of Drug Resistance and Characterization of an Initial Candida albicans Drug-Sensitive Isolate
Previous Article in Special Issue
New Data on Boletaceae (Agaricomycetes, Basidiomycota) from Central Vietnam with Description of Two New Species and Creation of a New Combination Based on Morphological and Phylogenetic Evidence
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Four New Species and a New Combination of Boletaceae (Boletales) from Subtropical and Tropical China

1
School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
2
Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming 650500, China
3
College of Medicine, Lishui University, Lishui 323000, China
4
College of Life Sciences, Hainan Normal University, Haikou 571158, China
*
Authors to whom correspondence should be addressed.
J. Fungi 2024, 10(5), 348; https://doi.org/10.3390/jof10050348
Submission received: 3 April 2024 / Revised: 4 May 2024 / Accepted: 7 May 2024 / Published: 13 May 2024
(This article belongs to the Special Issue Taxonomy, Systematics and Evolution of Forestry Fungi, 2nd Edition)

Abstract

:
Previous studies have shown that boletes are abundant and diverse in China, especially in tropical and subtropical regions. In the present study, morphological, ecological, host relationship, and a four-locus (28S, tef1, rpb1, and rpb2) molecular phylogenetic analyses were used to study the family Boletaceae in subtropical and tropical China. Four new bluing species are described from three genera, viz. Boletellus verruculosus (Chinese name疣柄条孢牛肝菌), Xerocomellus tenuis (Chinese name细柄红绒盖牛肝菌), Xer. brunneus (Chinese name褐盖红绒盖牛肝菌), and Xerocomus zhangii (Chinese name张氏绒盖牛肝菌). Moreover, the genus Nigroboletus is treated as a synonym of Xerocomellus, and a new combination, namely Xer. roseonigrescens (Chinese name玫瑰红绒盖牛肝菌), is proposed.

1. Introduction

Boletaceae is an important group of Boletales (Basidiomycota). The majority of boletes are ectomycorrhizal fungi with favorable ecological and economic values, while a few are poisonous or bitter-tasting [1,2,3,4,5,6,7]. Besides, the taxonomy of the family Boletaceae has been a hot topic for scholars both in China and abroad.
Boletaceae was established in 1826 by the French mycologist F. F. Chevalliver. Prior to the 1980s, species identification depended on macroscopic morphological features and microscopic observations [8,9,10]. However, different scholars have given unequal weight to each characteristic, leading to continuous divergence [11,12,13,14]. In comparison to European and North American countries, early Chinese research on fungi was relatively delayed [15,16,17,18,19].
In the last two decades, enormous progress has been made in the study of boletes using the molecular criterion of polygenic genealogical concordance (GCPSR) to define species [20,21,22,23,24,25,26,27,28]. Especially in China, research on boletes has reached a climax, with the relationships between subfamilies and genera determined. Several new genera and more than 200 new species have been published [4,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43].
Currently, there are about 1200 species of boletes globally, one-third of which are confirmed to be distributed in China [37]. The distribution of the family in China is territorial, mostly in subtropical and tropical areas, with obvious regional characteristics and a few species distributed across continents [4,42,44]. However, China is a vast territory with a complex and diverse geography that harbors numerous unknown fungal species. This study aims to report new bluing boletes that are distributed in the subtropical and tropical regions of China, specifically Anhui and Yunnan Provinces. Meanwhile, the system position of Nigroboletus Gelardi, Vizzini, E. Horak, T.H. Li & Ming Zhang is rediscussed, then a synonym of Xerocomellus Šutara (Nigroboletus) and a new combination (Xer. roseonigrescens) are proposed.

2. Materials and Methods

2.1. Collection Sites and Sampling

Specimens were collected from Anhui Province and Yunnan Province in eastern and southwestern China, respectively. The fresh basidiomata were recorded and photographed in the field, then dried at about 50–60 °C for 12 h. The dried specimens were deposited at the Mycological Herbarium of Kunming Medical University (MHKMU).

2.2. Morphological Studies

Macroscopic descriptions were based on detailed notes and photographs taken of fresh basidiomata. Color codes followed Kornerup and Wanscher [45]. For microscopic studies, 5% KOH and 1% Congo red solution (w/v) were used as mounting medium and staining agent, respectively. Microscopic structures were examined under a compound light microscope (DM2500, Leica Microsystems, Wetzlar, Germany). Basidiospores of dried specimens were examined using a ZEISS Sigma 300 scanning electron microscope (Carl Zeiss AG, Oberkochen, Germany). The following notations were used in this paper: [n/m/p] denotes ‘n’ basidiospores measured from ‘m’ basidiomata of ‘p’ collections; Q means the length/width ratio of a basidiospore in side view, and Qm is the average Q of all basidiospores ± standard deviation.

2.3. DNA Extraction, Amplification, and Sequencing

The procedures for DNA extraction and PCR amplification described by Tang et al. [46] were followed. The large subunit nuclear ribosomal RNA (28S), internal transcribed spacer (ITS/5.8S rRNA), translation elongation factor 1-α gene (tef1), RNA polymerase II largest subunit (rpb1), and RNA polymerase II second-largest subunit gene (rpb2) were amplified by polymerase chain reaction (PCR) using the primer pairs LR0R/LR5, ITS5/ITS4, EF1-983F/1567R, RPB1-B-F/RPB1-B-R, and RPB2-B-F1/RPB2-B-R, respectively [35,47,48,49]. The PCR products were checked in 1% (w/v) agarose gel, and positive reactions with a bright single band were purified and then sequenced using an ABI 3730xl DNA analyzer (Sangon Biotech, Shanghai, China) with the same primers used for PCR amplification.

2.4. Dataset Assembly

Fifty-nine sequences (11 of ITS, 14 of 28S, 11 of tef1, 10 of rpb1, and 13 of rpb2) from 14 collections were newly generated. All assembled sequences were deposited in GenBank (http://www.ncbi.nlm.nih.gov, accessed on 6 May 2024) (Table 1). Due to the high variation among species, the ITS fragment is an ideal candidate for identifying the species of most fungal groups [7,46,50,51,52,53,54,55]. However, it is usually unsuitable for building a system tree, especially at high classification levels, due to alignment difficulties. Thus, in the present analysis, ITS is excluded from the concatenated dataset (28S + tef1 + rpb1 + rpb2) of the family Boletaceae. Sequences for the dataset were selected from previous studies or downloaded from GenBank using the BLAST option (Table 1). Genera phylogenetically closely related to our targeted genera (Boletellus Murrill, Xerocomellus, and Xerocomus Quél.) in Boletaceae were chosen as ingroups, and generic types in Paxillaceae were chosen as outgroups based on the analysis of Binder and Hibbett [21]. All sequences were aligned using MUSCLE v3.6 [56] and then manually adjusted on BioEdit v7.0.9 where necessary [57]. SequenceMatrix 1.7.8 was used to concatenate the four gene fragments. The single-gene phylogenetic trees were analyzed separately and are shown in Supplementary Materials.

2.5. Phylogenetic Analyses

The combined dataset was analyzed using maximum likelihood (ML) and Bayesian inference (BI). Maximum likelihood tree generation and bootstrap analysis were performed using the program RAxML7.2.6, running 1000 replicates combined with an ML search [58]. Bayesian analyses were performed using MrBayes v3.2 on the CIPRES portal [59,60]. MrModeltest 2.3 was used to estimate the optimal evolution models for each subset using the Akaike information criterion (AlC) [61]. For the combined dataset, the best-fit likelihood models of 28S, tef1, rpb1, and rpb2 were GTR + I + G, GTR + I + G, HKY + I + G, and K80 + I + G, respectively. Bayesian analysis of the combined nuclear dataset was repeated for 4 million generations and sampled at intervals of 1000. Once the average standard deviation of split frequencies went below 0.01, the run was terminated. Trees sampled from the first 25% of the generations were discarded as burn-in, and Bayesian posterior probabilities (PP) were then calculated for a majority consensus tree of the retained Bayesian trees.
Table 1. Species, isolates, locations, and GenBank accession numbers of the DNA sequences used in this study.
Table 1. Species, isolates, locations, and GenBank accession numbers of the DNA sequences used in this study.
Species NameIsolateLocalityGenBank Accession No.References
28SITStef1rpb1rpb2
Aureoboletus catenariusHKAS54463Yunnan, SW ChinaKT990509KT990710KT990890KT990348[36]
A. catenariusHKAS54467 *Yunnan, SW ChinaKT990510KT990711KT990349[36]
A. erythraeusFHMU3144 *Hainan, S ChinaMT650076MT650114[43]
A. erythraeusFHMU1053Hainan, S ChinaMT650074MT650112MT650124[43]
A. gentilisMG372aItalyKF112344KF134014KF112557KF112741[35]
A. gentilisPug1GermanyDQ534635KF030399[21]
Boletellus ananasARB1223USAKP327618KP327671[62]
Bol. ananasNY815459Costa RicaJQ924336KF112308KF112760[35]
Bol. badiovinosusREH8923AustraliaKP327640KP327693[62]
Bol. chrysenteroidesBD394USAHQ161867HQ161836[63]
Bol. chrysenteroides3838USAKF030312KF030432KF030383[64]
Bol. emodensisFHMU2031Hainan, S ChinaMW826857MW925890[42]
Bol. emodensisFHMU2245Fujian, SE ChinaMW826863MW925894MW925940[42]
Bol. nordestinusUFRN Fungos2726 *BrazilMG760444[65]
Bol. putuoensisFHMU6907 *Zhejiang, E ChinaON166664ON155822ON155834[66]
Bol. putuoensisFHMU6959Zhejiang, E ChinaON166665ON155835[66]
Bol. shoreaeAP 6679IndiaMH608211[67]
Bol. shoreaeAP 6696 *IndiaMH608210[67]
Bol. sinochrysenteroidesFHMU3264 *Jiangxi, E ChinaMW826902MW925904MW925947[42]
Bol. sinochrysenteroidesFHMU3265Zhejiang, E ChinaMW826901MW925903MW925946[42]
Bol. subglobosusFHMU3256 *Hainan, S ChinaMW826844MW925872[42]
Bol. subglobosusFHMU3257Hainan, S ChinaMW826843MW925874[42]
Bol. verruculosusMHKMU H.Y. Huang 674Yunnan, SW ChinaPP179428PP189883PP195251PP195264This study
Bol. verruculosusMHKMU H.Y. Huang 682 *Yunnan, SW ChinaPP179425PP189882PP230535PP195249PP195261This study
Bol. verruculosusMHKMU H.Y. Huang 699Yunnan, SW ChinaPP179426PP189881PP230536PP195250PP195263This study
Bol. verruculosusMHKMU Y.J. Pu 216Yunnan, SW ChinaPP179427PP189884PP230538PP195248PP195262This study
Bol. verruculosusMHKMU S. Jiang 414Yunnan, SW ChinaPP179429PP189885PP230537PP195247PP195260This study
Boletus edulisHMJAU4637RussiaKF112455KF112202KF112586KF112704[36]
B. moniliferHKAS83098ChinaKM820807KM820817[36]
B. moniliferHKAS83205ChinaKM820806KM820816[36]
B. orientialbusHKAS62907 *Fujian, SE ChinaJN563856JN563873[36]
B. orientialbusHKAS62908Fujian, SE ChinaJN563857N563874[36]
B. reticulocepsHKAS51232ChinaKT990537KT990739KT990906KT990376[36]
B. reticulocepsHKAS57671ChinaKF112454KF112201KF112648KF112703[36]
B. violaceofuscusHKAS62900ChinaJN563859KF112219KF112762[36]
B. violaceofuscusHKAS62901ChinaJN563860JN563877[36]
Gyrodon lividusREG Gl1GermanyGU187701GU187461GU187786[68]
Gyrodon sp.HKAS57588ChinaKF112348KF112275KF112640KF112817[35]
Gyrodon sp.HKAS59448ChinaKF112349KF112276KF112641KF112818[35]
Heimioporus gaojiaocongZeng2788Yunnan, SW ChinaMF962380MF962410[69]
H. gaojiaocongZeng2864Yunnan, SW ChinaMF962385MF962414[69]
H. japonicusHKAS52237Yunnan, SW ChinaKF112347KF112228KF112618KF112806[35]
H. japonicusHKAS80583Yunnan, SW ChinaKT990929KT990408[36]
H. subretisporusHKAS80581Yunnan, SW ChinaKT990573KT990769KT990407[36]
H subretisporusHKAS80582ChinaKT990574KT990770KT990409[36]
Hemileccinum impolitusHKAS84869GermanyKT990575KT990771KT990930KT990410[36]
Hem. impolitusBim1GermanyAF139715JQ327034KF030375[20]
Hem. rugosumHKAS84355 *Yunnan, SW ChinaKT990578KT990774KT990931KT990413[36]
Hem. rugosumHKAS50284ChinaKT990576KT990772KT990411[36]
Hem. subglabripes72206USAKF030303KF030404KF030374[64]
Hem. subglabripesMICH KUO-08301402USAMK601739MK721093MK766301[70]
Hortiboletus amygdalinusHKAS54166Yunnan, SW ChinaKT990581KT990777KT990933KT990416[36]
Hor. amygdalinusHKAS54242Yunnan, SW ChinaKT990580KT990776KT990415[36]
Hor. rubellusVDKO0403BelgiumMH614774[71]
Hor. rubellusMICHKUO-06081002USAMK601741MK721095MK766303[70]
Hor. subpaludosusHKAS52659Yunnan, SW ChinaKT990582KT990778KT990417[36]
Hor. subpaludosusHKAS68158Yunnan, SW ChinaKT990583KT990779KT990934KT990418[36]
Hourangia cheoiHKAS52269Yunnan, SW ChinaKF112385KF112286KF112628KF112773[72]
Hou. cheoiHKAS68306Yunnan, SW ChinaKP136950KP136929KP136972KP136980[72]
Hou. microcarpaHKAS53378Yunnan, SW ChinaKF112452KF112300KF112775[72]
Hou. nigropunctataFHMU3113Hainan, S ChinaMT650092MT650121[43]
Hou. nigropunctataFHMU2981Hainan, S ChinaMT650091MT650120[43]
Hou. nigropunctataHKAS76657Yunnan, SW ChinaKF112388KF112287KF112629KF112774[35]
Imleria badiaMB03-098aUSAKF030355KF030423KF030393[64]
I. badiaHKAS74714GermanyKC215212KC215242KC215224[73]
I. obscurebrunneaHKAS50477Yunnan, SW ChinaKC215245KC215233KC215241[73]
I. obscurebrunneaHKAS52557Yunnan, SW ChinaKC215220KC215243KC215225KC215234[73]
I. subalpinaHKAS56375Yunnan, SW ChinaKC215217KC215244KC215231KC215240[73]
I. subalpinaHKAS74712Yunnan, SW ChinaKC215218KC215246KC215230KC215239[73]
Paragyrodon sphaerosporusMB06-066USAGU187593GU187737GU187803[68]
Paxillus filamentosusPf1AF167680GU187736[74]
Pax. obscurosporusPo1GermanyKF030442[64]
Pax. vernalisAFTOL-ID 715ChinaAY645059DQ457629[35]
Phylloporus bellusHKAS56763Yunnan, SW ChinaJQ967196JQ967153[32]
P. bellusHKAS42850Yunnan, SW ChinaJQ967197JQ967154[32]
P. catenulatusHKAS76157 *BangladeshNG_059568KR094789KR094784[75]
P. catenulatusHKAS76156BangladeshKR094778KR094788KR094783[75]
P. pelletieriPp1GermanyAF456818JQ327036KF030390[76]
P. pelletieriKM128205EnglandKC215221KC215232[73]
Porphyrellus castaneusHKAS52554 *Yunnan, SW ChinaKT990697KT990883KT991026KT990502[36]
Por. castaneusHKAS63076Yunnan, SW ChinaKT990548KT990749KT990916KT990386[36]
Por. porphyrosporusDJM1332USAHQ161850HQ161819[63]
Por. porphyrosporusMB97-023GermanyDQ534643GU187734KT990933GU187800[21]
Por. scrobiculatusHKAS53366 *Fujian, SE ChinaKF112480KF112241KF112610KF112716[36]
Xerocomellus boliniiJAB_95USAMW662589MW737491MW737511MW737472[77]
Xer. boliniiJAB_43 *USAMW662587MW737509[77]
Xer. brunneusHKAS56311ChinaKF112340KF112170KF112524KF112684[36]
Xer. brunneusMHKMU L.P. Tang 3774 *Yunnan, SW ChinaPP179422PP189878PP230532PP195246PP195257This study
Xer. chrysenteronXch1AF050647KF030415KF030365[36]
Xer. chrysenteronHKAS56494GermanyKF112357KF112172KF112526KF112685[35]
Xer. communisHKAS50467 *Yunnan, SW ChinaKT990670KT990858KT991008KT990494[36]
Xer. communisHKAS68204Yunnan, SW ChinaKT990671KT990859KT991009KT990495[36]
Xer. roseonigrescensGDGM43238 *Guangdong, S ChinaNG_059586KT220595KT220591[78]
Xer. roseonigrescensZT13553Guangdong, S ChinaKT220589KT220596KT220592KT220594[78]
Xer. tenuisMHKMU L.J. Su 224Anhui, E ChinaPP179419PP189875PP230531PP195254This study
Xer. tenuisMHKMU L.J. Su 226Anhui, E ChinaPP179420This study
Xer. tenuisMHKMU J. Ma 123Anhui, E ChinaPP179421PP195244PP195255This study
Xer. tenuisMHKMU R. Xue 94Anhui, E ChinaPP179416PP189877PP230530PP195242PP195252This study
Xer. tenuisMHKMU R. Xue 95Anhui, E ChinaPP179417PP230528PP195243PP195253This study
Xer. tenuisMHKMU R. Xue 100 *Anhui, E ChinaPP179418PP189876PP230529PP195245PP195256This study
Xerocomus fraternusHKAS55328 *Yunnan, SW ChinaKT990681KT990869KT990497[36]
X. fraternusHKAS69291ChinaKT990683KT990871[36]
X. fulvipesHKAS52556Yunnan, SW ChinaKT990672KT990860KT991010[36]
X. fuscatusHKAS54753Yunnan, SW ChinaKT990680KT990868KT991016[36]
X. fuscatusHKAS53374Fujian, SE ChinaKT990679KT990867KT991015[36]
X. galbanusHKAS76666Henan, C ChinaKF112390KF112292KF112631KF112789[36]
X. galbanusBJTC FM1790 *Shanxi, N ChinaOR655217OR660016OR659968[79]
X. magniporusHKAS58000ChinaKF112392KF112293KF112632KF112781[35]
X. rugosellusHKAS68292Yunnan, SW ChinaKT990686KT990873KT991019[36]
X. rugosellusHKAS58865ChinaKF112389KF112294KF112630KF112784[35]
Xerocomus sp.HKAS76853Guizhou, SW ChinaKF112394KF112296KF112635KF112783[35]
X. subsplendidusHFJAU12009Jiangxi, E ChinaOQ146969OQ162212[80]
X. subsplendidusHFJAU12010 *Jiangxi, E ChinaOQ146970OQ162213[80]
X. subtomentosusKM168813EnglandKC215223KC215249[73]
X. subtomentosusXs1GermanyAF139716JQ327035KF030391[20]
X. velutinusHKAS68135 *Yunnan, SW ChinaKT990673KT990861KT991011[36]
X. velutinusHKAS52575Yunnan, SW ChinaKF112393KF112295KF112633KF112782[36]
X. zhangiiMHKMU L.J. Su 225 *Anhui, E ChinaPP179423PP189879PP230533PP195258This study
X. zhangiiMHKMU L.J. Su 225-1Anhui, E ChinaPP179424PP189880PP230534PP195259This study
Notes: C = Central, E = Eastern, N = Northern, S = Southern, SE = Southeastern, SW = Southwestern; * holotype; newly obtained sequences are in boldface.

3. Results

3.1. Molecular Data

The combined dataset (28S + tef1 + rpb1 + rpb2) includes 112 taxa with 3601 nucleotide sites, and the alignment is available at TreeBase (Accession 31120). The tree topologies generated by the BI and ML analyses are almost identical, while the statistical support for certain relationships is slightly different. The ML tree inferred using RAxML is shown, together with the support values (Figure 1). On the basis of the molecular tree, our specimens form species-level lineages, which belong to three genera.
In the Boletellus clade, the first new species, Bol. verruculosus, is strongly supported (BS = 100, PP = 1) as an independent branch, with Bol. putuoensis N.K. Zeng, Yi Li, Chang Xu, Xu Zhang & J.R. Wang as its sister group (BS = 100, PP = 1). In the Xerocomellus group, our specimens form two lineages. The second new taxon, Xer. brunneus, including HKAS56311 and our collection (MHKMU L.P. Tang 3774), forms a separate branch with strong statistical support (BS = 100, PP = 1), and clusters as a sister clade to Xer. bolinii J.A. Bolin, A.E. Bessette, A.R. Bessette, L.V. Kudzma, J.L. Frank & A. Farid with weakly statistical support (BS = 64). The third new taxon, Xer. tenuis, including two collections (MHKMU R. Xue 100 and MHKMU R. Xue 94), is strongly supported as an independent branch with strong statistical support (BS = 100, PP = 1) (Figure 1). Unexpectedly, the type species of the genus Nigroboletus forms a lineage within the species of Xerocomus, with strong statistical support (BS = 100, PP = 1). In the Xerocomus clade, the fourth new taxon, X. zhangii, including two collections (MHKMU L.J. Su 225 and 225-1), forms a separate branch with strong statistical support (BS = 100, PP = 1) and clusters with X. fulvipes Xue T. Zhu & Zhu L. Yang and X. galbanus L. Fan, N. Mao & T.Y. Zhao (BS = 100, PP = 1).

3.2. Taxonomy

  • Boletellus Murrill, Mycologia 1: 9. 1909.
  • Boletellus, typified by Bol. ananas (M.A. Curtis) Murrill, is characterized by pileus covered with erect, conical, or appressed scales, yellow tined hymenophore usually turning blue immediately or sometimes unchanging when injured, and striate basidiospores with or without cross-striations on ridges [36,42,62].
Boletellus verruculosus L.P. Tang & R. Xue sp. nov. (Figure 2).
MycoBank: MB 851814.
Chinese Name: 疣柄条孢牛肝菌
Etymology: Latin “verruculosus”, refers to the warty scales on the stipe.
Diagnosis: Differs from other species by a brown-toned pileus, the hymenophore and context turning blue and then light brown when injured, distinctly striate basidiospores without cross-striations on ridges, and a pileipellis composed of chains of subglobose to broadly subcylindrical cells up to 19.5 μm.
Typification: CHINA. Yunnan Province: Nanhua Prefecture (南华县), near the Ma’anshan Tunnel (近马鞍山隧道), elev. 2150 m, 3 August 2020, H.Y. Huang 682 (MHKMU H.Y. Huang 682, holotype). GenBank: 28S = PP179425; ITS = PP189882; tef1 = PP230535; rpb1 = PP195249; rpb2 = PP195261.
Basidiomata small-sized. Pileus 3–5 cm diam., convex to subhemispherical, margin uneven; surface dry, tomentose, velvety, brown (6D3, 6D6), cocoa brown (6E4–6E6) to dark brown (6F8); context about 0.4–0.8 cm thick, yellowish white (1A2), turning blue, then changing brown when injured. Hymenophore poroid, depressed around apex of stipe; pores angular to subround, 0.1 cm diam., yellow (1A4, 2A4) to pale yellowish green (29A6), turning blue, then changing brown when injured; tubes 0.4–1.1 cm in length, concolorous with pores, turning blue, then changing brown when injured. Stipe 5.5–8 × 0.5–0.9 cm, central, subcylindrical, solid, flexuous, sometimes enlarged at base; surface dry, yellowish white (3A2), caramel brown (6C6), grayish orange (6B5) to violet brown (10F6), covered with longitudinal stripes and cognac (6E7) to raw umber (5F8) warty scales, sometimes with yellowish brown (5E8–5F8) droplets at the base; context yellowish white (1A2) to yellow (2A6), reddish brown (8D6) to dull violet (15E4) at the base, turning blue, then changing light brown when injured; annulus absent; basal mycelium yellowish white (1A2) to sand (4B3). Odor indistinct.
Basidia 29.5–43.5 × 12–16 μm, clavate, thin-walled, 4-spored, colorless, light yellow to yellowish brown in KOH; sterigmata 3.5–6 μm in length. Basidiospores [100/5/5] (10–)10.5–14.5(–16) × (5–)5.5–7 μm, Q = (1.67–)1.77–2.36(–2.46), Qm = 2.05 ± 0.18, yellowish to yellowish brown in KOH, ellipsoid to subfusiform, with longitudinal or oblique ridges, 7–10 ridges visible in lateral view; ridges continuous or forked, united at the apex, projecting about 0.5 μm, without cross-striations on the ridges observed under the light microscope. Hymenophoral trama phylloporoid to intermediate, composed of hyphae 3.5–14.5 μm wide, colorless in KOH. Cheilocystidia 29–49 × 9.5–16.5 μm, abundant, subfusiform, fusiform, or subclavate, thin-walled, colorless to yellow in KOH, no encrustations. Pleurocystidia 32–58 × 10–18 μm, abundant, subfusiform or fusiform, thin-walled, colorless to yellow in KOH, no encrustations. Pileipellis epithelioid type, about 330 μm in thickness, composed of chains of subglobose to broadly subcylindrical cells up to 19.5 μm in width arising from filamentous hyphae, thin- to slightly thick-walled (up to 0.5 μm), light yellow to yellow in KOH; terminal cells 15–36 × 3.5–12 μm, subpyriform, clavate to subcylindrical, with obtuse apex. Pileus trama composed of interlaced, occasionally branched filamentous hyphae 5–15 μm diam., subcylindrical, thin-walled, yellowish in KOH. Stipitipellis hymeniform, about 100 μm in thickness, terminal cells 20.5–52.5 × 6–17.5 μm, subclavate, subfusiform or subcylindrical, light yellow to yellow in KOH, and usually with clavate, four-spored basidia. Stipe trama composed of longitudinally arranged, parallel hyphae 3–12.5 μm diam., cylindrical, thin- to slightly thick-walled, colorless in KOH. Clamp connections absent in all tissues.
Habitat: Solitary on the ground in mixed coniferous forests dominated by Pinus yunnanensis Franch., Pin. armandii Franch., including Fagaceae and Ericaceae.
Known distribution: Currently only known in Yunnan Province (elevation 2000–2400 m), southwestern China.
Additional specimens examined: CHINA. Yunnan Province: Jianchuan Prefecture (剑川县), Shaxi Town (沙溪镇), elev. 2400 m, 15 September 2019, Y.J. Pu 216 (MHKMU Y.J. Pu 216); Nanhua Prefecture (南华县), Longchuan Town (龙川镇), elev. 2130 m, 2 August 2020, H.Y. Huang 674 (MHKMU H.Y. Huang 674); Chuxiong city (楚雄市), Zixi Mountain Scenic Area (紫溪山风景区), elev. 2170 m, 4 August 2020, H.Y. Huang 699 (MHKMU H.Y. Huang 699); Qujing City (曲靖市), Dadidishui Forest Farm (大滴滴水林场), elev. 2050 m, 3 October 2021, S. Jiang 414 (MHKMU S. Jiang 414).
Notes: Boletellus verruculosus is both morphologically similar and molecularly related to Bol. putuoensis. However, the latter has cyanescent context and hymenophore, smaller basidiospores measuring 8.5–11 × 4–5 μm, and a pileipellis composed of filamentous hyphae (6–12 µm) [66].
Morphologically, Boletellus verruculosus is similar to Bol. badiovinosus E. Horak and Bol. shoreae A. Parihar, K. Das & Vizzini. due to the brown-toned pileus. However, Bol. badiovinosus has cyanescent context and tubes, relatively shorter basidiospores measuring 10−12 × 5−7 μm, and a distribution in Papua New Guinea [81]; Bol. shoreae has a brownish red to reddish brown pileus, cyanescent hymenophore, shorter basidiospores measuring 8–11 × 5.3–7.6 μm, and a distribution in India [67].
Boletellus verruculosus is also easily confused with Bol. chrysenteroides (Snell) Snell, Bol. nordestinus A.C. Magnago, Bol. pseudochrysenteroides A.H. Sm. & Thiers, and Bol. sinochrysenteroides N.K. Zeng, R. Xue & Kuan Zhao. However, Bol. chrysenteroides is different in its cyanescent tubes, larger basidiospores measuring 12−16 × 4.6−7.5 μm, and a distribution in North America [82]; Bol. pseudochrysenteroides is different in its larger basidioma, dark rose red pileus, and a distribution in North America [82]; Bol. sinochrysenteroides is different in its cyanescent hymenophore and context, with larger basidiospores with cross-striations on ridges (11.5−15.5 × 6.5−8 μm) [42]; Bol. nordestinus differs from other species in its non-cyanescent context and tubes, shorter basidiospores measuring 8−10 × 6−7 μm, and a distribution in South America [65].
  • Xerocomellus Šutara, Czech Mycol. 60: 44. 2008.
  • Xerocomellus, typified by Xer. chrysenteron (Bull.) Šutara. This genus is characterized by its usually cracked, subtomentose, brown, red to purple red tined pileus, hymenophore usually turning blue distinctly or sometimes unchanging when injured, relatively large pores, smooth to ornamented basidiospores [26,36,77,83].
Xerocomellus roseonigrescens (Gelardi, Vizzini, E. Horak, T.H. Li & Ming Zhang) L.P. Tang & R. Xue comb. nov.
MycoBank: MB 851818.
Chinese Name: 玫瑰红绒盖牛肝菌
Basionym: Nigroboletus roseonigrescens Gelardi, Vizzini, E. Horak, T.H. Li & Ming Zhang, PLOS ONE 10(8): e0134295. 2015.
Known distribution: Currently known in Guangdong and Guizhou Provinces, southern and southwestern China (elevation about 280–800 m) [78,84].
Holotype: GDGM43238 (Guangdong Province, China).
Notes: Nigroboletus roseonigrescens was originally proposed as the type species of the monotypic genus Nigroboletus [78]. However, our molecular phylogeny reveals that this species should be a member of Xerocomellus, although no close relatives have been found yet (Figure 1). Morphologically, N. roseonigrescens also shares the discoloration-prone basidiomata, velvety pileus surface, yellow-tinted pores, and context with Xerocomellus species. Thus, Nigroboletus should be treated as a synonym of the genus Xerocomellus, and the type species of this genus should be treated as a new combination, namely Xer. roseonigrescens. This taxon can be easily separated from other species in the pastel pink pileus, the dull grayish to blackish discoloration of the basidiomata tissues when injured [78].
Xerocomellus tenuis L.P. Tang & R. Xue sp. nov. (Figure 3).
MycoBank: MB 851815.
Chinese Name: 细柄红绒盖牛肝菌
Etymology: Latin “tenuis”, refers to the slender stipe.
Diagnosis: Differs from other species by a very small-sized basidioma, a cracked pileus covered with reddish appressed scales, a grayish yellow to brick red hymenophore, a yellowish brown to reddish brown stipe, and a pileipellis composed of inflated hyphae.
Typification: CHINA. Anhui Province: Shitai Prefecture (石台县), Qidu Town (七都镇), Huanghe Village (黄河村), elev. 160 m, 2 August 2022, R. Xue 100 (MHKMU R. Xue 100, holotype). GenBank: 28S = PP179418; ITS = PP189876; tef1 = PP230529; rpb1 = PP195245; rpb2 = PP195256.
Basidiomata very small-sized. Pileus 1.8–2.7 cm diam., subhemispherical to applanate, margin decurved; surface dry, velvety, cracked, densely covered with cocoa brown (6E6), brownish orange (7C7), brick red (7D6–7), reddish brown (8E8) to dark brown (7F8) appressed scales; context about 0.2–0.4 cm thick in the center of the pileus, pale yellow (2A3), turning blue strongly and quickly, then appearing white under the cyanescence when injured. Hymenophore poroid, depressed around apex of stipe, occasionally 1 mm beyond the cap edge; pores angular to irregular, 0.05–0.15 cm diam., grayish yellow (2B4, 4B4), grayish orange (5B5) to brick red (7D7), turning blue strongly and quickly when injured; tubes 0.2–0.4 cm in length, concolorous with pores, turning blue strongly and quickly when injured. Stipe 2–3.5 × 0.2–0.4 cm, central, subcylindrical, solid, flexuous; surface dry, yellowish brown (4B5) to dead leaf (6D7), grayish red (10D5) to reddish brown (9D7), covered with weakly longitudinally stripes or brown (5D6) to dark brown (9F8) scales, pale yellow (1A2) to yellow (2A4) at apex; context pale yellow (2A3) to yellow (4A5), turning blue strongly and quickly in the upper part, brown (5D7) in the lower part when injured; annulus absent; basal mycelium yellowish white (1A2). Odor fresh.
Basidia 24–38 × 8–12 μm, clavate, thin-walled, 4-spored, colorless to yellowish in KOH; sterigmata 4–6 μm in length. Basidiospores [120/6/4] (9–)9.5–12(–13) × 4–5 μm, Q = (1.98–)2.1–2.75(–3.0), Qm = 2.43 ± 0.22, smooth, cylindrical, light yellow to yellowish brown in KOH. Hymenophoral trama phylloporoid, composed of hyphae 4.5–9 μm wide, colorless in KOH. Cheilocystidia 26–38 × 7.5–10 μm, abundant, subfusiform or fusiform, thin-walled, colorless to yellow in KOH, no encrustations. Pleurocystidia 36–62 × 8–12.5 μm, abundant, fusiform or subfusiform, thin-walled, colorless to yellow in KOH, no encrustations. Pileipellis palisadodermal type, about 205 μm in thickness, composed of more or less vertically arranged hyphae, expanded to 17 μm wide, occasionally 20 μm, thin- to slightly thick-walled (up to 0.5 μm), yellowish to yellowish brown in KOH; terminal cells 19–55 × 6–15 μm, subcylindrical, subconical, subpyriform to irregular, with acute apex. Pileus trama composed of interlaced hyphae 4–16 μm wide, subcylindrical, thin-walled, colorless to yellowish in KOH. Stipitipellis hymeniform, about 125 μm in thickness, terminal cells 15–50 × 4–14 μm, subclavate, subfusiform or subcylindrical, yellowish to yellowish brown in KOH, and with clavate, four-spored basidia. Stipe trama composed of longitudinally arranged, parallel hyphae 3–10 μm wide, cylindrical, thin-walled, light yellow in KOH. Clamp connections absent in all tissues.
Habitat: Solitary to gregarious on the rock moss or the ground in broad-leaved forests dominated by Fagaceae trees, e.g., Cyclobalanopsis glauca (Thunb.) Oerst., Castanea seguinii Dode, Lithocarpus brevicaudatus (Skan) Hay, and Liquidambar formosana Hance.
Known distribution: Currently only known in Anhui Province (elevation 160–200 m), eastern China.
Additional specimens examined: CHINA. Anhui Province: Shitai Prefecture (石台县), Qidu Town (七都镇), Yuantou Village (源头村), elev. 200 m, 1 August 2022, R. Xue 94, 95 (MHKMU R. Xue 94, MHKMU R. Xue 95); Qidu Town (七都镇), Xiaohekou Village (小河口村), elev. 190 m, 3 August 2022, L.J. Su 224, 226 (MHKMU L.J. Su 224, MHKMU L.J. Su 226), J. Ma 123 (MHKMU J. Ma 123).
Notes: Xerocomellus tenuis is molecularly related to Xer. bolinii and Xer. brunneus, while no sister taxa have been identified. However, Xer. bolinii has a larger basidioma, an appressed-fibrillose to squamulose pileus with pinkish brown fibrils, a pileipellis composed of filamentous hyphae, and a distribution in southeastern USA [77]; Xer. brunneus has a relatively larger basidioma, a rose-toned stipe, a pileipellis composed of filamentous hyphae, and a distribution in southwestern China (see below).
Morphologically, the species is similar to Xerocomellus corneri Xue T. Zhu & Zhu L. Yang and Xer. carmeniae Garza-Ocañas, J. García & de la Fuente in the size and the color of the pileus. However, Xer. corneri has a larger basidioma, a red brown to dull brown pileus, and a purple-toned stipe [36]; Xer. carmeniae has a yellowish to grayish green hymenophore, wider basidiospores measuring 10.5–13.6 × 5.7–7.8 µm, and a distribution in northeastern Mexico [83].
Xerocomellus brunneus L.P. Tang & R. Xue sp. nov. (Figure 4).
MycoBank: MB 851816.
Chinese Name: 褐盖红绒盖牛肝菌
Etymology: Latin “brunneus”, refers to the brown pileus.
Diagnosis: Differs from other species by a cracked, velvety brown pileus, a cyanescent hymenophore and context, a rose-tinted stipe covered with longitudinal stripes, and a pileipellis composed of filamentous hyphae.
Typification: CHINA. Yunnan Province: Qujing City (曲靖市), Haizhai Forest Farm (海寨林场), elev. 2130 m, 2 October 2021, L.P. Tang 3774 (MHKMU L.P. Tang 3774, holotype). GenBank: 28S = PP179422; ITS = PP189878; tef1 = PP230532; rpb1 = PP195246; rpb2 = PP195257.
Basidiomata small-sized. Pileus 5 cm diam., applanate; surface dry, velvety, cracked, olive brown (4D4), slightly reddish (9A2); context yellowish white (1A2), turning blue quickly and strongly, then appearing white under cyanescence when injured. Hymenophore poroid, depressed around apex of stipe; pores angular to irregular, light yellow (3A5), turning blue quickly and strongly when injured; tubes 0.5 cm in length, concolorous with pores, turning blue quickly and strongly when injured. Stipe 4.5 × 0.8 cm, central, subcylindrical, solid; surface dry, light yellow (3A5) to olive (3D5), titian red (7D6) to mauve (12B5), yellowish white (1A2) at base, covered with longitudinal stripes; context pale yellow (1A3), mustard yellow (3B6) at base, turning blue in the upper part when injured; annulus absent; basal mycelium grayish yellow (4B4).
Basidia 24–37 × 10–13.5 μm, clavate, thin-walled, 4-spored, colorless to yellowish in KOH; sterigmata 3–6 μm in length. Basidiospores [20/1/1] 10.5–13.5 × 4.5–5.5 μm, Q = 2.09–3.0, Qm = 2.44 ± 0.26, smooth, ellipsoid, light yellow to yellowish brown in KOH. Hymenophoral trama phylloporoid, composed of hyphae 3–14 μm wide, colorless to yellowish in KOH. Cheilocystidia 22.5–54 × 7.5–12.5 μm, abundant, subfusiform or fusiform, thin- to slightly thick-walled (up to 0.5 μm), colorless to pale yellow in KOH, no encrustations. Pleurocystidia 46–72 × 7.5–15.5 μm, abundant, subfusiform or subhourglass-shaped, thin- to slightly thick-walled (up to 0.5 μm), colorless to pale yellow in KOH, no encrustations. Pileipellis trichodermal type, about 370–450 μm in thickness, composed of filamentous hyphae 5.5–12.5 μm wide, yellowish to yellowish brown, terminal cells 18.5–42 × 4.5–11 μm, subclavate or subcylindrical, with obtuse apex. Pileus trama composed of interlaced hyphae 3.5–12.5 μm wide, subcylindrical, thin-walled, yellowish to yellowish brown in KOH. Stipitipellis a trichoderm-like structure about 60–150 μm in thickness, composed of filamentous hyphae and emergent hyphae with subclavate, subfusiform or subcylindrical terminal cells (16.5–68 × 8–16 μm), and with clavate, four-spored basidia, yellowish to yellowish brown in KOH. Stipe trama composed of longitudinally arranged, parallel hyphae 4.5–12 μm wide, cylindrical, thin-walled, colorless to light yellow in KOH. Clamp connections absent in all tissues.
Habitat: Solitary on the ground in broad-leaved forests dominated by Cyclobalanopsis Oerst. trees, and a small amount of Pinus armandii.
Known distribution: Currently only known in Yunnan Province (elevation 2130 m), southwestern China.
Notes: Molecularly, Xerocomellus brunneus is closely related to Xer. bolinii and Xer. tenuis. However, Xer. bolinii has a pinkish brown pileus and stipe and is distributed in southeastern USA [77]; Xer. tenuis has a very small basidioma with reddish brown-toned pileus and stipe, and a pileipellis with inflated hyphae (See above).
Morphologically, Xerocomellus brunneus shares a color similar to that of the pileus and stipe with three North American species, viz. Xer. atropurpureus J.L. Frank, N. Siegel & C.F. Schwarz, Xer. mendocinensis (Thiers) N. Siegel, C.F. Schwarz & J.L. Frank, and Xer. zelleri (Murrill) Klofac. However, Xer. atropurpureus is different in its purple-toned pileus, and non-cyanescent or sometimes staining blue pores [26]; Xer. mendocinensis is different in its gray to dark olive-brown pileus, and a stipe cover with distinct punctations [26]; Xer. zelleri is different in its gray to dark vinaceous black pileus, and non-cyanescent pores [26].
  • Xerocomus Quél. Fl. Vosges, Champ.: 477. 1887.
  • Xerocomus, typified by X. subtomentosus (L.) Quél. This genus differs from other genera in its tomentose pileus, relatively large pores, yellowish hymenophore, and context usually slightly turning blue or sometimes unchanging when injured, basidiospores with bacillate surface ornamentation, or sometimes smooth under SEM [36,42].
Xerocomus zhangii L.P. Tang, R. Xue & L.J. Su sp. nov. (Figure 5).
MycoBank: MB 851817.
Chinese Name: 张氏绒盖牛肝菌
Etymology: Latin “zhangii”; is named after the family name of the selfless senior Mr. Chengyu Zhang (张澄宇), in appreciation of his help in collecting specimens in Anhui Province, as well as his contributions to and efforts in the development of the wild mushroom industry in Anhui and Yunnan Provinces.
Diagnosis: Differs from other species by a light brown to yellowish brown pileus, cyanescent context and hymenophore, a pale yellow to reddish stipe covered with longitudinal stripes.
Typification: CHINA. Anhui Province: Shitai Prefecture (石台县), Qidu Town (七都镇), Xiaohekou Village (小河口村), elev. 190 m, 3 August 2022, L.J. Su 225 (MHKMU L.J. Su 225, holotype). GenBank: 28S = PP179423; ITS = PP189879; tef1 = PP230533; rpb2 = PP195258.
Basidiomata small- to medium-sized. Pileus up to 6 cm diam., applanate; surface dry, velvety, grayish yellow (1B4), slightly reddish (5C4); context to 0.8 cm thick in the center of pileus, yellowish white (1A2), turning blue slowly, then fading later when injured. Hymenophore poroid, depressed around apex of stipe; pores 1 mm diam., angular to irregular, olive yellow (2C7), turning blue when injured; tubes up to 1 cm in length, concolorous with pores, turning blue when injured. Stipe 6.5 × 0.9 cm, central, subcylindrical, solid; surface dry, pale yellow (1A2) to reddish (5C4), covered with longitudinal stripes; context pale yellow (1A2) to reddish (5C4), turning blue when injured near the apex; annulus absent; basal mycelium white (1A1). Odor fragrant.
Basidia 20–33.5 × 8–12.5 μm, clavate, thin-walled, 4-spored, colorless to yellowish in KOH, occasionally with yellow pigments in the upper half; sterigmata 3–5 μm in length. Basidiospores [60/3/2] (8.5–)9–11.5(–12) × 4–5 μm, Q = 2.00–2.44(–2.63), Qm = 2.26 ± 0.14, yellowish to yellow in KOH, subfusiform to ellipsoid, with bacillate surface ornamentation under SEM. Hymenophoral trama phylloporoid, composed of hyphae 3.5–14.5 μm wide, colorless in KOH. Cheilocystidia 34–50 × 10.5–18 μm, abundant, fusiform to subfusiform, thin-walled, colorless in KOH, occasionally with yellow encrustations in the upper half. Pleurocystidia 45.5–71 × 10.5–19.5 μm, abundant, subfusiform or fusiform, thin-walled, colorless in KOH, occasionally with yellow encrustations in the upper half. Pileipellis epithelioid type, about 450 μm in thickness, composed of chains of subglobose to broadly subcylindrical cells up to 17 μm, thin- to slightly thick-walled (up to 0.5 μm), colorless to light yellow in KOH; terminal cells 13–46.5 × 8–17 μm, subpyriform, clavate to subglobose, with obtuse apex. Pileus trama composed of interlaced, branched, filamentous hyphae 7.5–14.5 μm wide, subcylindrical, thin- to slightly thick-walled (up to 0.5 μm), colorless in KOH. Stipitipellis hymeniform, about 200 μm in thickness, terminal cells 14–35 × 6.5–11 μm, subclavate to subfusiform, light yellow to yellow in KOH, and with clavate, four-spored basidia. Stipe trama composed of longitudinally arranged, parallel hyphae 5–17 μm diam., cylindrical, thin- to slightly thick-walled (up to 0.5 μm), colorless in KOH. Clamp connections absent in all tissues.
Habitat: Solitary on the ground in broad-leaved forests dominated by Fagaceae trees, e.g., Cyclobalanopsis glauca, Castanea seguinii, Lithocarpus brevicaudatus, and Liquidambar formosana.
Known distribution: Currently only known in Anhui Province (elevation about 200 m), eastern China.
Other specimens examined: CHINA. Anhui Province: Shitai Prefecture (石台县), Qidu Town (七都镇), Xiaohekou Village (小河口村), elev. 190 m, 3 August 2022, L.J. Su 225-1 (MHKMU L.J. Su 225-1).
Notes: Xerocomus zhangii is both morphologically similar and molecularly related to X. fulvipes and X. galbanus. However, X. fulvipes has a pale yellow-brown to pale red-brown pileus, a reddish brown stipe and narrower cystidia (35–72 × 8–14 μm) [36]; X. galbanus has a grayish white to pale yellow-brown pileus, non-cyanescent context, and larger basidiospores measuring 13–15 × 4.5–6 μm [79].
Xerocomus zhangii is also similar to X. albotomentosus N.K. Zeng, H.J. Xie, Chang Xu & Zhi Q. Liang, X. fraternus Xue T. Zhu & Zhu L. Yang, X. rugosellus (W.F. Chiu) F.L. Tai, and X. subtomentosus (L.) Quél. However, X. albotomentosus has a yellowish brown to dark brown pileus, non-cyanescent context, and a stipe base covered with obvious white villous mycelia [42]; X. fraternus has a yellowish brown to dull brown pileus, and a stipe without reddish tinge [36]; X. rugosellus has a green yellow hymenophore, non-cyanescent pores and context [15]; X. subtomentosus has a larger basidioma (up to 15 cm), brownish yellow to greenish yellow pores when aged, and larger basidiospores measuring 9.8–14.8 × 3.9–6 μm [85].

4. Discussion

Boletes are widely distributed in the subtropical and tropical regions of China. In the present study, we propose four new species, a new combination, and treat Nigroboletus as a synonym for Xerocomellus based on a comprehensive analysis of morphology, molecular biology, habitat, and host relationships.
Xerocomus fulvipes (Holotype HKAS68246) was originally described from Yunnan Province and also reported from Henan Province by Wu et al. in 2016 [36]. However, HKAS52556 from Yunnan Province was mislabeled as the holotype of this species in the molecular tree [36], and no sequence of the type specimen for this species could be found in GenBank. Recently, a new species, X. galbanus, described from Shanxi Province, was found to be closely related to X. fulvipes (HKAS52556) [79]. Interestingly, the specimen (HKAS76666, Henan Province) previously identified as X. fulvipes by Wu et al. in 2016 [36] clusters with the type specimen of X. galbanus in our molecular tree. Therefore, according to the current data, X. fulvipes is distributed only in Yunnan Province, southwestern China, while X. galbanus is distributed in Henan and Shanxi Provinces, central and northern China.
Xerocomellus was originally erected to accommodate Xer. chrysenteron and its relatives in 2008 [86]. The majority of species in this genus are distributed in North America and Europe [26,87,88,89], whereas just two species have been identified in China, viz. Xer. communis Xue T. Zhu & Zhu L. Yang and Xer. corneri [36]. In the present study, two new species of Xerocomellus were discovered in Anhui and Yunnan Provinces, increasing the species diversity of the genus in China.
Nigroboletus was proposed to accommodate N. roseonigrescens, a species described from tropical China [78]. Later, Farid et al. [77] built a relatively well-developed molecular tree comprising a wider range of species and showed that Nigroboletus is strongly supported as the base of all Xerocomellus sequences. Furthermore, our phylogenetic analysis indicates that Nigroboletus is embedded in the Xerocomellus lineage (Figure 1). Morphologically, Nigroboletus also shares some common characteristics with Xerocomellus, such as discoloration-prone basidiomata, velvety pileus surface, yellow-tinted pores and context, and the absence of reticulation on the stipe surface. Thus, we propose that Nigroboletus is improper as a separate genus and that it should be a synonym of Xerocomellus.
Sometimes, simple molecular phylogenetic analyses may reveal the wrong phylogenetic position of species, and similar faults have also occurred in other fungal groups. Shen et al. [90] conducted a systematic study of the genus Hyphodermella J. Erikss. & Ryvarden and suggested that as many integrated taxa as possible should be sampled for molecular phylogenetic analyses to avoid data limitations, especially when proposing new monotypic families or genera.

Supplementary Materials

The following are available online at: https://www.mdpi.com/article/10.3390/jof10050348/s1, Supplementary PDF S1: Figure S1. Phylogenetic tree of Boletaceae based on 28S dataset; Figure S2. Phylogenetic tree of Boletaceae based on tef1 dataset; Figure S3. Phylogenetic tree of Boletaceae based on rpb1 dataset; Figure S4. Phylogenetic tree of Boletaceae based on rpb2 dataset.

Author Contributions

Conceptualization, L.-P.T. and N.-K.Z.; Methodology, R.X., G.-L.Z., and L.-P.T.; Formal Analysis, R.X., L.-J.S., G.-L.Z., and T.-J.Y.; Resources, L.-J.S., R.X., H.-Y.H., C.X., and L.-P.T.; Writing—Original Draft Preparation, R.X.; Writing—Review and Editing, R.X., G.-L.Z., and L.-P.T. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by the National Natural Science Foundation of China under Grant Nos. 32360001 and 31960007; the Programme Innovative Research Team in Science and Technology in Yunnan Province under Grant No. 202005AE160004; and Research Project on Undergraduate Educational and Teaching Reforms in Yunnan Province (JG2023001).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The data obtained in this study have been publicly uploaded to NCBI GenBank, Treebase, and MycoBank.

Acknowledgments

We thank the government of Shitai County, Anhui Province, Cheng-Yu Zhang, and the forest rangers for their help in collecting the samples. We thank Jing Ma and Shuai Jiang from our laboratory for providing the fungal samples. The authors acknowledge the assistance of Zhi-Jia Gu from the Kunming Institute of Botany for conducting scanning electron microscope (SEM) photography.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Dimitrijevic, M.; Jovanovic, V.S.; Cvetkovic, J.; Mihajilov-Krstev, T.; Stojanovic, G.; Mitic, V. Screening of antioxidant, antimicrobial and antiradical activities of twelve selected Serbian wild mushrooms. Anal. Methods 2015, 7, 4181–4191. [Google Scholar] [CrossRef] [PubMed]
  2. Dimitrijević, M.; Stankov Jovanović, V.; Cvetković, J.; Mitić, M.; Petrović, G.; Đorđević, A.; Mitić, V. Phenolics, antioxidant potentials, and antimicrobial activities of six wild Boletaceae mushrooms. Anal. Lett. 2017, 50, 1691–1709. [Google Scholar] [CrossRef]
  3. Wu, F.; Zhou, L.W.; Yang, Z.L.; Bau, T.; Li, T.H.; Dai, Y.C. Resource diversity of Chinese macrofungi: Edible, medicinal and poisonous species. Fungal Divers. 2019, 98, 1–76. [Google Scholar] [CrossRef]
  4. Li, Y.C.; Yang, Z.L. The Boletes of China: Tylopilus sl; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–418. ISBN 9811629862. [Google Scholar]
  5. Naksuwankul, K.; Thongbor, A.; Chantharasena, C.; Khottawong, W.; Parnmen, S.; Nooron, N.; Sikaphan, S.; Leudang, S.; Kongdang, P.; Khamenkhetkarn, M. Identification by Morphological and Local Wisdom and Distribution of Poisonous and Edible Mushroom in Thailand. Burapha Sci. J. 2022, 27, 66–84. [Google Scholar]
  6. Li, H.; Zhang, Y.; Zhang, H.; Zhou, J.; Liang, J.; Yin, Y.; He, Q.; Jiang, S.; Zhang, Y.; Yuan, Y. Mushroom Poisoning Outbreaks—China, 2022. China CDC Wkly. 2023, 5, 45–55. [Google Scholar] [CrossRef]
  7. Ma, J.; Xia, J.; Li, H.J.; Su, L.J.; Xue, R.; Jiang, S.; Yu, T.J.; Liu, Y.; Tang, L.P. Four cases of reported adverse effects from black boletoi, Anthracoporus nigropurpureus (Boletaceae) mushroom ingestion. Toxicon 2023, 230, 107155. [Google Scholar] [CrossRef] [PubMed]
  8. Persoon, C.H. Mycologia Europaea; impensibus I. I. Palmii: Cambridge, MA, USA, 1822. [Google Scholar]
  9. Peck, C.H. Boleti of the United States; University of the State of New York: New York, NY, USA, 1889. [Google Scholar]
  10. Murrill, W.A. The Boletaceae of North America—I. Mycologia 1909, 1, 4–18. [Google Scholar] [CrossRef]
  11. Snell, W.H. The genera of the Boletaceae. Mycologia 1941, 33, 415–423. [Google Scholar] [CrossRef]
  12. Singer, R. The Boletoideae of Florida with notes on extralimital species III. Am. Midl. Nat. 1947, 37, 1–135. [Google Scholar] [CrossRef]
  13. McNabb, R. The Strobilomycetaceae of New Zealand. N. Z. J. Bot. 1967, 5, 532–547. [Google Scholar] [CrossRef]
  14. Pegler, D.; Young, T. A natural arrangement of the Boletales, with reference to spore morphology. Trans. Br. Mycol. Soc. 1981, 76, 103–146. [Google Scholar] [CrossRef]
  15. Chiu, W.F. The Boletes of Yunnan. Mycologia 1948, 40, 199–231. [Google Scholar] [CrossRef]
  16. Teng, S.C. Fungi of China; Science Press: Beijing, China, 1963; pp. 1–586. ISBN 0-930845-05-6. [Google Scholar]
  17. Zang, M. Notes on the Boletales from eastern Himalayas and adjacent of China. Acta Bot Yunnanica 1985, 7, 383–401. [Google Scholar]
  18. Zang, M. An annotated check-list of the genus Boletus and its sections from China. Fungal Sci. 1999, 14, 79–87. [Google Scholar] [CrossRef]
  19. Bi, Z. The Macrofungus flora of China’s Guangdong Province; Chinese University Press: Hong Kong, China, 1993; pp. 1–756. ISBN 978-962-201-556-2. [Google Scholar]
  20. Binder, M.; Besl, H. 28S rDNA sequence data and chemotaxonomical analyses on the generic concept of Leccinum (Boletales). Micologia 2000, 71–82. [Google Scholar]
  21. Binder, M.; Hibbett, D.S. Molecular systematics and biological diversification of Boletales. Mycologia 2006, 98, 971–981. [Google Scholar] [CrossRef] [PubMed]
  22. Halling, R.E.; Baroni, T.J.; Binder, M. A new genus of Boletaceae from eastern North America. Mycologia 2007, 99, 310–316. [Google Scholar] [CrossRef] [PubMed]
  23. Lebel, T.; Orihara, T.; Maekawa, N. The sequestrate genus Rosbeeva T. Lebel & Orihara gen. nov. (Boletaceae) from Australasia and Japan: New species and new combinations. Fungal Divers. 2012, 52, 49–71. [Google Scholar] [CrossRef]
  24. Hosen, M.I.; Feng, B.; Wu, G.; Zhu, X.T.; Li, Y.C.; Yang, Z.L. Borofutus, a new genus of Boletaceae from tropical Asia: Phylogeny, morphology and taxonomy. Fungal Divers. 2013, 58, 215–226. [Google Scholar] [CrossRef]
  25. Smith, M.E.; Amses, K.R.; Elliott, T.F.; Obase, K.; Aime, M.C.; Henkel, T.W. New sequestrate fungi from Guyana: Jimtrappea guyanensis gen. sp. nov., Castellanea pakaraimophila gen. sp. nov., and Costatisporus cyanescens gen. sp. nov. (Boletaceae, Boletales). IMA Fungus 2015, 6, 297–317. [Google Scholar] [CrossRef]
  26. Frank, J.L.; Siegel, N.; Schwarz, C.F.; Araki, B.; Vellinga, E.C. Xerocomellus (Boletaceae) in western North America. J. Syst. Evol. 2020, 6, 265–288. [Google Scholar] [CrossRef]
  27. Xu, C.; Liang, Z.Q.; Xie, H.J.; Jiang, S.; Fu, X.H.; Zeng, N.K. Two new species of Chalciporus (Boletaceae, Boletales) from tropical China. Mycol. Progr. 2021, 20, 1573–1582. [Google Scholar] [CrossRef]
  28. Magnago, A.C.; Alves-Silva, G.; Henkel, T.W.; da Silveira, R.M.B. New genera, species, and combinations of Boletaceae from Brazil and Guyana. Mycologia 2022, 114, 607–625. [Google Scholar] [CrossRef] [PubMed]
  29. Zang, M.; Li, T.H.; Petersen, R.H. Five new species of Boletaceae from China. Mycotaxon 2001, 80, 481–487. [Google Scholar]
  30. Li, Y.C.; Feng, B.; Yang, Z.L. Zangia, a new genus of Boletaceae supported by molecular and morphological evidence. Fungal Divers. 2011, 49, 125–143. [Google Scholar] [CrossRef]
  31. Zeng, N.K.; Yang, Z.L. Notes on two species of Boletellus (Boletaceae, Boletales) from China. Mycotaxon 2011, 115, 413–423. [Google Scholar] [CrossRef]
  32. Zeng, N.K.; Tang, L.P.; Li, Y.C.; Tolgor, B.; Zhu, X.T.; Zhao, Q.; Yang, Z.L. The genus Phylloporus (Boletaceae, Boletales) from China: Morphological and multilocus DNA sequence analyses. Fungal Divers. 2013, 58, 73–101. [Google Scholar] [CrossRef]
  33. Zeng, N.K.; Liang, Z.Q.; Wu, G.; Li, Y.C.; Yang, Z.L.; Liang, Z.Q. The genus Retiboletus in China. Mycologia 2016, 108, 363–380. [Google Scholar] [CrossRef] [PubMed]
  34. Zeng, N.K.; Liang, Z.Q.; Tang, L.P.; Li, Y.C.; Yang, Z.L. The genus Pulveroboletus (Boletaceae, Boletales) in China. Mycologia 2017, 109, 422–442. [Google Scholar] [CrossRef]
  35. Wu, G.; Feng, B.; Xu, J.; Zhu, X.T.; Li, Y.C.; Zeng, N.K.; Hosen, M.I.; Yang, Z.L. Molecular phylogenetic analyses redefine seven major clades and reveal 22 new generic clades in the fungal family Boletaceae. Fungal Divers. 2014, 69, 93–115. [Google Scholar] [CrossRef]
  36. Wu, G.; Li, Y.C.; Zhu, X.T.; Zhao, K.; Han, L.H.; Cui, Y.Y.; Li, F.; Xu, J.P.; Yang, Z.L. One hundred noteworthy boletes from China. Fungal Divers. 2016, 81, 25–188. [Google Scholar] [CrossRef]
  37. Wu, G.; Li, H.J.; Horak, E.; Wu, K.; Li, G.M.; Yang, Z.L. New taxa of Boletaceae from China. Mycosphere 2023, 14, 745–746. [Google Scholar] [CrossRef]
  38. Cui, Y.Y.; Feng, B.; Wu, G.; Xu, J.P.; Yang, Z.L. Porcini mushrooms (Boletus sect. Boletus) from China. Fungal Divers. 2016, 81, 189–212. [Google Scholar] [CrossRef]
  39. Zhang, M.; Li, T.H. Erythrophylloporus (Boletaceae, Boletales), a new genus inferred from morphological and molecular data from subtropical and tropical China. Mycosystema 2018, 37, 1111–1126. [Google Scholar] [CrossRef]
  40. Zhang, M.; Li, T.H.; Wang, C.Q.; Zeng, N.K.; Deng, W.Q. Phylogenetic overview of Aureoboletus (Boletaceae, Boletales), with descriptions of six new species from China. MycoKeys 2019, 61, 111. [Google Scholar] [CrossRef] [PubMed]
  41. Xue, R.; Wu, L.L.; Jiang, S.; Hao, Y.J.; Chai, H.; Liang, Z.Q.; Zeng, N.K.; Su, M.S. Two new species of the genus Leccinellum (Boletaceae, Boletales) from the south of China. Phytotaxa 2019, 411, 93–104. [Google Scholar] [CrossRef]
  42. Xue, R.; Zhang, X.; Xu, C.; Xie, H.; Wu, L.; Wang, Y.; Tang, L.; Hao, Y.; Zhao, K.; Jiang, S. The subfamily Xerocomoideae (Boletaceae, Boletales) in China. Stud. Mycol. 2023, 106, 95–197. [Google Scholar] [CrossRef] [PubMed]
  43. Wang, Y.; Su, M.S.; Jiang, S.; Xue, R.; Wu, L.L.; Xie, H.J.; Zhang, Y.Z.; Liang, Z.Q.; Zeng, N.K. The genus Hourangia in China and a description of Aureoboletus erythraeus sp. nov. Phytotaxa 2020, 472, 87–106. [Google Scholar] [CrossRef]
  44. Chai, H.; Liang, Z.Q.; Xue, R.; Jiang, S.; Luo, S.H.; Wang, Y.; Wu, L.L.; Tang, L.P.; Chen, Y.; Hong, D. New and noteworthy boletes from subtropical and tropical China. MycoKeys 2019, 46, 55–96. [Google Scholar] [CrossRef]
  45. Kornerup, A.; Wanscher, J.H. Methuen Handbook of Colour, 3rd ed.; Eyre Methuen: London, UK, 1983; pp. 1–252. [Google Scholar]
  46. Tang, L.P.; Lee, S.S.; Zeng, N.K.; Cai, Q.; Zhang, P.; Yang, Z.L. Notes on Amanita section caesareae from Malaysia. Mycologia 2017, 109, 557–567. [Google Scholar] [CrossRef]
  47. Vilgalys, R.; Hester, M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J. Bacteriol. 1990, 172, 4238–4246. [Google Scholar] [CrossRef] [PubMed]
  48. White, T.J.; Bruns, T.; Lee, S.; Taylor, J.W. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: San Diego, CA, USA, 1990; pp. 315–322. [Google Scholar]
  49. Rehner, S.A.; Buckley, E. A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: Evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 2005, 97, 84–98. [Google Scholar] [CrossRef] [PubMed]
  50. Tang, L.; Cai, Q.; Lee, S.; Buyck, B.; Zhang, P.; Yang, Z.L. Taxonomy and phylogenetic position of species of Amanita sect. Vaginatae sl from tropical Africa. Mycol. Prog. 2015, 14, 1–15. [Google Scholar] [CrossRef]
  51. Huang, H.Y.; Zhao, J.; Zhang, P.; Ge, Z.W.; Li, X.; Tang, L.P. The genus Clavariadelphus (Clavariadelphaceae, Gomphales) in China. Mycokeys 2020, 70, 89–121. [Google Scholar] [CrossRef] [PubMed]
  52. Huang, H.Y.; Zhang, W.H.; Huang, T.; Gabriel, M.; Liu, T.Z.; Tang, L.P. Hygrophorus russula complex (Hygrophoraceae, Agaricales) in China. Mycol. Prog. 2021, 20, 1115–1134. [Google Scholar] [CrossRef]
  53. Mu, M.; Huang, H.Y.; Huang, T.; Yang, S.D.; Tang, L.P. Gerhardtia yunnanensis (Agaricales, Lyophyllaceae), a new species from southwest China. Phytotaxa 2021, 484, 217–226. [Google Scholar] [CrossRef]
  54. Huang, T.; Zhang, W.H.; Huang, H.Y.; Gu, Y.M.; Tang, L.P. Two new species of Zhuliangomyces (Amanitaceae) from Hainan Island, China. Phytotaxa 2022, 575, 57–67. [Google Scholar] [CrossRef]
  55. Huang, T.; Su, L.J.; Zeng, N.K.; Lee, S.M.; Lee, S.S.; Thi, B.K.; Zhang, W.H.; Ma, J.; Huang, H.Y.; Jiang, S. Notes on Amanita section Validae in Hainan Island, China. Front. Microbiol. 2023, 13, 1087756. [Google Scholar] [CrossRef] [PubMed]
  56. Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef]
  57. Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analyses program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar] [CrossRef]
  58. Stamatakis, A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22, 2688–2690. [Google Scholar] [CrossRef]
  59. Ronquist, F.; Teslenko, M.; Van Der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [PubMed]
  60. Miller, M.A.; Pfeiffer, W.; Schwartz, T. Creating the CIPRES Science Gateway for Inference of Large Phylogenetic Trees; 2010 Gateway Computing Environments Workshop (GCE): New Orleans, LA, USA, 2010; pp. 1–8. [Google Scholar]
  61. Nylander, J.A.A. MrModeltest v2. Program Distributed by the Author; Uppsala University, Evolutionary Biology Centre: Uppsala, Sweden, 2004; pp. 1–2. [Google Scholar]
  62. Halling, R.E.; Fechner, N.; Nuhn, M.; Osmundson, T.; Soytong, K.; Arora, D.; Binder, M.; Hibbett, D. Evolutionary relationships of Heimioporus and Boletellus (Boletales), with an emphasis on Australian taxa including new species and new combinations in Aureoboletus, Hemileccinum and Xerocomus. Aust. Syst. Bot. 2015, 28, 1–22. [Google Scholar] [CrossRef]
  63. Dentinger, B.T.; Ammirati, J.F.; Both, E.E.; Desjardin, D.E.; Halling, R.E.; Henkel, T.W.; Moreau, P.A.; Nagasawa, E.; Soytong, K.; Taylor, A.F. Molecular phylogenetics of porcini mushrooms (Boletus section Boletus). Mol. Phylogenet. Evol. 2010, 57, 1276–1292. [Google Scholar] [CrossRef] [PubMed]
  64. Nuhn, M.E.; Binder, M.; Taylor, A.F.; Halling, R.E.; Hibbett, D.S. Phylogenetic overview of the Boletineae. Fungal Biol. 2013, 117, 479–511. [Google Scholar] [CrossRef] [PubMed]
  65. Magnago, A.; Neves, M.; Silveira, R. Boletellus nordestinus (Boletaceae, Boletales), a new species from Northeastern Atlantic Forest, Brazil. Stud. Fungi 2019, 4, 47–53. [Google Scholar] [CrossRef]
  66. Xu, C.; Zhang, X.; Chen, Y.X.; Xue, R.; Le, Z.F.; Wang, J.R.; Li, Y.; Zeng, N.K. Boletellus putuoensis (Boletaceae, Boletales), a new bolete from subtropical China. Phytotaxa 2022, 554, 149–162. [Google Scholar] [CrossRef]
  67. Parihar, A.; Hembrom, M.E.; Vizzini, A.; Das, K. A new species of Boletellus (Boletaceae, Basidiomycota) from tropical India. Nord. J. Bot. 2018, 36. [Google Scholar] [CrossRef]
  68. Binder, M.; Larsson, K.H.; Matheny, P.B.; Hibbett, D.S. Amylocorticiales ord. nov. and Jaapiales ord. nov.: Early diverging clades of Agaricomycetidae dominated by corticioid forms. Mycologia 2010, 102, 865–880. [Google Scholar] [CrossRef]
  69. Zeng, N.K.; Chai, H.; Liang, Z.Q.; Tang, L.P.; Xue, R.; Yang, Z.L. The genus Heimioporus in China. Mycologia 2018, 110, 1110–1126. [Google Scholar] [CrossRef]
  70. Kuo, M.; Ortiz-Santana, B. Revision of leccinoid fungi, with emphasis on North American taxa, based on molecular and morphological data. Mycologia 2020, 112, 197–211. [Google Scholar] [CrossRef] [PubMed]
  71. Vadthanarat, S.; Lumyong, S.; Raspé, O. Cacaoporus, a new Boletaceae genus, with two new species from Thailand. MycoKeys 2019, 54, 1–29. [Google Scholar] [CrossRef] [PubMed]
  72. Zhu, X.T.; Wu, G.; Zhao, K.; Halling, R.E.; Yang, Z.L. Hourangia, a new genus of Boletaceae to accommodate Xerocomus cheoi and its allied species. Mycol. Prog. 2015, 14, 37. [Google Scholar] [CrossRef]
  73. Zhu, X.T.; Li, Y.C.; Wu, G.; Feng, B.; Zhao, K.; Gelardi, M.; Kost, G.W.; Yang, Z.L. The genus Imleria (Boletaceae) in East Asia. Phytotaxa 2014, 191, 81–98. [Google Scholar] [CrossRef]
  74. Jarosch, M.; Bresinsky, A. Speciation and phylogenetic distances within Paxillus s. str. (Basidiomycetes, Boletales). Plant Biol. 1999, 1, 701–705. [Google Scholar] [CrossRef]
  75. Hosen, I.; Li, T.H. Two new species of Phylloporus from Bangladesh, with morphological and molecular evidence. Mycologia 2017, 109, 277–286. [Google Scholar] [CrossRef] [PubMed]
  76. Binder, M.; Bresinsky, A. Retiboletus, a new genus for a species-complex in the Boletaceae producing retipolides. Feddes Repert. Z. Bot. Taxon. Geobot. 2002, 113, 30–40. [Google Scholar] [CrossRef]
  77. Farid, A.; Bessette, A.E.; Bessette, A.R.; Bolin, J.A.; Kudzma, L.V.; Franck, A.R.; Garey, J.R. Investigations in the boletes (Boletaceae) of southeastern USA: Four novel species and three novel combinations. Mycosphere 2021, 12, 1038–1076. [Google Scholar] [CrossRef]
  78. Gelardi, M.; Vizzini, A.; Ercole, E.; Horak, E.; Ming, Z.; Li, T.H. Circumscription and taxonomic arrangement of Nigroboletus roseonigrescens gen. et sp. nov., a new member of Boletaceae from tropical South–Eastern China. PLoS ONE 2015, 10, e0134295. [Google Scholar] [CrossRef]
  79. Mao, N.; Zhao, T.Y.; Zhang, Y.X.; Li, T.; Lv, J.C.; Fan, L. Boletaceae from Shanxi Province of northern China with descriptions of ten new species. Mycosphere 2023, 14, 2013–2091. [Google Scholar] [CrossRef]
  80. Zhou, F.; Gao, Y.; Song, H.Y.; Hu, H.J.; Juan, Y.W.; Zhang, W.; Liao, L.Y.; Fang, Y.; Cheng, L.; Hu, D.M. Phylogenetic and Morphological Evidence Reveal Five New Species of Boletes from Southern China. J. Fungi 2023, 9, 814. [Google Scholar] [CrossRef] [PubMed]
  81. Horak, E. Boletellus and Porphyrellus in Papua New Guinea. Kew Bull. 1977, 31, 645–652. [Google Scholar] [CrossRef]
  82. Smith, A.H.; Thiers, H.D. The Boletes of Michigan; University of Michigan Press: Ann Arbor, MI, USA, 1971; pp. 384–387. [Google Scholar]
  83. Garza-Ocañas, F.; García Jiménez, J.; Guevara-Guerrero, G.; Martínez-González, C.R.; Ayala-Vásquez, O. Xerocomellus carmeniae (Boletales, Basidiomycota), a new fungus from northeastern Mexico. Acta Botanica Mexicana 2022, 129, e2039. [Google Scholar] [CrossRef]
  84. Deng, C.Y.; Huang, L.H.; Zheng, X.; Wang, J.; Wang, W.K. A preliminary report on the diversity of macrofungi in Siyetun Nature Reserve, Sinan County, Guizhou, China. Edible Fungi 2020, 42, 7–10. [Google Scholar]
  85. Hills, A.E. The genus Xerocomus: A personal view, with a key to the British species. Field Mycol. 2008, 9, 77–96. [Google Scholar] [CrossRef]
  86. Šutara, J. Xerocomus s. l. in the light of the present state of knowledge. Czech Mycol. 2008, 60, 29–62. [Google Scholar] [CrossRef]
  87. Ariyawansa, H.A.; Hyde, K.D.; Jayasiri, S.C.; Buyck, B. Fungal diversity notes 111–252—Taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers. 2015, 75, 27–274. [Google Scholar] [CrossRef]
  88. Crous, P.W.; Wingfield, M.J.; Richardson, D.M.; Le Roux, J.J. Fungal Planet description sheets: 400–468. Persoonia 2016, 36, 316–458. [Google Scholar] [CrossRef] [PubMed]
  89. Smith, M.E.; Castellano, M.A.; Frank, J.L. Hymenogaster macmurphyi and Splanchnomyces behrii are sequestrate species of Xerocomellus from the western United States. Mycologia 2018, 110, 605–617. [Google Scholar] [CrossRef]
  90. Shen, S.; Liu, S.L.; Zhou, L.W. Taxonomy of Hyphodermella: A case study to show that simple phylogenies cannot always accurately place species in appropriate genera. IMA Fungus 2023, 14, 11. [Google Scholar] [CrossRef]
Figure 1. The phylogenetic tree of Boletaceae is based on a four-locus dataset (28S, tef1, rpb1, and rpb2). RAxML BP values (≥50%) and Bayesian posterior probabilities (≥0.90) are shown above the branches. Notes: C = Central, E = Eastern, N = Northern, S = Southern, SE = Southeastern, SW = Southwestern.
Figure 1. The phylogenetic tree of Boletaceae is based on a four-locus dataset (28S, tef1, rpb1, and rpb2). RAxML BP values (≥50%) and Bayesian posterior probabilities (≥0.90) are shown above the branches. Notes: C = Central, E = Eastern, N = Northern, S = Southern, SE = Southeastern, SW = Southwestern.
Jof 10 00348 g001
Figure 2. Basidiomata and microscopic features of Boletellus verruculosus (MHKMU H.Y. Huang 682, holotype). (A,B,G) MHKMU H.Y. Huang 682. (C,F) MHKMU S. Jiang 414. (D) MHKMU H.Y. Huang 674. (E) MHKMU Y.J. Pu 216. (H) Basidiospores under SEM. (I) Basidiomata. (JK) Basidiospores. (L) Cheilocystidia. (M) Pleurocystidia. (N) Pileipellis. (O) Stipitipellis. (A,B,D,G) Photos by H.Y. Huang; (C,F) photos by S. Jiang; E photos by Y.J. Pu; (HO) photos by R. Xue.
Figure 2. Basidiomata and microscopic features of Boletellus verruculosus (MHKMU H.Y. Huang 682, holotype). (A,B,G) MHKMU H.Y. Huang 682. (C,F) MHKMU S. Jiang 414. (D) MHKMU H.Y. Huang 674. (E) MHKMU Y.J. Pu 216. (H) Basidiospores under SEM. (I) Basidiomata. (JK) Basidiospores. (L) Cheilocystidia. (M) Pleurocystidia. (N) Pileipellis. (O) Stipitipellis. (A,B,D,G) Photos by H.Y. Huang; (C,F) photos by S. Jiang; E photos by Y.J. Pu; (HO) photos by R. Xue.
Jof 10 00348 g002
Figure 3. Basidiomata and microscopic features of Xerocomellus tenuis (MHKMU R. Xue 100, holotype). (A) MHKMU L.J. Su 224; (B) MHKMU L.J. Su 226; (C) MHKMU J. Ma 123; (D,F,G) MHKMU R. Xue 95. (E) MHKMU R. Xue 100; (H) MHKMU R. Xue 94. (I) Basidiospores under SEM. (J) Basidia. (K) Basidiospores. (L) Cheilocystidia. (M) Pleurocystidia. (N) Pileipellis. (O) Stipitipellis. (A,B) Photos by L.J. Su; (C) photos by J. Ma; (DO) photos by R. Xue.
Figure 3. Basidiomata and microscopic features of Xerocomellus tenuis (MHKMU R. Xue 100, holotype). (A) MHKMU L.J. Su 224; (B) MHKMU L.J. Su 226; (C) MHKMU J. Ma 123; (D,F,G) MHKMU R. Xue 95. (E) MHKMU R. Xue 100; (H) MHKMU R. Xue 94. (I) Basidiospores under SEM. (J) Basidia. (K) Basidiospores. (L) Cheilocystidia. (M) Pleurocystidia. (N) Pileipellis. (O) Stipitipellis. (A,B) Photos by L.J. Su; (C) photos by J. Ma; (DO) photos by R. Xue.
Jof 10 00348 g003
Figure 4. Basidiomata and microscopic features of Xerocomellus brunneus (MHKMU L. P. Tang 3774, holotype). (AC) Basidiomata. (DE) Basidiospores under SEM. (F) Basidia. (G) Basidiospores. (H) Cheilocystidia. (I) Pleurocystidia. (J) Pileipellis. (K) Stipitipellis. (AC) Photos by L.P. Tang; (DK) photos by R. Xue.
Figure 4. Basidiomata and microscopic features of Xerocomellus brunneus (MHKMU L. P. Tang 3774, holotype). (AC) Basidiomata. (DE) Basidiospores under SEM. (F) Basidia. (G) Basidiospores. (H) Cheilocystidia. (I) Pleurocystidia. (J) Pileipellis. (K) Stipitipellis. (AC) Photos by L.P. Tang; (DK) photos by R. Xue.
Jof 10 00348 g004
Figure 5. Basidiomata and microscopic features of Xerocomus zhangii (MHKMU L.J. Su 225, holotype). (A,B) Basidiomata. (C) Basidiospores under SEM. (D) Basidia. (E) Basidiospores. (F) Cheilocystidia. (G) Pleurocystidia. (H) Pileipellis. (I) Stipitipellis. (AC) Photos by L.J. Su; (DK) photos by R. Xue.
Figure 5. Basidiomata and microscopic features of Xerocomus zhangii (MHKMU L.J. Su 225, holotype). (A,B) Basidiomata. (C) Basidiospores under SEM. (D) Basidia. (E) Basidiospores. (F) Cheilocystidia. (G) Pleurocystidia. (H) Pileipellis. (I) Stipitipellis. (AC) Photos by L.J. Su; (DK) photos by R. Xue.
Jof 10 00348 g005
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Xue, R.; Su, L.-J.; Yu, T.-J.; Xu, C.; Huang, H.-Y.; Zeng, N.-K.; Zhang, G.-L.; Tang, L.-P. Four New Species and a New Combination of Boletaceae (Boletales) from Subtropical and Tropical China. J. Fungi 2024, 10, 348. https://doi.org/10.3390/jof10050348

AMA Style

Xue R, Su L-J, Yu T-J, Xu C, Huang H-Y, Zeng N-K, Zhang G-L, Tang L-P. Four New Species and a New Combination of Boletaceae (Boletales) from Subtropical and Tropical China. Journal of Fungi. 2024; 10(5):348. https://doi.org/10.3390/jof10050348

Chicago/Turabian Style

Xue, Rou, Lin-Jie Su, Tai-Jie Yu, Chang Xu, Hong-Yan Huang, Nian-Kai Zeng, Guo-Li Zhang, and Li-Ping Tang. 2024. "Four New Species and a New Combination of Boletaceae (Boletales) from Subtropical and Tropical China" Journal of Fungi 10, no. 5: 348. https://doi.org/10.3390/jof10050348

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop