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Abstract: Chronic inflammation contributes to a number of diseases. Therefore, control of the inflam-
matory response is an important therapeutic goal. To identify novel anti-inflammatory compounds,
we synthesized and screened a library of 80 pyrazolo[1,5-a]quinazoline compounds and related deriva-
tives. Screening of these compounds for their ability to inhibit lipopolysaccharide (LPS)-induced
nuclear factor κB (NF-κB) transcriptional activity in human THP-1Blue monocytic cells identified
13 compounds with anti-inflammatory activity (IC50 < 50 µM) in a cell-based test system, with two
of the most potent being compounds 13i (5-[(4-sulfamoylbenzyl)oxy]pyrazolo[1,5-a]quinazoline-3-
carboxamide) and 16 (5-[(4-(methylsulfinyl)benzyloxy]pyrazolo[1,5-a]quinazoline-3-carboxamide).
Pharmacophore mapping of potential targets predicted that 13i and 16 may be ligands for three
mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase 2 (ERK2),
p38α, and c-Jun N-terminal kinase 3 (JNK3). Indeed, molecular modeling supported that these com-
pounds could effectively bind to ERK2, p38α, and JNK3, with the highest complementarity to JNK3.
The key residues of JNK3 important for this binding were identified. Moreover, compounds 13i and
16 exhibited micromolar binding affinities for JNK1, JNK2, and JNK3. Thus, our results demonstrate
the potential for developing lead anti-inflammatory drugs based on the pyrazolo[1,5-a]quinazoline
and related scaffolds that are targeted toward MAPKs.

Keywords: pyrazolo[1,5-a]quinazoline; anti-inflammatory compound; mitogen-activated protein
kinase; c-Jun N-terminal kinase; molecular docking; pharmacophore mapping

1. Introduction

Inflammation is an essential process that protects the host from harmful pathogens or
irritants and can be acute, lasting for a short period of time, or chronic and lasting much
longer [1,2]. Notably, chronic, low-grade inflammation has been shown to contribute to
a variety of diseases, including cardiovascular disease [3], cancer [4], type 2 diabetes [5],
Alzheimer’s disease [6], arthritis, and many other chronic inflammatory conditions [5]. Thus, it
is essential that effective anti-inflammatory therapeutics are developed to help control chronic
inflammation and the onset or progression of these diseases [7]. The current therapeutics for
treating inflammation generally focus on suppressing, blocking, or inhibiting proinflammatory
mediators of inflammation, such as prostaglandins, leukotrienes, and cytokines [8]. While
many of these treatments are effective, it is evident that chronic inflammation continues to be
a major component associated with the pathogenesis of chronic inflammatory diseases and
that new therapeutic interventions with fewer adverse effects need to be developed. Indeed,
the pipeline of new anti-inflammatory therapeutics targeting additional pathways other than
those being currently targeted is quite limited. Nevertheless, recent work on the development
of new resolving mediators has been a success [9,10].
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Whether acute or chronic, inflammation involves the activation and/or recruitment of
inflammatory leukocytes to sites of infection or injury. The acute inflammatory response
is initiated by resident phagocytes, such as macrophages, dendritic cells, and mast cells,
but soon results in the recruitment of large numbers of neutrophils, which are the primary
leukocytes involved in acute inflammatory responses [11,12]. If the acute response is not
resolved, chronic inflammation can occur, which lasts much longer and primarily involves
macrophages, as well as lymphocytes and plasma cells, which are able to produce a variety
of bioactive inflammatory mediators that can cause cell and tissue damage [13]. Thus,
targeting inflammatory responses of leukocytes, such as neutrophils and macrophages,
represents a reasonable approach to treating chronic inflammation.

Current anti-inflammatory therapeutics focus mainly on reducing the production or
activity of inflammatory eicosanoids or certain cytokines or blocking their receptors, while
others can block lymphocyte trafficking into tissues, prevent the binding of monocyte–
lymphocyte costimulatory molecules, or reduce the number of circulating B lympho-
cytes [14–16]. In addition, the potential of targeting several biochemical pathways and
multiple enzymes involved in inflammation, including neuroinflammation, has been re-
ported [17]. For example, we have synthesized and characterized a number of compounds
with anti-inflammatory activity that inhibit mitogen-activated protein kinase (MAPK) path-
ways, especially the c-Jun N-terminal kinase (JNK) pathway [18,19]; antagonize N-formyl
peptide chemotactic receptors (FPRs) [20]; and inhibit human neutrophil elastase [21].
In addition, we have identified a number of pyridazinone-like compounds with anti-
inflammatory activity from a large compound library, suggesting that the pyridazinone
scaffold could be useful for the development of novel anti-inflammatory therapeutics [22].

As indicated above, our research group has been investigating a number of biologically
active polyheterocycles, and we have created a large library of compounds, including both
final products and synthetic intermediates. Here, we selected 80 nitrogen (poly)heterocycles
derivatives, which were mainly pyrazolo[1,5-a]quinazolines (Figure 1). These compounds
were selected based on our previous work in this field, as well as recent publications report-
ing examples of anti-inflammatory agents with similar nitrogen polycyclic scaffolds [23–26].
For example, the pyrazolo[5,1-b]quinazoline A (designated as 3j in the original publica-
tion [23], Figure 2) is a very potent cyclooxygenase 2 (COX-2) inhibitor (IC50 = 47 nM),
which had about 14-fold selectivity toward COX-2 versus COX-1 but also inhibited 5-
lipoxygenase (5-LOX), with an IC50 of 2.3 µM. In an in vivo carrageenan-induced paw
edema model, 10 mg/kg of compound A reduced edema by 39% and did not exhibit
gastric ulcerogenic effects. Another recently reported polyheterocyclic anti-inflammatory
compound is the purine derivative B (designated as 9j in the original publication [25],
Figure 2), which was reported to be a potent dual inhibitor of Janus 2 tyrosine kinase and
bromodomain-containing protein 4 (JAK2/BRD4) with IC50 values of 22 and 13 nM, respec-
tively, and also downregulated the NF-κB pathway. In vivo studies in an acute ulcerative
model demonstrated that 60 mg/kg of compound B was able to relieve the symptom of
ulcerative colitis with minimal adverse effects.
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Figure 2. New polyheterocycle anti-inflammatory compounds reported in the literature.

For the biological screening of the selected library of compounds, we evaluated
their effects on lipopolysaccharide (LPS)-induced NF-κB transcriptional activity in THP-
1Blue monocyte/macrophages, since NF-κB activation is an important component of
many inflammatory responses [27,28]. The complete list and structures of all 80 selected
and screened compounds can be found in the Supplementary Materials (Supplementary
Tables S1–S3). Two of the most potent compounds identified by our biological screen (13i
and 16) were then evaluated in silico to identify potential targets using PharmMapper,
which suggested that ERK2, JNK3, and p38α MAPK could be likely biotargets. Furthermore,
molecular docking of compounds 13i and 16 into the binding sites of these kinases using
Rosetta docking suggested high affinity binding interactions, confirming that these MAPKs
are likely targets for these anti-inflammatory compounds.

2. Results and Discussion
2.1. Synthesis

We report here the procedures for the synthesis of 65 new compounds that were
included in the screening library. For the 15 compounds in screening library that were
already published, we provide the appropriate reference (chemical structures of all com-
pounds and relevant references are presented in Supplementary Tables S1–S3) [29–32].
As mentioned above, most of the compounds selected for this study are tricycles with
a pyrazolo[1,5-a]quinazoline scaffold (abbreviated below as PQ), and their synthesis
is outlined in Schemes 1–9. The synthesis of the other compounds with pyrazolo[1,5-
a]pyrido[3,4e]pyrimidine and pyrazolo[1,5-a]pyrimido[5,4-e]pyrimidine nuclei, as well as
the pyrazolo derivatives, is described in Scheme 10.

Scheme 1 shows the chemical procedure to synthesize the 4,5-dihydropyrazolo[1,5-
a]quinazoline-5-one (4,5-dihydro-PQ-5-one) scaffold, differently substituted at position
3 and 7 or 8, which was necessary for the synthesis of the compounds shown in the
next schemes. The suitable 2-hydrazinobenzoic acid (1a–e) [33–37] was reacted with
ethoxymethylenmalononitrile, ethyl-2-cyano-3-ethoxyacrylate, and 3-oxo-2-(3-thienyl)-
proprionitrile to obtain 2a–d (2a [38]), 4a–e (4a, b [38,39], 4e [40]), and 6 [41], respectively.
Compounds 2a–d were transformed into the corresponding 3-carboxamides 3a–d (3a [38])
by treatment with sulfuric acid at 80 ◦C. Alternatively, the 3-ethyl carboxylate derivatives
4a, c were decarboxylated with concentrated HCl at reflux, resulting in compounds 5a, c
(5a [38]).
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K2CO3, appropriate 4-substituted benzyl bromide, 80–100 ◦C, 2–24 h; (ii) MeOH, 0 ◦C, then H2O,
OXONE®, 100 ◦C, 2 h; (iii) acetone/H2O (10:1), HIO3, TBAB, 5 min, then 80 ◦C, 2 h; (iv) POCl3, PCl5,
100 ◦C, 1.5 h; (v) MeOH, K2CO3, reflux, 1.5 h.
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dry DMF, K2CO3, appropriate benzyl halide, 50 ◦C, 2 h; (ii) dry CH2Cl2, NEt3, tosyl chloride, 150 ◦C,
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Scheme 2 shows the alkylation of the 4,5-dihydro-PQ-5-one 3-carbonitrile, 3-ethoxycarbonyl,
and 3-unsubstituted derivatives (2a, 4a, and 5a, respectively) in dry DMF or CH3CN/K2CO3/Ar-
Br or MeI, which always resulted in the corresponding 4-N-alkylated derivatives 7a–f
(7a [34]). To confirm that alkylation always occurred on the nitrogen at position 4 un-
der these conditions, we synthesized the isomer of 7a (i.e., the 5-O-methyl derivative 12
(ethyl 5-methoxy-PQ-3-carboxylate) [42]). Treatment of 4a with POCl3/PCl5 resulted in the
5-chloro derivative 11, which, in turn, was transformed into the easily recovered 12 with
dry DMF/t-BuOK/methanol. Through this reaction, we assigned the correct structure to
the final compound 7a.
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80 ◦C, 2 h; (iii) POCl3, PCl5, reflux, 2.5 h (for 39a, b) or 4.5 h (for 39c); (iv) 42a—CH3NH2, DIPEA,
1,4-dioxane, r.t., 2 h; 40 and 42b–d—isopropyl alcohol, appropriate aniline, NEt3, 2-20 h, reflux;
(v) cyclopropane carbonyl chloride, dry CH2Cl2, NEt3, 0 ◦C, 2 h, then r.t., 2h; (vi) 43—acetone/H2O
(10:1), HIO3, TBAB, 5 min; then 80 ◦C, 40 min; (vii) 44—MeOH, 0 ◦C, then H2O, OXONE®, 100 ◦C,
30 min.

Further studies using NMR techniques such as HSQC and HMBC (see Supplementary
Figures S60 and S61) were performed on compound 7b, which again allowed us to correctly
assign a structure to the other N-alkylated compounds of type 7. The methylthio group
of compounds 7b and 7f was oxidized to form the sulfoxide derivatives (-SOMe) with
iodic acid/acetone (compounds 9, 10), but in the case of the 3-unsubstituted derivative
7f, even the iodination at position 3 occurred (9). Alternatively, the treatment of 7f with
OXONE®/water/methanol yielded the corresponding 4-sulfonylmethylbenzyl (-SO2Me)
derivative 8.
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In Scheme 2, we show that when COOEt, CN, or H are present in position 3 of
the PQ scaffold, the alkylation reactions only yielded the corresponding 4-N-alkylates.
In contrast, when a CONH2 group was present in position 3 (5-oxo-4,5-dihydro-PQ-3-
carboxamide), the same reaction (dry DMF/Cs2CO3/ArBr) was generally regiospecific
toward the 5-O position (see Scheme 3). In fact, a mixture of the two regioisomers (5O-R,
13a, c and 4N-R, 14a, c) was achieved only when methyl iodide and 4-methylthiobenzyl
bromide were used as alkylating reagents. Even in this case, an in-depth spectroscopic
study was performed on compound 14c to assign the correct structures to the two isomers.
The evaluation of the monodimensional and bidimensional spectra (HSQC and HMBC)
is included in Supplementary Figures S62 and S63. In all other cases, the 5-O-isomer
was exclusively obtained (compounds 13b, d–i). Additionally, we obtained chemical
confirmation of the 5-O-methylation in compound 13a by transforming 3a into the 5-[4-
(methanesulphonyl)phenylmethoxy] derivative 15, which when treated with methanol/t-
BuOK, resulting in 13a. The 5-(4-methylthiobenzyloxy) derivative, 13c, was oxidized in
the presence of iodic acid/acetone or OXONE®/methanol, and the two final products
(sulfoxide) 16 and (sulfone) 17 were recovered in good yield. Likewise, the 5-benzyloxy
derivative 13b was converted into the N-(dimethylamino)methylidene 3-carboxamide
18 (as a mixture of E and Z isomers, as indicated by TLC) by treating it with DMF-DMA,
and the further cyclization to 1,2,4-triazole with hydrazine hydrate in acetic acid resulted
in compound 19.

For the synthesis of the 3-(3-thienyl)-PQ derivatives shown in Scheme 4, the starting
material was compound 6 [41], which was treated with 4-toluensulphonylchloride to obtain
the 5-(4-methylbenzene-1-sulphonate derivative 20. The next reaction with a suitable
benzyl alcohol or benzylamine resulted in the final 5-benzyloxy (21a, b) and 5-benzylamine
(22) compounds.

Scheme 5 shows the synthetic route for the final products 24–27, which contain
a chlorine atom at position 8 of the PQ scaffold. Starting from 3b, alkylation in dry
DMF/K2CO3/ArBr or MeI resulted in the final 5-O-alkyl derivatives 23a–c. The 5-(4-
methylthiobenzyloxy) derivative 23b was oxidized by iodic acid/acetone or by OXONE®, as
described above, to obtain the corresponding sulfoxide 24 or sulfone 25. Compound 3b was
also reacted with DMF-DMA, resulting in a mixture of the N-(dimethylamino)methylidene
3-carboxamide derivative 26 and the corresponding 4-N-methyl alkylated 27, which were
easily separated by recrystallization.

Starting from the 4-methyl-8-chloro-4,5-dihydro-PQ-5-ones recently published by us
and containing ethoxycarbonyl, formyl, and carboxylic groups at position 3, respectively
(28a–c) [39], we further elaborated position 3 of this scaffold, as shown in Scheme 6. In
particular, the treatment of compound 28a (3-COOEt) with hydrazine hydrate in ethanol re-
sulted in the corresponding 3-hydrazone 29; the 3-formyl derivative 28b was reduced to the
3-hydroxymethyl derivative 30a [39]; and treatment of 28b with hydrazine hydrate or hy-
droxylamine hydrochloride under suitable conditions resulted in 30b and 30c, respectively.
The 3-hydroxymethyl group of 30a [39] was further alkylated with 4-methylthiobenzyl
bromide in NaH/CH3CN, yielding 31. Finally, the 3-(4-aminophenyl)carboxamide 32 was
synthesized in two steps starting from the 3-carboxylic acid 28c [39], which was first
transformed into the acyl chloride intermediate with SOCl2 and then treated with benzene-
1,4-diamine in CH2Cl2/NEt3.

Scheme 7 shows the alkylation and reduction reactions of the 8/7-nitro-3-carboxamides
(3c and 3d) and of the 8-nitro-3-unsubstituted PQ (5c). Compounds 3c, d were alkylated
with MeI in DMF/K2CO3, resulting in the corresponding 5-methoxy compounds 33a, b.
Compound 33a was then dehydrated with POCl3 to obtain the 5-methoxy-3-carbonitrile
derivative 34. Alternatively, starting compound 5c was formylated by HMTA to obtain
35, which was reacted with hydroxylamine hydrochloride to obtain the corresponding
3-carbaldehyde oxime 36.

Scheme 8 shows synthesis of the nitro-derivatives starting from the 8/7-nitro-3-
carbonitriles 2c and 2d and the 7-nitro-3-ethoxycarbonyl derivative 4d. Alkylation of
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2c in MeI/DMF/K2CO3 resulted in the 4-methyl derivative 37, which was transformed
into the corresponding 3-carboxamide 38 with concentrated H2SO4. The lactams 2c, d
and 4d were also converted into their corresponding 5-chloro-PQ 39a-c with POCl3/PCl5,
which were then able to undergo a nucleophilic substitution by a suitable amine in i-PrOH
to obtain the 5-aminoderivatives 40 and 42a–d. Compound 40 was further acylated with
cyclopropane carbonyl chloride in CH2Cl2/NEt3 to obtain the final product 41, while the
8-nitro-5-methylamino-PQ-3-carbonitrile 42a and the 8-nitro-5-(4-methylthiophenyl)amino-
PQ-3-carbonitrile 42b were transformed into the corresponding 3-carboxamide 43 and the
sulfoxide/sulfone derivatives 44 and 45, respectively.

Some of the 8-nitroderivatives were transformed into the corresponding 8-amino-PQ
compounds (see Scheme 9). Specifically, compounds 33a, 42a, 43, 37, and 38 were subjected
to chemical reduction (Sn/HCl conc.), resulting in the 8-aminoderivatives 46a–c, 48, and 49.
The 3-carboxamide group of compound 46a was also dehydrated in POCl3 to obtain the
8-amino-5-methoxy-PQ-3-carbonitrile 47.

Lastly, Scheme 10 shows the synthesis of compounds 51a, 53a, b, and 56, each exhibiting
different scaffolds. The pyrazolo[1,5-a]pyrimidine 50 [43] was reacted with 4-tolylhydrazide in
glacial acetic acid to obtain the 7-[(4-methylphenyl)sulphonamido]pyrazolo[1,5-a]pyrido[3,4-
e]pyrimidine 51a. The 6-cyano-7-aminopyrazolo[1,5-a]pyrimidines 3-ethoxycarbonyl 52a
or 3-usubstituted 52b (commercially available) were cyclized with formamide to form the
pyrazolo[1,5-a]pyrimido[5,4-e]pyrimidine scaffold containing an ethoxycarbonyl group or
hydrogen at position 3, respectively, to form 53a, b. Finally, compound 56 was obtained
starting from 3-amino-4-phenylpyrazole 54 and ethyl 2-(pyrazol-1′-yl)-2-formylacetate
55 [44] and stopping the reaction before the pyrazolopyrimidine core closure.

2.2. Biological Activity

All compounds (see complete list in Supplementary Tables S1–S3) were screened for
their ability to inhibit NF-κB/AP-1 reporter activity in THP-1Blue cells, which is a measure
of their anti-inflammatory activity since this pathway is essential to the inflammatory
response [45,46]. Although we evaluated a considerable number of compounds, only
13 were able to inhibit NF-κB/AP-1 activity with IC50 values <50 µM, and they are shown
in Table 1. As an example, the dose-dependent inhibition of LPS-induced NF-κB/AP-1
reporter activity by compounds 13i and 16 is shown in Figure 3.

Although no true structure–activity relationships could be identified, it was neverthe-
less possible to make general observations on some structural aspects of these compounds
that seem important for activity. All compounds exhibiting some inhibitory activity in
THP-1Blue cells were pyrazolo[1,5-a]quinazolines, while all the other tricyclics, bicyclics,
and pyrazole derivatives tested were completely inactive, indicating that the pyrazolo[1,5-
a]quinazoline scaffold was the only appropriate structure among those that we tested.
Moreover, it seems that among the three possible forms of the pyrazolo[1,5-a]quinazoline
scaffold, the heteroaromatic form was most effective, as the 5-oxo-4,5-dihydropyrazolo[1,5-
a]quinazoline (26) and 4,5-dihydropyrazolo[1,5-a]quinazoline (58c) [47] nuclei were much
less potent (IC50 = 49.3 and 39.1 µM, respectively). Indeed, the heteroaromatic scaffold was
present in eleven compounds exhibiting anti-inflammatory activity (IC50 = 4.8-30.1 µM).
For these products, the primary amide group at position 3 of the heteroaromatic scaffold
appeared to be the best, although moderate activity was retained even when a CN group
(compound 42a) or a 3-thienyl (compound 20) were present. On the other hand, ester
or very bulky groups were not compatible with this biological activity. Regarding the
substituent bonded to the oxygen at position 5, an increased size of the substituent was
favorable for activity (e.g., 13a versus 13b with IC50 = 24.4 and 4.81 µM, respectively), while
the insertion of a chlorine atom or a nitro group at R7/R8 resulted in the maintenance of or
a slight increase in activity.
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Table 1. Summary of compound cytotoxic activity and inhibitory effects on LPS-induced NF-κB/AP-1
transcriptional activity in THP-1Blue cells.
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R3 R5 R7 R8
AP Production

IC50 (µM) Cytotoxicity

13a CONH2 OCH3 H H 24.4 ± 3.1 N.T.

13b CONH2 OCH2Ph H H 4.8 ± 1.2 N.T.

13i CONH2 OCH2(4-SO2NH2)-Ph H H 9.7 ± 2.4 N.T.

16 CONH2 OCH2(4-SOCH3)Ph H H 7.9 ± 1.7 N.T.

20 3-tienyl OSO2(4-Me)Ph H H 13.3 ± 2.6 N.T.

23a CONH2 OCH3 H Cl 7.9 ± 1.6 N.T.

23c CONH2 OCH2(4-SO2NH2)-Ph H Cl 12.2 ± 2.1 N.T.

33a CONH2 OCH3 H NO2 14.1 ± 2.9 N.T.

33b CONH2 OCH3 NO2 H 18.2 ± 2.5 N.T.

42a CN NHCH3 H NO2 30.1 ± 3.3 N.T.

43 CONH2 NHCH3 H NO2 11.8 ± 2.2 N.T.

26 49.3 ± 4.6 N.T.

58c [42] 34.1 ± 4.1 N.T.

N.T., no cytotoxicity was found in THP-1Blue cells at concentrations up to 50 µM. AP, alkaline phosphatase.
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Figure 3. Effect of compounds 13i and 16 on NF-κB/AP-1 activity. THP-1Blue cells were pretreated
with the indicated concentrations of compounds 13i (red symbols) and 16 (blue symbols) or DMSO
control for 30 min, followed by the addition of 250 ng/mL of LPS or buffer for 24 h. NF-κB/AP-1
activity was monitored by measuring secreted alkaline phosphatase activity spectrophotometrically in
the cell supernatants (absorbance at 655 nm). The data in each panel are presented as the mean ± S.D.
of triplicate samples from one experiment that is representative of three independent experiments.
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2.3. Identification of Potential Protein Targets for Compounds 13i and 16

We selected two of the most potent compounds for further characterization. To identify
potential protein targets for 13i and 16, we performed reverse-pharmacophore mapping
on the molecular structures of these compounds. PharmMapper compared a database of
pharmacophore patterns with these compounds and generated target information, such as
pharmacophoric characteristics and normalized fitness scores. The chemical structures of
the compounds were submitted to the PharmMapper server, as mapping explicitly accounts
for the three-dimensional structure of a molecule. The 30 top-ranked potential targets found
by PharmMapper are shown in Supplementary Table S4 and only the kinase targets are
shown in Table 2, as the PharmMapper analysis indicated that three MAPKs (ERK2, p38α
MAPK, and JNK1/3) were among the potential targets for compounds 13i and 16. Indeed,
MAPK signaling plays an important role in phagocyte/macrophage signal transduction
cascades [48], and studies have shown that JNK and the p38 MAPK families of proteins are
activated in response to phagocyte/macrophage priming/activation (reviewed in [49]).

Table 2. Potential human protein kinase targets for compounds 13i and 16 identified by PharmMapper.

PDB Kinase Target for Compound 13i Fit Score Normalized Fit Score

1PME Mitogen-activated protein kinase 1 (ERK2) 2.976 0.9919

1MUO Serine/threonine protein kinase 6 (PAK6) 2.949 0.983

1W7H Mitogen-activated protein kinase 14 (p38α) 2.902 0.9672

3HVC Mitogen-activated protein kinase 14 (p38α) 2.876 0.9588

1PMV Mitogen-activated protein kinase 10 (JNK3) 2.81 0.9368

1UKI Mitogen-activated protein kinase 8 (JNK1) 2.807 0.9358

2P3G MAP kinase-activated protein kinase 2 2.799 0.9329

PDB Kinase Target for Compound 16 Fit Score Normalized Fit Score

1PME Mitogen-activated protein kinase 1 (ERK2) 2.991 0.9972

1W7H Mitogen-activated protein kinase 14 (p38α) 2.969 0.9896

3HVC Mitogen-activated protein kinase 14 (p38α) 2.893 0.9645

2VTA Cell division protein kinase 2 2.873 0.9577

2BRG Serine/threonine protein kinase Chk1 2.862 0.9539

1PMV Mitogen-activated protein kinase 10 (JNK3) 2.811 0.9372

1UKI Mitogen-activated protein kinase 8 (JNK1) 2.809 0.9364

2A4Z Phosphatidylinositol-4,5-bisphosphate 3-kinase
catalytic subunit γ-isoform 2.796 0.9321

2C3I Serine/threonine protein kinase Pim-1 2.725 0.9082

2.4. Molecular Docking

According to the PharmMapper results, ERK2, JNK3, and p38α MAPK were among
the potential biotargets for the investigated compounds. Thus, we performed a more
sophisticated docking study of compounds 13i and 16 into the binding sites of these kinases
using the ROSIE web server [50–52]. In the PharmMapper database, the retrieved enzymes
are represented by the PDB structures 1PME (ERK2), 1PMV (JNK3), and 1W7H (p38α).
However, the 1PME structure corresponds to a mutant of ERK2 [53]. Therefore, we used
the non-mutated ERK2 (PDB code: 1TVO [54]) for the docking computations. Importantly,
the Rosetta docking methodology implemented in ROSIE accounts for the flexibility of the
side chains and backbone of the protein in the vicinity of the docked ligand.

The docking poses obtained with the lowest interface energies in the binding sites of
the kinases for molecules 13i and 16 are shown in Figure 4. Notably, compounds 13i and
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16 are anchored to the enzymes by a number of H bonds formed with the participation of
different functional groups of the ligands (Table 3).
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Table 3. Interface energy scores and H-bonding interactions obtained from the docking of ligands 13i
and 16 into the binding sites of ERK2, JNK3, and p38α obtained using the ROSIE web server.

Ligand
Interface Energy Scores and H-Bonded Groups in the Protein and Ligand

ERK2 (1TVO) JNK3 (1PMV) p38α (1W7H)

13i

−16.49 −21.00 −16.53

Lys54, Arg67 (pyrazole nitrogen);
Glu71 (amide NH2);

Gln105 (amide oxygen);
Met108 (sulfonamide NH2);

Lys114 (sulfonamide oxygen)

Gln75, Glu111 (amide NH2);
Lys93 (amide oxygen,
pyrimidine nitrogen);

Ser72 (sulfonamide oxygen);
Asn152 (sulfonamide oxygen)

Gly110, Asp112 (amide NH2);
Lys53 (sulfonamide oxygen);

Glu71 (sulfonamide NH2)

16

−17.45 −19.36 −17.29

Glu71, Asp167 (amide NH2);
Lys114 (sulfoxide oxygen)

Gln75, Asn194 (amide NH2);
Lys93 (pyrazole nitrogen);
Gln155 (sulfoxide oxygen)

Lys53 (pyrazole nitrogen);
Asp168 (amide NH2)

Common amino acid residues participating in the interactions with both ligands 13i and 16 are shown in bold.

The H-bonding patterns of molecules 13i and 16 have similar structural features. Thus,
protonated lysine residues contained in the binding sites of the investigated kinases (Lys114
in ERK2, Lys93 in JNK3, and Lys53 in p38α) form strong H bonds with the heteroatoms in
both ligands. In the case of ERK2 and p38α, the deprotonated Glu71 and neutral Gln75,
respectively, participate in H bonding with both 13i and 16. It should be noted that the
sulfonamide moiety of molecule 13i and the sulfoxide group of 16 are H bonded to ERK2
and JNK3. The sulfonamide group of 13i also forms H bonds with p38α (Figure 3). These
interactions promote the binding of the ligands to the kinases. The interface energy scores
for the docking poses obtained for molecules 13i and 16 are presented in Table 3. The
noticeably negative values of the interface energy scores indicate high affinities of these
compounds to ERK2, JNK3, and p38α in accordance with the predictions of PharmMapper
(see above). Nevertheless, the interaction of molecules 13i and 16 with JNK3, according to
the ROSIE docking results, should be more prominent than with the other two kinases, in
spite of the higher ranking of ERK2 and p38α in the more approximate PharmMapper data.

In addition to the 1PMV structure of JNK3 retrieved by PharmMapper that was used
for the comparative docking with different kinases on the ROSIE server, there is another,
more recent structure of JNK3 complexed with a pyrazole-containing ligand in the Protein
Data Bank (PDB: 4WHZ [55]). Therefore, this structure was also used for docking molecules
13i and 16. For this purpose, the compounds were inserted into the active site with the
AUTODOCK 4.1 program, and the conformation with the most favorable binding energy
was selected for each complex. The JNK3–inhibitor complexes were further subject to
full geometry optimization with the amber99sb force-field. The results were analyzed
with a focus on H-bonding interactions (see Supplementary Table S5). It should be noted
that Lys93 was found to be involved in H-bonding interactions with the investigated
inhibitors using the 4WHZ protein structure, analogous to the results obtained with the
1PMV biotarget (Table 3). Additionally, compounds 13i and 16 have common H-bonding
patterns with these two biotargets (Gln75, Lys93, and Asn152 for ligand 13i; Gln75, Lys93,
and Asn194 for ligand 16).

2.5. Affinity of 13i and 16 for JNK1-3

To confirm the effectiveness of the predictions based on molecular modeling, com-
pounds 13i and 16 were evaluated for their ability to bind to JNK1-3 using the KINOMEscan
ATP site-dependent binding assay, which reflects the biologically relevant behavior of pro-
tein kinases [56]. We found that both compounds bound to JNK1, JNK2, and JNK3, with
Kd values in the micromolar range (Table 4). Although compound 13b exhibited relatively
high activity in THP-1Blue cells (IC50 = 4.8 µM), this compound had a low solubility in
DMSO and was not able to be tested in the binding assay.
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Table 4. JNK binding affinity of the compounds 13i and 16.

Compound
JNK1 JNK2 JNK3

Kd (µM)

13i 10.9 ± 1.4 18.5 ± 2.3 9.0 ± 1.2

16 17.0 ± 2.1 21.0 ± 2.4 10.4 ± 1.5

3. Materials and Methods

All compound melting points were determined on a Büchi apparatus (New Castle,
DE, USA) and are uncorrected. Extracts were dried over Na2SO4, and the solvents were
removed under reduced pressure. Merck F-254 commercial plates (Merck, Durham, NC,
USA) were used for analytical TLC to follow the course of the reactions. Silica gel 60 (Merck
70-230 mesh, Merck, Durham, NC, USA) was used for column chromatography. 1H-NMR,
13C-NMR, HSQC, and HMBC spectra were recorded on an Avance 400 instrument (Bruker
Biospin Version 002 with SGU, Bruker Inc., Billerica, MA, USA). Chemical shifts (d) are
given in parts per million (ppm), approximated to the nearest 0.01 ppm using the solvent
as the internal standard. Coupling constants (J) are in Hz and were calculated by Top Spin
3.1 and approximated to 0.1 Hz. Data are reported as follows: chemical shift, multiplicity
(exch, exchange; br, broad; s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; or a
combination of those, e.g., dd), integral, assignments, and coupling constant. Mass spectra
(m/z) were recorded on a Varian 1200L ESI-MS triple quadrupole (Varian Inc., Walnut
Creek, CA, USA) system in positive ion mode by injecting a 10 mg/L solution of each
analyte dissolved in a mixture of mQ H2O/acetonitrile 1:1 v/v. All new compounds
exhibited a purity >95%. Microanalyses indicated by the element symbols were performed
with a Perkin-Elmer 260 elemental analyzer (Perkin-Elmer, Waltham, MA, USA) for C, H,
and N, and they were within ±0.4% of the theoretical values.

3.1. Chemistry

Below are the synthetic procedures used to synthesize the active compounds reported
in Table 1 (i.e., 13a, b, i, 16, 20, 23a, c, 26, 33a, b, 42a, 43, 58c).

3.1.1. 5-Methoxypyrazolo[1,5-a]quinazoline-3-carboxamide (13a)

A suspension of 4,5-dihydro-5-oxo-pyrazolo[1,5-a]quinazoline-3-carboxyamide 3a [57]
(80 mg or 0.35 mmol in 2.5 mL of anhydrous DMF and 0.35 mmol of anhydrous Cs2CO3)
was incubated at room temperature for 15 min. Methyl iodide (0.70 mmol) was added, and
the reaction was heated to 80 ◦C for 1 h. After cooling, 20 mL of ice-cold water was added,
and the precipitate formed was recovered by vacuum filtration to obtain the O-alkylated
compound 13a. This compound was also obtained starting from 15 (see below). Yield
80%, mp 246–247 ◦C (i-PrOH); TLC eluent: toluene/ethyl acetate/methanol8/2/1.5 v/v/v.
1H-NMR (400 MHz, DMSO-d6) δ 4.21 (s, 3H, OCH3); 7.31 (exch br s, 1H, CONH2); 7.48
(exch br s, 1H, CONH2); 7.66 (t, 1H, H7, J = 7.2 Hz); 8.04 (t, 1H, H8, J = 7.2 Hz); 8.19 (d, 1H,
H9, J = 8.0 Hz); 8.31 (m, 2H, H2, H6). 13C-NMR (100 MHz, DMSO-d6) δ 55.5; 106.5; 111.7;
115.0; 126.0; 126.6; 135.9; 137.0; 142.1; 143.9; 160.6; 163.4. ESI-MS calcd for C12H10N4O2,
242.24; found: m/z 243.08 [M + H]+. Anal. calcd for C12H10N4O2 (C, H, N): C, 59.50; H,
4.16; N, 23.13; found: C, 59.74; H, 4.18; N, 23.22.

3.1.2. General Procedure for Synthesizing Compounds 13b, i

A suspension of 4,5-dihydro-5-oxo-pyrazolo[1,5-a]quinazoline-3-carboxyamide 3a [57]
(150 mg or 0.66 mmol in 3.0 mL of anhydrous DMF and 2.64 mmol anhydrous K2CO3)
was incubated at room temperature for 15 min. The appropriate substituted benzyl halide
(0.99 mmol) was then added, and the reaction was heated at 50 ◦C for 2 h. After cooling,
20 mL of ice-cold water was added, and the precipitate formed was recovered by vacuum
filtration and washed first with water, then ethanol, and finally with diethyl ether to obtain
the desired compounds, which were purified by crystallization from the suitable solvent.
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3.1.3. 5-(Benzyloxy)pyrazolo[1,5-a]quinazoline-3-carboxamide (13b)

From 3a and benzyl bromide. Yield 65%, mp 208–209 ◦C (EtOH); IR (nujol) cm−1: 3450,
3420, 1676, 1308; TLC eluent: toluene/ethyl acetate/acetic acid 8/2/1.5 v/v/v. 1H-NMR
(400 MHz, DMSO-d6) δ 5.72 (s, 2H, OCH2); 7.31 (exch br s, 1H, NH); 7.45 (m, 4H, Ar + NH);
7.60 (d, 2H, Ar, J = 8.0 Hz); 7.68 (t, 1H, H8, J = 8.0 Hz); 8.07 (t, 1H, H7, J = 8.0 Hz); 8.25 (d, 1H,
H6, J = 8.4 Hz); 8.34 (s, 1H, H2); 8.38 (d, 1H, H9, J = 8.4 Hz). ESI-MS calcd for C18H14N4O2,
318.34; found: m/z 319.12 [M + H]+. Anal. calcd for C18H14N4O2 (C, H, N): C, 67.92; H,
4.43; N, 17.60; found: C, 67.65; H, 4.41; N, 17.53.

3.1.4. 5-[(4-Sulfamoylbenzyl)oxy]pyrazolo[1,5-a]quinazoline-3-carboxamide (13i)

Compound 3a was treated with 4-(bromomethyl)benzenesulphonamide. Yield 90%,
mp 167–168 ◦C (EtOH); TLC eluent: toluene/ethyl acetate/acetic acid 8/2/1 v/v/v. 1H-
NMR (400 MHz, DMSO-d6) δ 5.81 (s, 2H, OCH2); 7.27 (exch br s, 1H, CONH2); 7.39 (exch
br s, 2H, SO2NH2); 7.46 (exch br s, 1H, CONH2); 7.67 (t, 1H, H7, J = 7.6 Hz); 7.77 (d, 2H, H2′ ,
H6′ , J = 8.0 Hz); 7.86 (d, 2H, H3′ , H5′ , J = 8.4 Hz); 8.06 (t, 1H, H8, J = 7.6 Hz); 8.27 (d, 1H, H9,
J = 8.0 Hz); 8.33 (d, 1H, H6, J = 8.0 Hz); 8.33 (s, 1H, H2). 13C-NMR (100 MHz, DMSO-d6) δ
68.7; 106.0; 111.7; 115.1; 126.2; 126.4; 127.0; 128.6; 136.3; 137.0; 140.5; 142.1; 143.7; 143.9; 160.0;
163.8. ESI-MS calcd for C18H15N5O4S, 397.41; found: m/z 398.09 [M + H]+. Anal. calcd for
C18H15N5O4S (C, H, N): C, 54.40; H, 3.80; N, 17.62; found: C, 54.61; H, 3.81; N, 17.69.

3.1.5. 5-[(4-(Methylsulfinyl)benzyloxy]pyrazolo[1,5-a]quinazoline-3-carboxamide (16)

To a solution of 176 mg (1 mmol) of HIO3 in 11 mL of acetone/H2O (10:1), a small
amount of tetra-n-butylammonium bromide (TBAB) was added while stirring for 5 min.
Then, 0.25 mmol of compound 13c (the synthesis of 13c is reported in Supplementary
Materials) was added, and the mixture was stirred at 80 ◦C for 2 h. The reaction mixture
was cooled, 10 mL of H2O was added, and the precipitate formed was collected by vacuum
filtration. Yield 88%, mp 225–226 ◦C (EtOH 80%); TLC eluent: toluene/ethyl acetate/acetic
acid 8/2/1 v/v/v. 1H-NMR (400 MHz, DMSO-d6) δ 2.73 (s, 3H, SOCH3); 5.77 (s, 2H,
OCH2); 7.26 (exch brs, 1H, CONH2); 7.46 (exch brs, 1H, CONH2); 7.66 (t, 1H, H7, J = 7.2 Hz);
7.71 (d, 2H, H2′ , H6′ , J = 7.6 Hz); 7.77 (d, 2H, H3′ , H5′ , J = 7.6 Hz); 8.04 (t, 1H, H8, J = 7.2 Hz);
8.25 (d, 1H, H9, J = 7.6 Hz); 8.30 (m, 2H, H6, H2). 13C-NMR (100 MHz, DMSO-d6) δ 68.9;
106,6; 111.6; 115.0; 124.3; 126.1; 126.7; 129.1; 136.0; 137.1; 139.1; 141.9; 144.0; 146.7; 159.8;
163.3. ESI-MS calcd for C19H16N4O3S, 380.42; found: m/z 381.10 [M + H]+. Anal. calcd for
C19H16N4O3S (C, H, N): C, 59.99; H, 4.24; N, 14.73; found: C, 59.75; H, 4.22; N, 14.67.

3.1.6. 5-{[4-(Methanesulfonyl)phenyl]methoxy}-3-(thiophen-3-yl)pyrazolo[1,5-a]quinazoline (20)

Compound 6 [3-(thiophen-3-yl)pyrazolo[1,5-a]quinazolin-5(4H)-one] [41] (0.31 mmol)
was suspended in 10 mL of methylene chloride and 0.70 mmol of 4-toluenesulfonyl chloride,
and 0.6 mL (in excess) of triethylamine was added. The reaction was maintained at reflux
temperature for 2–3 h, and then the solvent was evaporated to dryness. The residue was
dissolved in isopropyl alcohol and crystallized with the same solvent. Yield 97%, mp
203 ◦C; TLC eluent: toluene/ethyl acetate/acetic acid 8/2/1.5 v/v/v. 1H-NMR (400 MHz,
DMSO-d6) δ 2.45 (s, 3H, CH3); 7.43 (d, 1H, H2 thiophene, J = 2.8 Hz); 7.45 (d, 1H, H4
thiophene, J = 5.2 Hz); 7.53 (d, 2H, H3′ + H5′ J = 8.0 Hz); 7.60 (dd, 1H, H5 thiophene, J
= 2.8 Hz; J = 5.2 Hz); 7.71 (m, 2H, H7 + H9); 8.04 (d, 2H, H2′ and H6′ , J = 8.0 Hz); 8.08
(m, 1H, thiophene); 8.13 (t, 1H, H7, J = 8.0 Hz); 8.37 (d, 1H, H6, J = 8.4 Hz); 8.60 (s, 1H,
H2). ESI-MS calcd for C21H15N3O3S2, 421.49; found: m/z 422.06 [M + H]+. Anal. calcd for
C21H15N3O3S2 (C, H, N): C, 59.84; H, 3.59; N, 9.97; found: C, 59.60; H, 3.57; N, 9.93.

3.1.7. General Procedure for Synthesizing Compounds 23a, c

A suspension of 8-chloro-5-oxo-4,5-dihydropyrazolo[1,5-a]quinazoline-3-carboxyamide
3b (the synthesis of 3b is reported in Supplementary Materials) (150 mg or 0.66 mmol in
3.0 mL of anhydrous DMF and 2.64 mmol of anhydrous K2CO3) was incubated at room
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temperature for 15 min. The appropriate substituted halide (0.99 mmol) was then added,
and the reaction was heated to 50 ◦C for 2 h. After cooling, 20 mL of ice-cold water was
added, and the precipitate formed was recovered by vacuum filtration and purified by flash
column chromatography using dichloromethane/methanol 10:0.5 (for 23a) or water/acetic
acid 1:1 (for 23c) as the eluent.

3.1.8. 8-Chloro-5-methoxypyrazolo[1,5-a]quinazoline-3-carboxamide (23a)

Compound 3b was treated with methyl iodide. Yield 80%, mp 288–290 ◦C (EtOH);
TLC eluent: dichloromethane/methanol 10/0.5 v/v. 1H-NMR (400 MHz, DMSO-d6) δ 4.21
(s, 3H, OCH3); 7.28 (exch br s, 1H, CONH2); 7.51 (exch br s, 1H, CONH2); 7.70 (dd, 1H, H7,
J1 = 2.0 Hz, J2 = 8.8 Hz); 8.20 (d, 1H, H6, J = 8.8 Hz); 8.29 (d, 1H, H9, J = 2.0 Hz); 8.35 (s, 1H,
H2). ESI-MS calcd for C12H9ClN4O2, 276.68; found: m/z 278.04 [M + H]+. Anal. calcd for
C12H9ClN4O2 (C, H, N): C, 52.09; H, 3.28; N, 20.25; found: C, 52.30; H, 3.29; N, 20.33.

3.1.9. 8-Chloro-5-(4-sulfamoylbenzyloxy)pyrazolo[1,5-a]quinazoline-3-carboxamide (23c)

Compound 3b was treated with 4-(bromomethyl)benzene sulphonamide. Yield 61%,
mp 177–180 ◦C (H2O/CH3COOH); TLC eluent: toluene/ethyl acetate/methanol 8/2/1.5
v/v/v. 1H-NMR (400 MHz, DMSO-d6) δ 5.78 (s, 2H, OCH2); 7.26 (exch br s, 1H, CONH2);
7.39 (exch br s, 2H, SO2NH2); 7.48 (exch br s, 1H, CONH2); 7.69 (dd, 1H, H7, J1 = 1.6 Hz,
J2 = 8.4 Hz); 7.75 (d, 2H, H2′ , H6′ , J = 8.0 Hz); 7.85 (d, 2H, H3′ , H5′ , J = 8.0 Hz); 8.27 (d, 1H,
H6, J = 8.8 Hz); 8.29 (d, 1H, H9, J = 2.0 Hz); 8.35 (s, 1H, H2). 13C-NMR (100 MHz, DMSO-d6)
δ 68.93; 106.00; 110.68; 114.76; 126.38; 127.07; 128.51; 128.77; 137.50; 140.16; 140.69; 142.10;
143.20; 146.70; 159.20; 163.09. ESI-MS calcd for C18H14ClN5O4S, 431.85; found: m/z 433.04
[M + H]+. Anal. calcd for C18H14ClN5O4S (C, H, N): C, 50.06; H, 3.27; N, 16.22; found: C,
50.26; H, 3.28; N, 16.28.

3.1.10. (E)-8-Chloro-N-[(dimethylamino)methylene]-5-oxo-4,5-dihydropyrazolo[1,5-
a]quinazoline-3-carboxamide (26)

To a solution of 0.21 mmol of 3b in 3 mL of anhydrous toluene and 0.3 mL of dry DMF,
0.76 mmol (0.10 mL) of DMF-DMA was added. The reaction was refluxed for 2 h. After
cooling, the precipitate formed was recovered by vacuum filtration to obtain compound 26.
Yield 83%, mp 288–290 ◦C (EtOH); TLC eluent: toluene/ethyl acetate/methanol 8/2/2
v/v/v. 1H-NMR (400 MHz, DMSO-d6) δ 3.15 (s, 3H, NCH3); 3.23 (s, 3H, NCH3); 7.60 (d,
1H, H7, J = 8.4 Hz); 8.07 (s, 1H, H9); 8.17 (d, 1H, H6, J = 8.8 Hz); 8.19 (s, 1H, H2); 8.67 (s, 1H,
N=CH); 10.83 (exch br s, 1H, CONH). ESI-MS calcd for C14H12ClN5O2, 317.73; found: m/z
319.07 [M + H]+. Anal. calcd for C14H12ClN5O2 (C, H, N): C, 52.92; H, 3.81; N, 22.04; found:
C, 52.71; H, 3.79; N, 21.95.

3.1.11. General Procedure for Synthesizing Compounds 33a, b

Compounds 3c or 3d (the synthesis of 3c and 3d is reported in Supplementary Materi-
als) (0.35 mmol) were treated in 2.5 mL of anhydrous DMF and 0.35 mmol of K2CO3 with
stirring at room temperature for 15 min. Methyl iodide (0.70 mmol) was then added, and
the reaction was heated at 80 ◦C for 1 h. After cooling, 20 mL of ice-cold water was added,
and the precipitate formed was recovered by vacuum filtration. The crude compounds
were purified by flash column chromatography using dichloromethane/methanol/acetic
acid 97/3/03 v/v/v (for 33a) or toluene/ethyl acetate/acetic acid 8/2/1 v/v/v (for 33b) as
the eluent.

3.1.12. 5-Methoxy-8-nitropyrazolo[1,5-a]quinazoline-3-carboxamide (33a)

Synthesized from 8-nitro-5-oxo-4,5-dihydropyrazolo[1,5-a]quinazoline-3-carboxamide
3c. Yield 58%, mp >300 ◦C; TLC eluent: dichloromethane/methanol/acetic acid 97/3/03
v/v/v. 1H-NMR (400 MHz, DMSO-d6) δ 4.25 (s, 3H, CH3); 7.27 (exch br s, 1H, NH2); 7.56
(exch br s, 1H, NH2); 8.36 (dd, 1H, H2, J1 = 2.0 Hz, J2 = 8.8 Hz); 8.42 (m, 2H, H7, H6); 8.88
(d, 1H, H9, J = 1.6 Hz). 13C-NMR (400 MHz, DMSO-d6) δ 56.1; 110.5; 120.5; 128.8; 131.2;
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144.9. ESI-MS calcd for C12H9N5O4, 287.24; found: m/z 288.07 [M + H]+. Anal. calcd for
C12H9N5O4 (C, H, N): C, 50.18; H, 3.16; N, 24.38; found: C, 50.38; H, 3.17; N, 24.47.

3.1.13. 5-Methoxy-7-nitropyrazolo[1,5-a]quinazoline-3-carboxamide (33b)

Synthesized from 7-nitro-5-oxo-4,5-dihydropyrazolo[1,5-a]quinazoline-3-carboxamide
3d. Yield 40%, mp 269–271 ◦C; TLC eluent: toluene/ethyl acetate/acetic acid 8/2/1 v/v/v.
1H-NMR (400 MHz, DMSO-d6) δ 4.26 (s, 3H, CH3); 7.28 (exch br s, 1H, NH2); 7.58 (exch
br s, 1H, NH2); 8.44 (s, 1H, H2); 8.47 (d, 1H, H9, J = 9.2 Hz); 8.77 (dd, 1H, H8, J1 = 2.4 Hz,
J2 = 9.2 Hz); 8.86 (d, 1H, H6, J = 2.4 Hz). 13C-NMR (400 MHz, DMSO-d6) δ 56.1; 107.4; 112.1;
117.1; 122.3; 130.1; 140.2; 144.8; 145.7; 160.4; 163.0. ESI-MS calcd for C12H9N5O4, 287.24;
found: m/z 288.07 [M + H]+. Anal. calcd for C12H9N5O4 (C, H, N): C, 50.18; H, 3.16; N,
24.38; found: C, 50.38; H, 3.17; N, 24.47.

3.1.14. 5-(Methylamino)-8-nitropyrazolo[1,5-a]quinazoline-3-carbonitrile (42a)

To a solution of 0.25 mmol of 39a (the synthesis of 39a is reported in Supplementary
Materials) in 4.0 mL of 1,4-dioxane, 0.76 mmol of methylamine and 0.38 mmol of N,N-
diisopropylethylamine (DIPEA) were added. The mixture was stirred at room temperature
for 1.5 h, 20 mL of ice-cold water was added, and the precipitate obtained was recovered
by vacuum filtration to obtain the desired compound. Yield 67%, mp >300 ◦C (EtOH); TLC
eluent: toluene/ethyl acetate/methanol 8/2/2 v/v/v. 1H-NMR (400 MHz, DMSO-d6) δ
3.06 (d, 3H, CH3 J = 4.4 Hz); 8.37 (d, 1H, H7, J = 2.0 Hz); 8.39 (s, 1H, H2); 8.54 (d, 1H, H6,
J = 8.8 Hz); 8.75 (d, 1H, H9, J = 2.0 Hz); 8.98 (exch br d, 1H, NH). 13C-NMR (400 MHz,
DMSO-d6) δ 28.7; 66.4; 114.5; 116.1; 119.9; 121.8; 125.5; 135.7; 146.1; 150.2; 154.4; 163.2. ESI-
MS calcd for C12H8N6O2, 268.24; found: m/z 269.07 [M + H]+. Anal. calcd for C12H8N6O2
(C, H, N): C, 53.73; H, 3.01; N, 31.33; found: C, 53.51; H, 2.99; N, 31.20.

3.1.15. 5-(Methylamino)-8-nitropyrazolo[1,5-a]quinazoline-3-carboxamide (43)

Compound 42a (0.82 mmol) was transformed into the corresponding carboxamide
following the same procedure used to obtain compound 38. Yield 70%, mp >300 ◦C (EtOH);
TLC eluent: toluene/ethyl acetate/methanol 8/2/2 v/v/v. 1H-NMR (400 MHz, DMSO-d6)
δ 3.04 (s, 3H, CH3); 7.24 (exch br s, 1H, NH); 7.48 (exch br s, 1H, NH); 8.14 (s, 1H, H2); 8.30
(d, 1H, H7, J = 8.4 Hz); 8.52 (d, 1H, H6, J = 8.8 Hz); 8.74 (s, 2H, H9 + NH). ESI-MS calcd for
C12H10N6O3, 286.25; found: m/z 287.08 [M + H]+. Anal. calcd for C12H10N6O3 (C, H, N):
C, 50.35; H, 3.52; N, 29.36; found: C, 50.55; H, 3.53; N, 29.47.

3.2. Biological Assays
3.2.1. Analysis of AP-1/NF-κB Activation

THP-1 cells are a human monocyte cell line that was developed from a monocyte
isolated from the peripheral blood of an acute monocytic leukemia patient. This cell line
is used as a monocyte/macrophage model in immunology research. The THP-1Blue cells
obtained from InvivoGen (San Diego, CA, USA) are THP-1 cells that were stably transfected
with a secreted embryonic alkaline phosphatase gene that is under control of a NF-κB/AP-
1-inducible promoter. For this study, THP-1Blue cells were cultured at 37 ◦C in a humidified
atmosphere containing 5% CO2 in in RPMI 1640 medium (Mediatech Inc., Herndon, VA,
USA) supplemented with 10% (v/v) fetal bovine serum (FBS), 100 µg/mL streptomycin,
100 U/mL penicillin, 100 µg/mL phleomycin (Zeocin), and 10 µg/mL blasticidin S (all
from Sigma-Aldrich, St. Louis, MO, USA).

To measure the activation of AP-1/NF-κB, the THP-1Blue cells (2 × 105 cells/well)
were pretreated with the test compounds or dimethyl sulfoxide (DMSO; 1% final concentra-
tion) for 30 min, followed by the addition of 250 ng/mL of lipopolysaccharide (LPS; from
Escherichia coli strain 0111:B4) for 24 h, and alkaline phosphatase activity was measured in
the cell supernatants using the QUANTI-Blue mix (InvivoGen) as the absorbance at 655 nm
and compared with positive control samples (LPS). The concentration of the compound
that caused 50% inhibition of the NF-κB reporter activity (IC50) was calculated.
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3.2.2. Cytotoxicity Assay

Cytotoxicity was analyzed with a CellTiter-Glo Luminescent Cell Viability Assay
Kit from Promega (Madison, WI, USA) according to the manufacturer’s protocol. THP-
1Blue cells were treated with varying concentrations of the test compounds (up to 50 µM)
and cultivated for 24 h. After treatment, the cells were allowed to equilibrate to room
temperature for 30 min, the substrate was added, and the samples were analyzed with a
Fluoroscan Ascent FL (Thermo Fisher Scientific, Waltham, MA, USA).

3.2.3. Kinase Kd Determination

Compounds 13i and 16 were submitted for dissociation constant (Kd) determination
toward JNK1-3 using KINOMEscan (Eurofins Pharma Discovery, San Diego, CA, USA), as
described previously [56]. In brief, JNK1-3 were produced and displayed on T7 phages or
expressed in HEK-293 cells. Binding reactions were performed at room temperature for 1 h,
and the fraction of kinase not bound to the test compound was determined by capture with
an immobilized affinity ligand and quantified by quantitative polymerase chain reaction.
The primary screening at fixed concentrations of the compound was performed in duplicate.
For dissociation constant Kd determination, a 12-point half-log dilution series (a maximum
concentration of 33 µM) was used. Assays were performed in duplicate, and their average
mean value is displayed.

3.3. Molecular Modeling
3.3.1. PharmMapper Modeling

The PharmMapper Server [58] was used to identify potential protein targets for com-
pounds 13i and 16. PharmMapper recognizes potential targets based on reverse pharma-
cophore mapping. The protein biotargets are represented by sets of pharmacophore points
in reference databases incorporated in the software. The structures of 13i and 16 were
uploaded in SDF format into PharmMapper. The system automatically generated up to
300 conformers of each compound based on the software option. We performed pharma-
cophore mapping using the “Human Protein Targets Only” database, which contained
2241 targets. We retrieved the top 250 potential targets for each compound evaluated. The
potential targets were sorted by normalized fit score.

3.3.2. Molecular Docking

Docking of compounds 13i and 16 into the binding sites of kinases ERK2, JNK3, and
p38α MAPK (structures 1TVO [54], 1PMV [59], and 1W7H [60], respectively, from Protein
Data Bank) was performed with the use of the ROSIE server [52]. The docking areas were
chosen around the geometric centers of the co-crystallized ligands, each occupying the
binding site of the corresponding enzyme in the 1TVO, 1PMV, or 1W7H structure. For
each of the docked compounds, generation of up to 1000 ligand conformers with the BCL
algorithm [61] was switched on. The number of intermediately generated docking poses
was set to 2000. Other options were set to the default settings within the ROSIE ligand
docking protocol, which accounts for the full flexibility of the main chain and side chains
of residues in the vicinity of the docking area [50]. Upon finishing the computation jobs,
PDB files containing the best poses obtained for compounds 13i and 16 docked into ERK2,
JNK3, and p38α were downloaded from the server, and imported into the Molegro Virtual
Docker (MVD) program for visualization and analysis using the built-in “Pose Organizer”
tool of MVD.

The docking of compounds 13i and 16 into the JNK3 binding site (PDB structure
4WHZ) was performed with AUTODOCK 4.1. For each investigated complex, the confor-
mation with the most favorable binding energy was selected. The JNK3–ligand complex
was further minimized in a vacuum using the amber99sb force-field implemented in GRO-
MACS 5.1. No constraints were applied, and a conjugate gradient algorithm for energy
minimization was used. The minimization was converged when the maximum force was
smaller than 10.0 kJ·mol−1·nm−1.
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4. Conclusions

In this manuscript, we report the biological screening of 80 pyrazolo[1,5-a]quinazoline
compounds and related derivatives (most being new and unpublished compounds) to
investigate their potential anti-inflammatory effects. All compounds were screened for
their ability to inhibit NF-κB/AP-1 reporter activity in THP-1Blue cells since this path-
way is fundamental in inflammatory processes. Of the screened compounds, 13 were
able to inhibit NF-κB/AP-1 activity with IC50 values <50 µM. Considering that this was
a library of non-homogeneous compounds, only a few observations could be made to
highlight several structural features that correlated with anti-inflammatory activity. The
PharmMapper analysis indicated that the most potent compounds may be MAPK kinase
ligands. This conclusion was supported by molecular modeling studies showing that the
selected compounds 13i and 16 could effectively bind to ERK2, p38α, and JNK3 and the
KINOMEscan studies showing that these compounds can bind to JNK1, JNK2, and JNK3
with Kd values in the micromolar range. Thus, pyrazolo[1,5-a]quinazoline and related
scaffolds may be novel structures to explore for the development of new anti-inflammatory
therapeutics targeted toward MAPKs. Future studies will be important to evaluate these
lead compounds in in vivo models of inflammation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29112421/s1, Tables S1–S3: Synthetic procedures for
all new compounds; Chemical structures of all tested compounds; Figures S1–S59: 1H-NMR and
13C-NMR spectra of representative compounds; Figures S60–S63: HSQC and HMBC of compounds
7b and 14c; Table S4: Potential human protein targets for compounds 13i and 16 identified by
PharmMapper; Figures S64 and S65: Molecular modeling for complexes of compounds 13i and 16
with JNK3 (PDB: 4WHZ); Table S5: H-bonding interactions obtained from the docking of ligands 13i
and 16 into the binding sites of JNK3.
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