Technologies and Applications of UAV Channel Models in Communications and Spectrum Awareness

A special issue of Drones (ISSN 2504-446X). This special issue belongs to the section "Drone Communications".

Deadline for manuscript submissions: 20 November 2024 | Viewed by 1424

Special Issue Editors


E-Mail Website
Guest Editor
Department of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
Interests: UAV channel modeling; UAV channel hardware emulation; spectrum sensing and mapping; UAV communications
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Telecommunication Engineering, Technical University of Madrid, 28031 Madrid, Spain
Interests: channel modeling; UAV technologies; antenna design
Special Issues, Collections and Topics in MDPI journals

grade E-Mail Website
Guest Editor
Department of Automatic Control, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Interests: control systems engineering; electrical engineering; aerospace engineering
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
Interests: space-air-ground networks; UAV Communications; MEC; AI based communications
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Unmanned Aerial Vehicles (UAVs) have become significant tools in various domains, including communication, spectrum sensing, and environmental monitoring. To ensure robust data transmission in these applications, a deep understanding and accurate description of UAV channel models is fundamental for designing a reliable communication system, which can ensure the reliability and stability of UAV-related navigation, remote control, remote sensing, and data transmission. This Special Issue aims to highlight the recent advancements in UAV channel techniques and their applications across diverse disciplines, especially communication and spectrum awareness. Furthermore, this issue is dedicated to promoting a multidisciplinary dialogue among researchers and policymakers, shedding light on future directions in UAV technologies and applications. The focus is on enhancing UAV capabilities for communication and spectrum awareness.

This Special Issue will cover, but is not limited to, the following topics:

  • Channel sounding technologies and system for A2G scenarios
  • UAV channel models for mmWave and sub-Terahertz bands.
  • AI-driven channel modelling technologies.
  • AI-driven UAV control technologies.
  • UAV integrated sensing and communication (ISAC) systems.
  • UAV-aided spectrum sensing and awareness.
  • UAV mmWave communications technologies.
  • UAV trajectory planning and optimization.
  • Other applications of UAV channel model and communication.

We look forward to receiving your original research articles and reviews.

Prof. Dr. Qiuming Zhu
Prof. Dr. César Briso-Rodríguez
Prof. Dr. Mou Chen
Prof. Dr. Zhenyu Na
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Drones is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • UAV channel model 
  • UAV channel sounding 
  • UAV ISAC 
  • UAV communication 
  • UAV spectrum sensing 
  • UAV trajectory planning

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 6305 KiB  
Article
Deep Reinforcement Learning-Based 3D Trajectory Planning for Cellular Connected UAV
by Xiang Liu, Weizhi Zhong, Xin Wang, Hongtao Duan, Zhenxiong Fan, Haowen Jin, Yang Huang and Zhipeng Lin
Drones 2024, 8(5), 199; https://doi.org/10.3390/drones8050199 - 15 May 2024
Viewed by 339
Abstract
To address the issue of limited application scenarios associated with connectivity assurance based on two-dimensional (2D) trajectory planning, this paper proposes an improved deep reinforcement learning (DRL) -based three-dimensional (3D) trajectory planning method for cellular unmanned aerial vehicles (UAVs) communication. By considering the [...] Read more.
To address the issue of limited application scenarios associated with connectivity assurance based on two-dimensional (2D) trajectory planning, this paper proposes an improved deep reinforcement learning (DRL) -based three-dimensional (3D) trajectory planning method for cellular unmanned aerial vehicles (UAVs) communication. By considering the 3D space environment and integrating factors such as UAV mission completion time and connectivity, we develop an objective function for path optimization and utilize the advanced dueling double deep Q network (D3QN) to optimize it. Additionally, we introduce the prioritized experience replay (PER) mechanism to enhance learning efficiency and expedite convergence. In order to further aid in trajectory planning, our method incorporates a simultaneous navigation and radio mapping (SNARM) framework that generates simulated 3D radio maps and simulates flight processes by utilizing measurement signals from the UAV during flight, thereby reducing actual flight costs. The simulation results demonstrate that the proposed approach effectively enable UAVs to avoid weak coverage regions in space, thereby reducing the weighted sum of flight time and expected interruption time. Full article
Show Figures

Figure 1

23 pages, 1272 KiB  
Article
A Novel UAV Air-to-Air Channel Model Incorporating the Effect of UAV Vibrations and Diffuse Scattering
by Wenzhe Qi, Ji Bian, Zili Wang and Wenzhao Liu
Drones 2024, 8(5), 194; https://doi.org/10.3390/drones8050194 - 12 May 2024
Viewed by 466
Abstract
In this paper, we propose a geometric channel model for air-to-air (A2A) unmanned aerial vehicle (UAV) communication scenarios. The model is established by incorporating line-of-sight, specular reflection, and diffuse scattering components, and it can capture the impacts of UAV vibrations induced by the [...] Read more.
In this paper, we propose a geometric channel model for air-to-air (A2A) unmanned aerial vehicle (UAV) communication scenarios. The model is established by incorporating line-of-sight, specular reflection, and diffuse scattering components, and it can capture the impacts of UAV vibrations induced by the propeller’s rotation. Based on UAV heights and ground scatterer density, a closed-form expression is derived to jointly capture the zenith and azimuth angular distributions of diffuse rays. The power of diffuse rays is modeled according to the grazing angle of the rays and the electrical properties and roughness of the ground materials. Key statistics, including the temporal autocorrelation function, spatial cross-correlation function, Doppler power spectrum density, and coherence time are derived, providing an in-depth understanding of the time-variant characteristics of the channel. The results indicate that the presented model is capable of capturing certain A2A channel characteristics, which align with the corresponding theoretical analysis. The findings suggest that the scattering effect of the A2A channel is significantly influenced by the altitude of the UAV. Additionally, it is shown that UAV vibrations can introduce extra Doppler frequencies, notably decreasing the temporal correlation and coherence time of the channel. This effect is more prominent when the system operates at high-frequency bands. The effectiveness of the presented model is confirmed through a comparison of its statistics with those of an existing model and with available measurement data. Full article
Show Figures

Figure 1

16 pages, 4877 KiB  
Article
Channel Knowledge Map Construction Based on a UAV-Assisted Channel Measurement System
by Yanheng Qiu, Xiaomin Chen, Kai Mao, Xuchao Ye, Hanpeng Li, Farman Ali, Yang Huang and Qiuming Zhu
Drones 2024, 8(5), 191; https://doi.org/10.3390/drones8050191 - 11 May 2024
Viewed by 381
Abstract
With the fast development of unmanned aerial vehicles (UAVs), reliable UAV communication is becoming increasingly vital. The channel knowledge map (CKM) is a crucial bridge connecting the environment and the propagation channel that may visually depict channel characteristics. This paper presents a comprehensive [...] Read more.
With the fast development of unmanned aerial vehicles (UAVs), reliable UAV communication is becoming increasingly vital. The channel knowledge map (CKM) is a crucial bridge connecting the environment and the propagation channel that may visually depict channel characteristics. This paper presents a comprehensive scheme based on a UAV-assisted channel measurement system for constructing the CKM in real-world scenarios. Firstly, a three-dimensional (3D) CKM construction scheme for real-world scenarios is provided, which involves channel knowledge extraction, mapping, and completion. Secondly, an algorithm of channel knowledge extraction and completion is proposed. The sparse channel knowledge is extracted based on the sliding correlation and constant false alarm rate (CFAR) approaches. The 3D Kriging interpolation is used to complete the sparse channel knowledge. Finally, a UAV-assisted channel measurement system is developed and CKM measurement campaigns are conducted in campus and farmland scenarios. The path loss (PL) and root mean square delay spread (RMS-DS) are measured at different heights to determine CKMs. The measured and analyzed results show that the proposed construction scheme can effectively and accurately construct the CKMs in real-world scenarios. Full article
Show Figures

Figure 1

Back to TopTop