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Abstract: This paper studies a cooperative modeling framework to reduce the complexity in deriving
the governing dynamical equations of complex systems composed of multiple bodies such as biped
robots and unmanned aerial and ground vehicles. The approach also allows for an optimization-based
trajectory generation for the complex system. This work also studies a fast–slow model predictive
control strategy with task prioritization to perform docking maneuvers on cooperative systems. The
method allows agents and a single agent to perform a docking maneuver. In addition, agents give
different priorities to a specific subset of shared states. In this way, overall degrees of freedom to
achieve the docking task are distributed among various subsets of the task space. The fast–slow
model predictive control strategy uses non-linear and linear model predictive control formulations
such that docking is handled as a non-linear problem until agents are close enough, where direct
transcription is calculated using the Euler discretization method. During this phase, the trajectory
generated is tracked with a linear model predictive controller and addresses the close proximity
motion to complete docking. The trajectory generation and modeling is demonstrated on a biped
robot, and the proposed MPC framework is illustrated in a case study, where a quadcopter docks on
a non-holonomic rover using a leader–follower topology.

Keywords: cooperation; model predictive control; rover; quadcopter; docking

1. Introduction

Planning a trajectory for complex robots such as a biped is a complex task as the
free-floating base of the robot is moved by the discontinuous contact forces acting on their
feet. This propulsion method requires attention in planning the motion of the contact points
and the contact forces while considering the dynamic effects on the robot [1]. In addition,
a straightforward optimal control formulation results in intractable non-linear programs,
as stated in the literature [2,3].

There are multiple causes of complexity in planning the trajectory of a floating base
robot. First of all, the pose of the floating base is described as unactuated base coordinates
with six degrees of freedom (DoF). Then, actuated joint coordinates of legs are added on
top of that, which results in relatively large joint coordinates [1]. Therefore, the trajectory
optimization of such a system should find optimal values for all these coordinates. Secondly,
contact between the feet and the terrain must comply certain contact conditions such as
unilateral contact forces [4]. In the literature, this problem is handled as a trajectory
optimization problem using numerical optimization techniques such as direct optimal
control methods [5], indirect optimal control methods [6], dynamic programming [7],
and sequential methods [8]. In this way, trajectory of the robot, along with calculated
joint coordinates, torques, and contact forces, are calculated by considering the upper-level
constraints on the task.
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The complexity of the problem is reduced in multiple ways. One way to carry this
out is to use low-fidelity dynamic models for the robot such as single rigid body dynamics
model, where lumped inertia is attached to the body frame and actuated links are assumed
to be moving slowly and having low inertia [2]. Another way to reduce complexity is to
split the the optimization into smaller sub-problems and to pre-define some portions of the
trajectory such as footholds [9].

However, simplifications in robot model and optimization problems are compromised
with the complexity of the motion that can be calculated with trajectory optimization.
For this reason, having means to simplify full-body dynamics without compromising the
fidelity of the model is vital. Recently, the trajectory optimization problem was distributed
into smaller alternating sub-problems, where one first satisfies dynamic constraints of
the problem by finding robot momentum and contact forces, and then one finds the leg
kinematics that satisfy robot dynamics. This is denoted as centroidal and whole-body
model splitting and was first introduced in the work [8], where a sequential optimal control
formulation was represented. In another work based on the same splitting of whole-body
motion and centroidal dynamics, the locomotion problem is cast into a mathematical
framework based on Alternating Direction Method of Multipliers (ADMM) [10]. This paper
exploits the natural splitting between centroidal and manipulator dynamics and ensures
consensus between these models. Another recent example uses the same splitting and
introduces an accelerated ADMM algorithm to solve the locomotion problem. [3].

Besides the centroidal and whole body splitting of the dynamic model of a legged robot,
there is obviously another split between the portions of the body. This splitting is naturally
defined by the design of legged robots and referred to as body and limbs. Depending on the
design, they can contain a single body or a set of multi-bodies and interconnections between
these sets maintained over a connection node, which is a joint. A formal way to describe the
cooperation between these sets already exists in the literature within a cooperative system
framework [11]. This framework defines a relationship between independent agents using
communication graphs, which dictate a mapping to the information flow among agents.
Cooperative system frameworks are used in many areas such as increasing performance of
a sensory network in localization of data [12] or calculating the communication topology
between dynamic agents within the cooperative system [13]. It is also used in designing
controllers for agents within a network [14]. All the applications have one thing in common,
which is the distributed modeling of the cooperative system and the distributed calculation
of the variables to reach the desired objective.

Autonomous aerial systems have become essential in numerous practical fields, such
as in public safety, as a surveillance tool and first response [15–17]. It has also been studied
for the delivery of goods by the industry [18,19]. A critical task during the operation
of an aerial system is docking maneuver, where it might be approaching a stationary
or a moving platform [20,21] to drop/load cargo. In addition, aerial vehicles require
refueling or recharging to extend their workspace [22]. Docking is an intricate maneuver
that necessitates the awareness of the docking path’s constraints regarding flight safety and
the docked platform’s attitude [23]. In addition, nonlinear effects such as the wake of the
leading agent due to the proximity flight must be considered [24] as well as the ground
effect [25]. Thus it is clear that the characteristic of this maneuver requires the agent to
handle certain constraints and uncertainties.

A popular control method to handle previously described constraints and calculate
control actions is model-predictive control (MPC). An MPC reaches the desired control
action by minimizing a given objective using linear and non-linear optimization theory,
as applied in the case of a tracking controller [26]. MPC also allows the integration of
secondary tasks into decision-making, as in [27], which makes it a unified strategy to handle
docking maneuvers without requiring ad-hoc integration of multiple frameworks that
increase complexity. Implementing MPC-based docking strategies for space applications
exists in case studies, where line of sight constraints are satisfied, energy-saving strategies
are pursued, and docking on tumbling objects are executed [28–30].
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Autonomous docking for aerial vehicles requires state information of the docked
platform, which receives the docking agent. Therefore it certainly requires an on-board
or external mechanism to sense and estimate states. On-board sensors such as cameras
or LiDAR are widely implemented solutions (see [31]), yet they are bounded with range
limitations. External mechanisms to obtain state information about the docked platform are
sensors placed on the agents, except for the docking agent or external observers. As a result,
this information is shared over a communication grid as illustrated in [32]. Besides state
information, some of the autonomous docking literature can be grouped in terms of
cooperation at the controller level. In one of the works, a central controller calculates
lateral and longitudinal velocity commands for both of the docking maneuver devices: an
uncrewed ground vehicle (UGV) and an uncrewed aerial vehicle (UAV). Then, these control
signals are fed into these agents [33]. In the extension of this work, an MPC strategy is
utilized on the same system, where both agents are cooperatively trying to execute docking
maneuvers [34]. In another work, a multirotor docks onto a fixed-wing platform, where
only the multirotor executes the docking maneuver [21]. The aerial refueling problem is
addressed as a docking problem in [22]. However, only the docking platform and the boom
are manipulated. Recent work studies an uncrewed sea surface vehicle (USV) landing and
designs an MPC controller for a multirotor, where cooperative docking is executed [35].
However, the docking trajectory calculation is calculated on the multirotor and shared back
to the USV.

Motivation

In this context, this paper aims to keep the model fidelity of the biped robot higher
than a single body dynamics and adopt a cooperative system framework in defining
dynamics of the robot. As a result, the robot will be defined by multiple cooperating agents,
where cooperation is introduced to the trajectory optimization by an adjacency matrix
as a constraint. In this way, lumped trajectory optimization is converted to a separated
objectives and constraints that are linearly related.

When multiple agents are communicating with each other and obeying specific rules,
i.e., collision avoidance, velocity matching, and staying within the vicinity of the neighbors,
the aggregate of these agents are called cooperative agents [36] and the application of
these systems are vast due to the advantages. Popular applications include uncrewed
vehicles [37] and space applications [38]. The nature of autonomous docking makes the
system performing this maneuver a cooperative system. However, it is not formally
addressed as such in the vast majority of the literature. This is due to the fact that in
most scenarios, one of the vehicles is assumed to be tightly controlled and hence passive.
The control laws are then derived for the remaining active vehicle. On the other hand,
controllers cooperatively addressing this problem are mainly centralized on a ground
controller or in one of the agents, which could suffer in performance or even fail due
to uncertainties in the communication. Apart from the centralized implementation of
cooperative docking, there are a few applications where both agents take part in the
docking maneuver. Since the cooperative control framework allows various communication
topologies, methods based on MPC with local neighbor state information can be applied.
Besides the cooperative aspect, a prioritization of the states to track during docking is
typically not studied in the literature. As summarized before, agents that are too far apart
from each other first could first minimize the positional difference, which is carried out to
be in a feasible solution set when the MPC for docking is initiated. Instead of handling
this problem as two separate sub-problems, an automated prioritization of tracking certain
states can be defined so that linear states can be given higher priority over the angular
states (see [39]).

Contributions

The key contributions of this paper are as follows. The methods introduced in this
paper are used to divide the lumped multi-body model of a large robot-system into cooper-
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ative multi-bodies and address the trajectory optimization problem using this distributed
model. In the case of the biped robot, although it has light weight legs compared to the
shoulder and the floating base, the biped robot will be modeled as three cooperative agents,
which are the floating base, right shoulder, and left shoulder. All agents are defined as
multi-bodies, as defined in the following sections. The contributions of this paper are
summarized as follows:

• This method divides the EoM of the biped robot into smaller cooperative agents,
which has simpler EoMs. Agents with simpler dynamics result in simpler equality
constraints for the trajectory optimization.

• The non-linear programming formulation given in this paper cast the trajectory opti-
mization problem with single objective and single augmented Hamiltonian into split
objectives and constraints.

• This paper also proposes a cooperative control strategy based on MPC for docking.
The designed strategy implements a non-linear and a linear MPC for the coarse
approach (long distance) and the delicate docking maneuver (short distance) based on
the same objective function with tailored optimization strategies. A leader–follower
type of topology is adopted, where the quadcopter docks on the UGV. As a showcase,
this controller performs short- and long-distance docking of a quadcopter on a UGV.

• Formulation of the MPC includes task prioritization, which is based on a null-space
projection of the tasks being ranked. The formulation is adopted from [40] by defining
the docking task in terms of the docking agents’ Degrees of Freedom (DoF).

The organization of the paper is such that Section 2 expresses governing equations
of agents and the underlying graph structure. Following that, Section 8 provides a task-
prioritization and MPC strategy for docking. The simulation results are shared in Section 9.
Finally, conclusions are provided in Section 11.

2. Notation and Preliminaries

The notation of this work is as follows. s ∈ R, v ∈ Rnv and M ∈ Rnr×nc represent
the arbitrary scalar, vector, and matrix. FI and FB represent the inertial and body frames,
respectively, where the expression of a vector for these frames is written as iv, i = I, B.
Unit vectors in orthonormal frames are denoted as u1 =

[
1 0 0

]T , u2 =
[

0 1 0
]T

and u3 =
[

0 0 1
]T . The composite rotation matrix ICB ∈ SO(3) is written from FB to

FI , the rotation sequence is depicted as z − y − x, and associated Euler angles are denoted
as ψ, θ and ϕ. g = 9.81 m/s2 is the gravitational acceleration. col{·}M

m=1, row{·}M
l=1, and

diag{·}M
m=1 represent column, row and diagonal concatenation, respectively, of the entity

within the parenthesis.

3. Underlying Graph Structure

The communication among agents in the cooperative systems are described by the
graph G = (N , E), which consists of node set N and edge set E [41]. Edge set E ⊂ N ×N
is given between nodes i ∈ N and j ∈ N such that (j, i) ∈ E denotes node i receives
information from j. Let nw be an arbitrary signal dimension, and then the adjacency
matrix; shared signal sizes among agents are assumed to be identical and equal to nw.
A = [aij]⊗ Inw ∈ RN·nw×N·nw of G is composed of weighting scalars aij, where aij quantifies
the strength of the connection from node j to node i. N is the number of agents in the
cooperative system (CS). Formally, Aij is described by the following equation.

Aij =

{
aij > 0, j ̸= i, (j, i) ∈ E
aij = 0, otherwise

(1)
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4. ASLB—A Bipedal Robot for Dynamics Locomotion
4.1. ASLB System Composition

ASLB is a floating bipedal platform in which each leg is composed of hybrid structure
with three degrees of freedom (DoFs). Specifically, starting from the body, the kinematic
structure of legs are a revolutionjoint (at shoulder) followed by a parallel 5R mechanism.
This kinematics result in three actuated and two passive joint coordinates in each leg.
A rendered 3D model and manufactured prototype of ASLB is provided in Figure 1.

Table 1 provides a summary of the key variables and terms used for the development
of the ASLB dynamic model.

Table 1. Summary of key variables used for the description of the ASLB kinematics and dynamics.

qB set of unactuated joints
qt,B translational joints
qr,B rotational joints
rB() translation matrix from one frame to another
CIB() rotation matrix from frame I to frame B
θi vector of joints for each leg
θa,i vector of active joints for leg, i
θp,i vector of passive joints for leg, i
rv,i position of point v
R∗ elementary rotation matrix for ∗ axis
vr,i velocity relationship
Jr,i Jacobian relating velocity to active and passive joints
a.,. lengths between joints
M() generalized mass matrix
C(., .) Coriolis and centrifugal terms
G() gravitational terms
S control selection matrix for actuated joints of respective legs
τ actuated joint torques
FC,i external force on tip of ith leg
JC,i geometric Jacobian of tip point for ith leg
ω0 angular speed for the linear inverted pendulum model (LIPM)
px̄c,K contact state x̄c at instant K in phase p

Figure 1. Three-dimensional model (left) and manufactured prototype of ASLB (right).

4.2. ASLB Kinematics

Kinematic model of the floating platform starts with a set of unactuated joints that
gives six DoFs to the mobile platform. These joints are collected in a column matrix qB ∈
R3 × SO(3). Starting from the inertial frame, joints are located in a sequence such that first
translational joints qt,B = [q1, q2, q3]

T ∈ R3 are located in respective x, y and z directions.
Assuming the euler sequence of YZX, rotational joints are qr,B = [q4, q5, q6]

T ∈ R3. Body
frame FB is kinematically represented with respect to FI by qB = [qT

t,B, qT
r,B]

T such that
rB(qt,B) and CIB(qr,B) are translation and rotation matrices from FI to FB, respectively.
There are two legs attached to the body, and respective joints are represented by θi ∈ Rni ,
where ni = 5 and i = R, L. In total, the combined DoF for legs are given as na = 10.
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The composition of θi for each leg is given as θi = [θ0,i θ1,i θ2,i θ3,i θ4,i]
T , where there

are three active and two passive joints, respectively θa,i = [θ0,i θ1,i θ3,i]
T ∈ R3 and

θp,i(θa,i) = [θ2,i(θa,i) θ4,i(θa,i)]
T . Passive joints can be written as a function of θa,i based

on a velocity constraint as described in Section 4.2.1. As a result, total joint space of ASLB is
given by q = [qB, θa,R, θa,L]

T ∈ R12. The kinematic structure of the right leg is illustrated
in Figure 2.

Figure 2. Kinematic structure of ASLB.

4.2.1. Passive—Active Joint Relation

As described in [42] starting from the origin of the body frame FB, there are two
chains to reach point v on both legs. Let R∗ represent elementary rotation matrix, where
∗ = x, y, z are active axes. Then these two chains can be written as in Equation (2).

rv,1 = a12 + Rz(θ1,R)a2 + Rz(θ1,R + θ2,R)a2

rv,2 = a14 + Rz(θ3,R)a2 + Rz(θ3,R + θ4,R)a2
(2)

Differentiating Equation (2) results in velocity equations of vr,1 and vr,2, which are
equal. Writing this relationship as below relates the passive joints to active joints as
described in Equation (3). Let θa,i = [θ1,i θ3,i]

T denote the set of active joints related to the
closed loop, then Ja,i ∈ R2 becomes a square matrix.

vr,1 = Jr,1

[
θ

T
a,i θT

p,i

]T

vr,2 = Jr,2

[
θ

T
a,i θT

p,i

]T

0 = (Jr,1 − Jr,2)
[

θ
T
a,i θT

p,i

]T

=
[

Ja Jp
][

θ
T
a,i θT

p,i

]T

(3)

Finally, passive joints are related to active joints as given in Equation (4).

θp,i = Jpaθa,i

Jpa = − J−1
p,i Ja,i

(4)

4.2.2. Forward Kinematics

Forward kinematics for each leg are used to calculate the position of the contact point
c with respect to origin of FB, as illustrated in Figure 2. The aforementioned position
vector is denoted as rc. As mentioned in Section 4.2.1 the active and passive joint angles are
related to each other and unless the passive joints are measured by sensors, they have to be
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calculated from this relationship. To do so, position vectors rv,1 and and rv,2 are arranged
as shown below.  cos(θ3,R + θ4,R)

sin(θ3,R + θ4,R)
0

a5,x =

−

 cos(θ1,R + θ2,R)
sin(θ1,R + θ2,R)

0

a3,x +

 a12,x − a14,x
a12,y − a14,y
a12,z − a14,z


+

 cos(θ1,R)
sin(θ1,R)

0

a2,x −

 cos(θ3,R)
sin(θ3,R)

0

a4,x

(5)

The first two rows of Equation (5) can be written in a minimal form as provided in
Equation (6) such that terms including θ3,R, θ4,R are left alone.[

cos(θ3,R + θ4,R)
sin(θ3,R + θ4,R)

]
=

[
Tx
Ty

]
+

a3,x

a5,x

[
cos(θ1,R + θ2,R)
sin(θ1,R + θ2,R)

]
Tx =

1
a5,x

(a12,x − a14,x + cos(θ1,R) + cos(θ3,R))

Ty =
1

a5,x
(a12,y − a14,y + sin(θ1,R) + sin(θ3,R))

(6)

Elements of Equation (6) are squared and summed to obtain Equation (7). Then
trigonometric expressions are written in terms of tangents of the half angles, which leads to
the a solution to θ12,R = θ1,R + θ2,R as provided in Equation (8).

T2
x + T2

y +
a3,x

a5,x

2
+ 2Tx

a3,x

a5,x
cos(θ12,R) + 2B sin(θ12,R) = 1 (7)

θ12,R = 2 tan−1(T12)

T12 =
−2C3 ±

√
(2C3)2 − 4(C1 − C2)(C1 + C2)

2(C1 − C2)

C1 = T2
x + T2

y +
a3,x

a5,x

2
− 1

C2 = 2Tx
a3,x

a5,x

C3 = 2Ty
a3,x

a5,x

(8)

Using θ12,R, one can write Equation (9) and solve for θ34,R = θ3,R + θ4,R. Finally, tip
point location rc is calculated as provided in Equation (10).

θ34,R = atan2(s34,R, c34,R)[
c34,R
s34,R

]
=

[
Tx +

a3,x
a5,x

cos(θ12,R)

Ty +
a3,x
a5,x

sin(θ12,R)

]
(9)

rc = a0 + Rx(θ0,R)(a14 + Rz(θ3,R)a4

+ Rz(θ34,R)(a5 + a6))
(10)

4.2.3. Inverse Kinematics

Inverse kinematics is illustrated on right leg, and the calculations provided here can
be duplicated for left leg. Inverse kinematics solutions in this work rely on the geometric
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calculation of θ0,R as provided in Equation (11). The geometric entities are illustrated in
Figure 3.

Figure 3. Geometric entities related to calculation of θ0,R.

θ0,R = atan2(sin(θ0,R), cos(θ0,R))[
cos(θ0,R)
sin(θ0,R)

]
=

[
a142,z −ra
−ra −a142,z

]−1[ rz − a0,z
ry − a0,y

]
r1 = r − a0

ra =
√

r2
1,y + r2

1,z − a2
14,z

a142,z = a14,z + a2,z

(11)

To calculate active joints θ1,R and θ3,R x and y components of the position vector rpc as
given in Equation (12) are expanded in Equation (13).

rpc,x = a4,x cos(θ3,R) + a56,x cos(θ3,R + θ4,R)

rpc,y = a4,x sin(θ3,R) + a56,x sin(θ3,R + θ4,R)
(12)

rpc,x = a4,x cos(θ3,R) + a56,x(cos(θ3,R) cos(θ4,R)− sin(θ3,R) sin(θ4,R))

rpc,y = a4,x sin(θ3,R) + a56,x(cos(θ3,R) sin(θ4,R) + sin(θ3,R) cos(θ4,R))
(13)

Equation (13) is rewritten as in Equation (14), and each scalar equation can be squared
and summed as in Equation (15).

cos(θ3,R) = (rpc,x/a4,x) + (a56,x/a4,x) cos(θ3,R + θ4,R)

= C4 + C5 cos(θ3,R + θ4,R)

sin(θ3,R) = (rpc,y/a4,x) + (a56,x/a4,x)(sin(θ3,R + θ4,R)

= C6 + C5 sin(θ3,R + θ4,R)

(14)

1 = C2
4 + C2

6 + C2
5 + 2C4C5 cos(θ3,R + θ4,R) + 2C6C5 sin(θ3,R + θ4,R)

0 = (C2
4 + C2

6 + C2
5 − 1) + (2C4C5) cos(θ3,R + θ4,R) + (2C6C5) sin(θ3,R + θ4,R)

0 = C7 + C8 cos(θ3,R + θ4,R) + C9 sin(θ3,R + θ4,R)

(15)

Then, using tangents of the half angle, Equation (15) can be further manipulated in
Equation (16). The solution to θ34,R can be calculated by solving the quadratic problem for
T34 as illustrated in Equation (8).

0 = (C7 − C8)T2
34 + 2C9T34 + (C7 + C8) (16)

After finding the solution to θ34,R, these values are inserted into Equation (12) to
calculate θ3,R. This completes the solution to one chain of the leg mechanism.

Geometric definitions such as rpcl , rcl are provided in Figure 4 to calculate the joint
variables on the other chain that contains a2 and a3.
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Figure 4. Geometric entities related to calculation of θ1,R.

Using the known joint variables, point v is represented from origin of the joint 3 with
a vector denoted as rpcl . Alternatively, point v can also be represented from the origin of
the joint 1 with a vector that is rcl . These vectors are defined on (P, R) plane, where the 5R
mechanism lies , and provided in Equations (17) and (18), respectively.

rpcl,x = rpc,x − a6,x cos(θ3,R + θ4,R)

rpcl,y = rpc,y − a6,x sin(θ3,R + θ4,R)
(17)

rcl,x = a2,x cos(θ1,R) + a3,x cos(θ1,R + θ2,R)

rcl,y = a2,x sin(θ1,R) + a3,x sin(θ1,R + θ2,R)
(18)

Scalar equations rcl,x and rcl,y of Equation (18) are squared, summed, and reorganized
as provided in Equation (19) to calculate βR, which leads to θ2,R.

cos(βR) = −
(

r2
cl,x + r2

cl,y − a2
2,x − a2

3,x

2a2,xa3,x

)

βR = acos

(
−

r2
cl,x + r2

cl,y − a2
2,x − a2

3,x

2a2,xa3,x

)
θ2,R = π + βR

(19)

To calculate θ1,R, rcl,x and rcl,y are represented as a function of rpcl . This is given
in Equation (20) in matrix form, where terms with θ1,R are the unknown variables. The
solution to Equation (20) for θ1,R finishes the inverse kinematic solution of the right leg.
The procedure for the left leg is identical. [

rpcl,x + (a14,x − a12,x)
rpcl,y

]
=[

a2,x + a3,x cos(θ2,R) −a3,x sin(θ2,R)
a3,x sin(θ2,R) a2,x + a3,x cos(θ2,R)

][
cos(θ1)
sin(θ1)

]
θ1,R = atan2(sin(θ1), cos(θ1))

(20)

4.3. ASLB Dynamics

Based on the generalized coordinates, multi-body dynamics of ASLB are formulated
as in (Equation (21))

M(q)q̈ + C(q, q̇) + G(q) = Sτ + JT
C,iFC,i (21)
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where M(q) ∈ R12×12, C(q, q̇) ∈ R12, and G(q) ∈ R12 are the generalized mass, Coriolis
and centrifugal, and gravitational terms, respectively. S ∈ R12×6, τ ∈ R6, FC,i ∈ R3 and
JC,i ∈ R3×12 are the selection matrix for the actuated joints of respective legs, actuated joint
torques, geometric Jacobian of the tip point of the ith leg, and external force on the tip of
ith leg.

Let x = [q, q̇]T ∈ R24, uτ = τ, and uc = FC,i ∀i be the states, inputs to motors and
external forces acting on tip point of the legs, respectively; then, the non-linear dynamics of
the robot can be written as in Equation (22).

ẋ = f (x, uτ , u)

f (x, uτ , u) =

[
q̇

M(q)−1Θ

]
θ = − C(q, q̇)− G(q) + Sτ + ∑

i
JT

C,iFC,i

(22)

The application of the graph-theoretic modeling for the ASLB by separating the legs,
which are defined as Agent 2 and Agent 3, from the floating base introduces simplifications
to the overall complexity of the model and optimization. One of the simplifications appears
in modeling as leg dynamics does not necessarily need to be modeled with respect to FI
using qB but rather is better defined with respect to the FB. This local representation of leg
dynamics leads to following outcomes for the dynamics of the agents:

• The leg is only used to find adjacency and contact forces on the floating base and ground,
• The state space representation of the leg dynamics can be kept at velocity level.

Note that the contact forces and geometric properties of contact point must be converted
to FB.

For ASLB, the floating base of the robot is denoted as Agent 1, the right leg is denoted
as Agent 2, and the left leg is denoted as Agent 3. Agent 1 is defined with two nodes,
node 1 and node 2; Agent 2 is defined with node 3; and Agent 3 is defined with node 4.
The locations of these nodes are illustrated in Figure 5, and it should be noted that node 1
and node 2 coincide. Without any interconnection constraint, agents are independent
of each other; however, there are rigid joints connecting them. In this case there are
two bi-directional edges and these are (node 3, node 1) ∈ E and (node 2, node 4) ∈ E .
Connections between nodes are assumed to be rigid, and then the adjacency matrix is
composed of edge weights amn = 1. This yields an adjacency matrix as in (23).

A =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 (23)

Finally, the relationships between cooperative agents are given in (24) by the Laplacian
matrix. Ip represents identity matrix with size p.

L = I4 −A (24)

Let W ∈ Rp be the signal that is being shared between agents; then, L can be expanded as
in (25) to comply with the signal dimension. ⊗ is the Kronecker product operator.

L = L⊗ Ip (25)

Recalling that node 1 and node 2 are coincident, one can define the following adja-
cency constraints using the extended Laplacian definition given in (25)
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Lx = L


x1
x1
x2
x3

 = 0

Lw = L


WA,1
WA,2
WA,3
WA,4

 = 0

(26)

Another aspect of splitting a lumped multi-body model into distributed cooperat-
ing multi-body models is generalized coordinates. This operation necessarily duplicates
the generalized coordinates of the floating base in a lumped model to the distributed
models. In addition to that, Agent 2 and Agent 3 have actuated joints of qa,i , i = 2, 3.

Therefore, generalized coordinates of the agents are defined as q1 =
[
qT

t,1 qT
r,1

]T
∈ R6,

q2 =
[
qT

t,2 qT
r,2 qT

a,2

]T
∈ R9 and q3 =

[
qT

t,3 qT
r,3 qT

a,3

]T
∈ R9, respectively, for Agent 1,

Agent 2, and Agent 3. This is illustrated in Figure 5.

Figure 5. Cooperative interconnection between agents and generalized coordinates at every agent.

4.4. Agent Kinematics

The YZX Euler sequence is used in defining the composite rotations CIi(qr,i) from FI
to Fi, where subscript i is the agent index and Fi is the local origin of the agent. The contact
point position and velocity of Agent 2 and Agent 3 are calculated with respect to FB, which
is denoted as in (27). K+(qi) represents forward kinematics of leg i in Equation (27), which
is explained in Section 4.2.

rc,i(qi) = K+(qi)

ṙc,i(qi, q̇i) = Jc,iq̇i
(27)

4.5. Agent Dynamics

The dynamics of agents yield a similar equation as given in (22), and, for brevity, a
representative Equation of Motion (EoM) is given in this section.

Generalized velocities are assigned to states of each agent as xi = q̇i. External forces
in distributed notation are divided into two, where the first one is denoted as FC,i and acts
on the agents as a result of ground contact. The second external force is denoted as FA,m
and exerted on the agents from the adjacent nodes. Adjacent nodes also transmit moment,
MA,m; therefore it is convenient to collect forces and moments at adjacent nodes such as a

wrench, denoted as WA,m =
[

FT
A,m MT

A,m

]T
. As a result, the non-linear dynamics of each
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agent are written as given in (28). Let xi = q̇ ∈ Rnxi , uτ,i = τ ∈ Rnti , uc,i = FC,i ∈ Rn f i ,
and uw,i = WA,i ∈ Rnwi be the states, torques, contact forces, and adjacency wrench,
respectively; then, the non-linear dynamics of the robot can be written as in Equation (22).
The signal sizes for Agent 1 are nx1 = 6, nt1 = 0, n f 1 = 0, nw1 = 6, while Agent 2 and
Agent 3 have signal sizes of nxi = 9, nti = 3, n f i = 3, and nwi = 6 for i = 2, 3.

ẋi = fi(qi, uτ,i, uc,i)

fi = Mi(qi)
−1Θi

Θi = − Ci(qi, q̇i)− Gi(qi)

+ Siτi + JT
C,iFC,i + ∑

m
JT

A,mWA,m

(28)

5. Cooperative Graph-Theoretic Online Trajectory Generation for ASLB

Graph-theoretic online trajectory generation relies on the cooperative modeling of the
robot and is composed of a series of optimizations. These are the contact phase, swing
phase, and force optimizations, where contact optimization finds the optimal finite horizon
for the current contact phase and a sequence of contact trajectories that will keep the robot
states bounded for defined phase horizon. For this reason, the resultant contact phase
trajectories, except for the one associated with the current contact leg, are not passed to
the next optimization. Another cardinal data set that is passed to the next optimization
from contact phase is the initial point of the subsequent contact phase. This information is
required to generate a rough swing trajectory for the leg that is in the air. It should be noted
that both contact and swing trajectories are calculated to provide an initial trajectory for the
force optimization, where trajectories are refined using a cooperative system framework.
Trajectories to previously defined optimizations are illustrated in Figure 6.

Figure 6. Cooperative interconnection between agents and generalized coordinates at every agent.

5.1. Contact Phase Optimization

The contact-phase optimization calculates a set of trajectories using the linear inverted
pendulum model (LIPM) and contact constraints. The LIPM dynamics we used in this
work are widely used in the vast majority of the literature. As shown in Section 5.3, the
dynamics are written with respect to body frame FB. Besides that, the dynamics are also
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kept at the velocity level. Under these circumstances ,the contact conditions for the leg in
contact need to be defined accordingly.

5.1.1. Contact Condition

Under contact conditions with the no-slip assumption, rc,i has no relative motion with
respect to the ground if this condition is observed from the inertial frame FI . This condition
is observed from FB as if ṙc,i = − uB, which is illustrated in Equation (29) for agents

i = 2, 3. Recall that states of agents i = 2, 3 are denoted as xi =
[
qT

t,i qT
r,i qT

a,i

]T
, i = 2, 3,

and q̇t,i,where i = 2, 3 is duplicate of uB, assuming that the connections between nodes
are as defined in Equation (26).

0 =
[
−I −Jr,i Ja,i

] q̇t,i
q̇r,i
q̇a,i

 =
[
−I −Jr,i Ja,i

] uB
q̇r,i
q̇a,i

 (29)

Assuming the body is slowly rotating, q̇r,i ≈ 0, i = 2, 3

5.1.2. LIPM Model

The implementation of the LIPM model in this work has some nuances compared to
the the work where it is proposed [43,44] and illustrated in Figure 7. Let Fxz ∈ R2 be the
virtual force created on the x − z plane due to the displacement between origin and contact
locations xzrc,2 and xzrc,3. Note that the origin represents the center of mass (CoM) and is
not the origin of the FB. Although CoM moves with respect to the origin of FB, in practice,
it is assumed to be fixed with an offset from FB.

Figure 7. LIPM dynamics projected on the x − z plane.

Under these assumptions, the LIPM dynamics are provided as in Equation (30) in
state space form. States for this system are denoted as xc and defined as the contact point,
and this point is denoted as ∆rxz, as any of the two contact locations can be assigned to it,
which are xzrc,2 and xzrc,3, respectively. Specifically, states are defined as xc,1 = ∆rxz ∈ R2,

xc,2 = d
dt ∆rxz ∈ R2, which are combined as xc =

[
xT

c,1 xT
c,2

]T
.

ẋc =

[
ẋc,1
ẋc,2

]
=

[
0 I

ω2
0 I 0

][
xc,1
xc,2

]
= Alipmxc (30)
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This system is an inherently unstable system; therefore, what is being pursued with
this system is to find a set of initial conditions, denoted as 0xc, that will propel the CoM of
the robot toward the desired velocity vector. While carrying that out, a set of state bounds
are also satisfied. Equation (30) is discretized using Euler propagation as provided below,
where ∆t is the sampling time.

xc,k+1 = (I + ∆tAlipm)xc,k (31)

5.1.3. Contact Phase Optimization

This method relies on finding a set of trajectories that will keep the proceeding steps
within bounds; therefore, a phase horizon is defined as Np ∈ N, which represents the
number of phases to be calculated during the optimization, including the current phase.
A finite horizon for each phase is defined as Nn ∈ N, which will be minimized for Np = 1
and kept at its nominal for Np > 1. The states of the LIPM dynamics in each phase are
denoted as pxc,k, where p =

[
1, · · · , Np

]
and k = [1, · · · , Nn]. The combined states for

each phase are denoted as pxc,K as provided below.

pxc,K =


pxc,1

...
pxc,Nn

 , ∀ p (32)

Equation (33) represents the quadratic problem that runs in contact optimization
phase, where Lc(pxc,1, uB,re f ) is the objective function, and Ccont(pxc,1) and Cbounds(

pxc,1)
are equality and inequality constraints to ensure continuity of the states between phases
and to keep the states within predefined bounds.

minimize
pxc,1

M

∑
k=1

Lc(
pxc,1, uB,re f )

s. t. Ccont(
pxc,1) = 0

Cbounds(
pxc,1) ≤ 0

(33)

5.1.4. Contact Phase: Continuity Constraint

As explained earlier, contact optimization seeks to find several contact phase trajecto-
ries, and these trajectories should ideally be continuous. This is achieved by an equality
constraint defined as in Equation (34) for p = 1, · · · , Np − 1.

pxc,Nn = p+1xc,1[
0 I

]pxc,Nn =
[

0 I
]p+1xc,1

(34)

5.1.5. Contact Phase: Constraint for State Bounds

State bounds are defined based on the leg in contact; therefore, state bounds are
switching between the bounds of Agent 2 and Agent 3. Let c2 = [0, 1] and c3 = [0, 1]
be the contact indicators of Agent 2 and Agent 3, respectively. Under contact ci = 1;
otherwise, ci = 0 for i = 2, 3 at phase p. The bounds for Agent 2 and Agent 3 are defined

as Si =
[
ST

i,UB, ST
i,LB

]T
and assigned to Sp such that Sp = Si if ci = 1. Note that we are

assuming a single point of contact. Using the bounds, the state boundary constraints are
defined as in Equation (35).[

I
−I

][
I 0

]pxc,k ≤
[

Sp,UB
Sp,LB

]
(35)
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5.1.6. Contact Phase: Cost Function

Contact phase optimization aims to reach the x − z projection of reference velocity
that is provided by the user uB,re f , which is uB,xz. Recall that ṙc,i = − uB; therefore, the
cost function is written as in Equation (36).

Jcontact =
[
uB,xz +

[
0 I

]pxc,K
]TQs

[
uB,xz +

[
0 I

]pxc,K
]T
+[[

0 I
]pxc,K

]TQp
[[

0 I
]pxc,K

]T
(36)

5.2. Swing Phase Optimization

Swing phase optimization calculates a rough trajectory for the swinging leg by connect-
ing the current position of the tip of the swinging leg to the initial point of the proceeding
contact phase trajectory with a bezier curve. Instances of the swing trajectory are denoted
as pxs,k, and the current and final positions of the swing trajectory are denoted as pxs,1 and
pxs,Nn , respectively. pxs,1 and pxs,Nn are the projections of the vectors on the x − z plane,
and the initial point of the proceeding contact phase trajectory is p+1xc,1. Note that the
contact phase optimization generates a planar trajectory. Therefore, the implementation of
swing-phase trajectory optimization requires a modification of these vectors by adding the
height of the CoM to the y axis of any projected vector if it needs to be passed to the swing
trajectory. Figure 8 illustrates previously mentioned vectors. Dashed lines represent the
projection of the swing trajectory, while solid lines show the contact trajectory. n0, n f , and
L represent the unit vector to CoM, the unit vector from CoM, and the straight line on the
x − z plane between initial and final positions of the swing trajectory. Formal definitions
for n0, n f and L are provided in Equation (37).

Figure 8. Swing phase trajectory generation.

n0 = −
p=1xs,1

|p=1xs,1|

n f =
p=1xs,Nn

|p=1xs,Nn |
L = p=1xs,Nn − p=1xs,1

(37)

5.2.1. Swing Phase Optimization

Swing phase optimization is run for the current phase; therefore, unlike for the contact
phase optimization, p = 1. The finite horizon for this phase is the Nn at p = 1. Note that at
p = 1, Nn is optimized at the contact phase optimization.

Let bx,j, by,j, and bz,j be the coefficients of the bezier curve, where j = 1, · · · , nb. cb and
vb, which are sorted collections of bx,j, by,j, and bz,j, are defined. This classification collects
coefficients related to initial and final positions of the curve under cb and coefficients that

are being optimized under vb. Specifically cb is defined as cb =
[

p=1xT
s,1

p=1xs,Nn

]T
.
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Based on thepreviously described notation, bezier curves for swing trajectory are defined
as in Equation (39), where Jb,c and Jb,v are matrix-valued functions of k, which can be
populated for k = 1 < · · · , Nn and maps cb and vb to p=1xs,k ∈ R3. Similarly, cb and vb are
mapped to p=1 ẋs,k ∈ R3 using d Jb,c and d Jb,v.

Equation (38) represents the quadratic problem that runs in the swing optimization
phase, where Ls(vb) is the objective function and Sbounds(vb) is the set of inequality con-
straints to keep states within predefined bounds.

minimize
vb

M

∑
k=1

Ls(vb)

s. t. Cbounds(vb) ≤ 0

(38)

p=1xs,k =
[

Jb,c(k) Jb,v(k)
][ cb

vb

]
p=1 ẋs,k =

[
d Jb,c(k) d Jb,v(k)

][ cb
vb

] (39)

The implementation of swing phase optimization requires the calculation of 0
d Jb,c, f

d Jb,c,
0
d Jb,v, f

d Jb,v using Equation (39) at k = 1 and k = Nn.

5.2.2. Swing Phase: Constraint for State Bounds

State bounds are defined based on the leg in the swing; therefore, state bounds switch
between the bounds of Agent 2 and Agent 3. Bounds for Agent 2 and Agent 3 are defined

as Si =
[
ST

i,UB, ST
i,LB

]T
and assigned to Sp such that Sp = Si if ci = 0. Using these bounds,

state boundary constraints are defined as in Equation (40).[
Jb,c(k)cb + Jb,v(k)vb

−Jb,c(k)cb − Jb,v(k)vb

]
≤ Sp[

Jb,v(k)
−Jb,v(k)

]
vb ≤ Sp −

[
Jb,c(k)

−Jb,c(k)

]
cb

(40)

5.2.3. Swing Phase: Cost Function

Swing phase optimization aims to pull the swinging leg to the CoM in the beginning
of the swing motion and then pushes it toward the final position. Along with these, it
also tries to approach the straight line L. Therefore, the cost function of the swing phase
optimization is written as in Equation (41).

Jswing =

(
n0 −

[ 0
d Jb,c

0
d Jb,v

][ cb
vb

])T

Q0

(
n0 −

[ 0
d Jb,c

0
d Jb,v

][ cb
vb

])
+(

n f −
[

f
d Jb,c

f
d Jb,v

][ cb
vb

])T

Q f

(
n f −

[
f
d Jb,c

f
d Jb,v

][ cb
vb

])
+(

L −
[

Jb,c Jb,v
][ cb

vb

])T

Qt

(
L −

[
Jb,c Jb,v

][ cb
vb

]) (41)

5.3. Cooperative Force Optimization

Approximate trajectories are obtained in contact and swing phase optimizations, and
these trajectories are used in the cooperative force optimization as the initial trajectory.
In order to follow the method easily, agent dynamics are rewritten in Equation (43), where
Mh and Ch are partitioned as given in Equation (42). In addition, Mi, Ci, and Gi for i = 2, 3
are assigned to Mh, Ch and Gh, where h = S represents swing, h = C represents contact,
and h = B represents floating base matrices. Minimal representation of the dynamics are
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provided in Equation (44). Floating base dynamics do not switch; however, Agent 2 and
Agent 3 dynamics are assigned to h = C or h = S depending on ci for i = 2, 3. Similarly,
wrenches WA,m are assigned to WA,h based on ci such that if c2 = 1, then WA,C = WA,2
and if c3 = 1, then WA,C = WA,3 for i = 2, 3. Finally, r̃C is the tip point position rc,i of the
leg with ci = 1. FC is the interaction between the contact leg and the ground.

Mh =

[
bb Mh bq Mh

qb Mh qq Mh

]
Ch =

[
bbCh bqCh

qbCh qqCh

] (42)

bb MB ẋB + bbCBxB + bbGB = W A,C + W A,S[
bb MS bq MS

]
ẋS +

[
bbCS bqCS

]
xS + bbGS = WA,S[

bb MC bq MC
]
ẋC +

[
bbCC bqCC

]
xS + bbGC = WA,C +

[
I

r̃C

]
FC

(43)

M̂B ẋB + ĈBxB + ĜB = W A,C + W A,S

M̂S ẋS + ĈSxS + ĜS = WA,S

M̂C ẋC + ĈCxS + ĜC = WA,C +

[
I

r̃C

]
FC

(44)

Then, continuous models in Equation (43) are converted into discrete models using
Euler discretization, and Equation (45) provides the discrete system model that is used
in cooperative force optimization. The current states are denoted as xh,k, where h and k
represent the model identifier and the prediction step, respectively.

[
∆tĈB,k − M̂B,k M̂B,k

][ xB,k
xB,k+1

]
− ∆tWS,k − ∆tWC,k = ∆tĜB

[
∆tĈS,k − M̂S,k M̂S,k

][ xS,k
xS,k+1

]
− ∆tWS,k = ∆tĜS,k

[
∆tĈC,k − M̂C,k M̂C,k

][ xC,k
xC,k+1

]
− ∆tWC,k − ∆t ĴC,kFC,k = ∆tĜC,k

(45)

For brevity, Equations (45) are represented with a minimal representation as follows.

M̃h,k =
[

M̃h1,k M̃h2,k
]
=
[

∆tĈB,k − M̂B,k M̂B,k
]

J̃C,k = − ∆t ĴC,k

G̃h,k = ∆tĜh,k

P̃h,k = − ∆t Î

(46)

5.3.1. Cooperative Force Optimization Problem

This method relies on initially provided trajectories that is provided by contact and
swing phase. In this phase, decision variables are defined as corrections to the nominal
trajectories, and a complete trajectory is defined as such. Nominal trajectories for states are
denoted with 0xh,k, and corrections to the nominal trajectories at every instant are denoted
as ∆xh,k. Similarly, force trajectories are defined in the same fashion such that 0FC,k and
0WA,m are the nominal force trajectories, while ∆FC,k and ∆WA,m are the corrections to the
relevant trajectories.

xT
h,k = 0xh,k + ∆xh,k

FT
C,k = 0FC,k + ∆FC,k

W T
h,k = 0Wh,k + ∆Wh,k

(47)
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States, contact forces, and wrenches for the entire trajectory are combined as follows.

xT
h,K =

[
xT

h,1 · · · xT
h,Nn

]T

FT
C,K =

[
FT

C,1 · · · FT
C,Nn

]T

W T
h,K =

[
W T

h,1 · · · W T
h,Nn

]T

(48)

The relationship between xh,K, FC,K, and Wh,K can be written for the entire trajectory
using combined matrices as provided in Equation (49).

.

M̃h,K =

 M̃h1,1 M̃h2,2 0 · · ·
0 M̃h1,2 M̃h2,3
...

. . . . . .



J̃C,K =

 −∆t ĴC,1 0 · · ·
0 −∆t ĴC,2
...

. . .



G̃h,K =

 G̃h,1
G̃h,2

...



P̃h,K =

 P̃h,1 0 · · ·
0 P̃h,2
...

. . .



(49)

The dynamics for the floating base, contacting, and swinging bodies are written as
provided in Equation (50).

[
M̃B,K P̃S,K P̃C,K

] xB,K
WS,K
WC,K

 = GB,K

[
M̃S,K P̃S,K

][ xS,K
WS,K

]
= GS,K

[
M̃C,K P̃C,K J̃C,K

] xC,K
WC,K
FC,K

 = GC,K

(50)

The optimization for the three agents is represented in a single objective Equation (51) and a set
of constraints in this work; however, the problem is readily available for distributed optimization.

minimize
∆xh,k ,∆FC,k ,∆Wh,k

M

∑
k=1

Lc(xh,k, FC,k, Wh,k)

s. t. Cdyn(∆xh,k, ∆FC,k, ∆Wh,k) = 0

Ccoop(∆xh,k, ∆FC,k, ∆Wh,k) = 0

Ccntct(∆xh,k) = 0

C f c(∆FC,k) ≤ 0

(51)

Based on the dynamics given in Equation (49) and the representation of the trajectories
provided in Equation (47), the matrices for the equality constraints are denoted as Ah,dyn
and Bh,dyn. The equality constraint is provided for only the floating base for brevity.
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[
M̃B,K P̃S,K P̃C,K

] ∆xB,K
∆WS,K
∆WC,K

 = GB,K −
[

M̃B,K P̃S,K P̃C,K
] 0xB,K

0WS,K

0WC,K

 (52)

5.3.2. Cooperative Force Optimization: Contact Constraint

The contact constraint was provided previously in Equation (29). This condition is
modified for the definition of the trajectory provided in Equation (47). Put simply, the
contact point velocity has to be equal to the body velocity in the opposite direction in the
no-slip condition, and Equation (53) projects the relationship on the decision variables for the
quadratic optimization.

0 =
[
−I Ja,i

]
xB,K

0 =
[
−I Ja,i

]
∆xB,K +

[
−I Ja,i

]
0xB,K

−
[
−I Ja,i

]
∆xB,K =

[
−I Ja,i

]
0xB,K

(53)

5.3.3. Cooperative Force Optimization: Force Cone Constraint

The coooperative force optimization phase is designed as a quadratic problem; there-
fore, constraints have to be set accordingly. Contact constraints are dedicated to keep
tangential forces small so that no slipping occurs. To do so, a friction pyramid is created
inside a friction cone. The friction cone is a geometric interpretation of the magnitude of
the allowable tangential force that can be applied on the ground. The allowable limit is
calculated by simply multiplying the normal component of the applied force by the contact
point with the friction coefficient. The nrmal component of the force is denoted as B fc,n and
the tangential components of the applied force are denoted as B fc,t, B fc,s, respectively. It
should be noted that the applied force is defined with respect to FB. The friction coefficient
is denoted as µ. The radius of the friction cone is defined as r f c = µB fc,n. The friction
pyramid is defined such that it is always upper-bounded by the r f c, and this is achieved
by setting linear bounds that are denoted as r f c,s and r f c,t. These bounds are calculated
such that |r f c,s| ≈ 0.707r f c and |r f c,s| ≈ 0.707r f c. It should be noted that the bounding r f c
creates a non-linear relationship and makes optimization a non-linear problem; however,
bounds that are defined for tangential components can be implemented in a linear fashion.
The geometric interpretation of the friction cone (red solid line) and pyramid (blue solid
line) is provided in Figure 9.

Figure 9. Geometric interpretation of the friction pyramid.
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Based on the linear and conservative bounds, the following linear constraints are
defined for the tangential forces.

−0.707µB fc,n ≤ B fc,t ≤ 0.707µB fc,n

−0.707µB fc,n ≤ B fc,s ≤ 0.707µB fc,n

−2 × 0.707µB fc,n ≤ B fc,t + B fc,s ≤ 2 × 0.707µB fc,n

(54)

The relationship given in Equation (54) is written compactly as provided in Equation (55),
where BFC,k is the vector containing the decision variables. Bn, Bt and Bs are the unit vectors
attached on the contact points and defined in FB. As a practical note, calculating these unit
vectors with respect to FB is a straightforward calculation when there are passive joints at
the ankle of the contact legs. Depending on the kinematic structure of the leg, certain unit
vectors can be assumed to be in the same direction with the axes of the body frame.(

−2 × 0.707µBnT − BtT − BsT
)

BFC,k ≤ 0(
2 × 0.707µBnT + BtT + BsT

)
BFC,k ≤ 0

(55)

Within the current work, Bn, Bt and Bs are assumed to be constant and defined as

BnT =
[

0 1 0
]T , Bt =

[
1 0 0

]T and Bs =
[

0 0 1
]T .

5.3.4. Cooperative Force Optimization: Cost Function

Force phase optimization tries to keep the commanded motion intact while minimizing
the disturbance injected on the system due to the joint accelerations. The joint accelerations
affect each agent due to the Ccoop, which is provided in Equation (26). The constraints that
are introduced in this chapter previously maintained contact, and force cone constraints
are satisfied. The cost function for this optimization is defined in Equation (56).

Lc(xh,k, FC,k, Wh,k) =(
−uB,xz +

[
1 0 0 0 0
0 0 1 0 0

]
xB,k

)T

QT

(
−uB,xz +

[
1 0 0 0 0
0 0 1 0 0

]
xB,k

)
+

xT
B,k I IT

QQW I IQxB,k

(56)

where I IQ is a matrix that selects the states that are the joint velocities of contact and swing
legs and approximate the acceleration of these selected states. The joint velocities within
states xh,k are denoted as qh,k for h = C, S, and the selection of these states is defined in
Equation (57).

q̇h,k =

 0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

xh,k

q̇h,k = I Iqxh,k

(57)

The approximation for acceleration is given below, where states are assumed to
propagate with the first-order Euler method.

q̈h,k = I Iq
(xh,k+1 − xh,k)

∆t
(58)

Finally, accelerations q̈h,k for h = C, S for k = 1, · · · , Nn is given as provided in
Equation (59)
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q̈h,k =

 −∆tI Iq ∆tI Iq
−∆tI Iq ∆tI Iq

. . .




xh,1
xh,2

...
xh,Nn


q̈h,k = I IQxh,K

(59)

6. Preliminary Results for the ASLB Platform

This section presents the simulation of the algorithm for the proposed method. The sim-
ulation is not executed in a physics environment, and trajectories illustrated in this section
are estimated trajectories only. Solutions are obtained on Intel(R) Core i7-4720HQ CPU
@2.60 GHz 16GB RAM PC with MATLAB 2019b software.

The sampling time ∆t for the discrete model is selected to be ∆t = 0.05s. Nominal
values for Nn and Np are selected as Nn = 20 and Np = 4, respectively. Qs and Qp for
contact phase optimization is selected to be Qs = 5 and Qp = 2. Q0, Q f , and Qt for
swing phase optimization is selected to be Q0 = 12.5, Q f = 12.5, and Qt = 30. Finally,
Qu and Qw for cooperative force optimization are selected to be Qu = 100 and Qw = 5.

Based on these settings, and from the initial conditions of uB(t = 0) =
[

0 0 0
]T ,

r2(t = 0) =
[

0.01 −0.344 0.063
]T , and r3(t = 0) =

[
0.045 −0.344 −0.239

]T ,

ASLB is asked to move forward by uB,re f =
[

0.1 0 0
]T . The results are provided in

the following figures.
Figure 10 illustrates the calculated swing and contact trajectories. Nn for the first

optimization is minimized to Nn = 6 from a nominal 20 as the contact initial position for
p=1rc,1 is already provided by the sensor information. For a feasible finite horizon, Nn = 6,
and contact leg, which is the right leg or Agent 2, is used to calculate an approximate
trajectory for rc starting from r2(t = 0) and diverge from the CoM toward the (+) x and
(+) z directions. Note that this trajectory is calculated with respect to FB. The swing phase
optimization connects r3(t = 0) to the p=2rc,1 without violating the kinematic bounds.

Figure 10. Calculated swing and contact leg trajectories for first step.

Figure 11 illustrates the nominal force trajectory for the contact leg as it interacts with
the ground. 0FC is the initial trajectory that is calculated by substituting qa,i and xi into the
agent dynamics. optFC is the resultant contact force trajectory. It is visible from the figure
that there is not a significant change in the y-axis. However, optFC is shifted in the (+) x
direction by approximately 0.4 N.
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Figure 11. Calculated force trajectory for the first step.

Figure 12 shows the contact and swing trajectories for the second step, where Nn is
minimized to Nn = 16. Similar to the first step, p=1rc,1 for contact phase optimization is
the initial position of the current contact leg, which is Agent 3. rc in Figure 12 converges to
the CoM in the beginning of this phase and then pushes away toward the (-) x and (-) z
directions.

Figure 12. Calculated swing and contact leg trajectories for the second step.

A smaller correction occurs in the contact force as 0FC and optFC have slight differences
in all three directions as seen in Figure 13.

Figure 14 provides the uB trajectory throughout the walking simulation along with
the rc,i for i = 2, 3. This figure illustrates the characteristic difference in the method, which
calculates the contact positions and forces them to track a reference velocity uB,re f . The
black circle in Figure 14 indicates the CoM and decision variables are defined with respect
to that. The trajectory of uB, which is given with the blue line, settles in a cyclic pattern.
The mean of the magnitude in x direction is approximately 0.28 m/s, while it is almost zero
for z direction.
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Figure 13. Calculated force trajectory for the second step.

Figure 14. uB trajectory plot along with leg motion with respect to CoM.

Figure 15 provides a more intuitive illustration of the motion of the robot as IrB is
calculated from uB. IrB gives the position of the origin of the FB with respect to the FI .
The trajectory of IrB reveals that body drifts away from the line z = 0 while achieving
forward motion, as desired. The drift is due to the first contact leg, which is the Agent 2,
and cannot be corrected.

With the proposed method, a velocity command could be tracked with some offset.
During the simulation of the algorithm, it was observed that relaxation of the state bounds
decreases the offsets between velocity commands and actual velocity. In addition, since this
method is designed for velocity level dynamics, a drift in the walking does occur, which
can be mitigated by an appropriate control scheme. That said, extracting the dynamics
from the kinematics and developing a controller for this simpler set equations allows faster
calculation of the future steps.



Sensors 2024, 24, 3189 24 of 38

Figure 15. rB plot along with leg motion with respect to FI .

7. Cooperative UAV-UGV Docking with Task Prioritization

Motivated by the results from the preceding section, we extend the framework to
study systems that are not on the same platform for example a cooperative UAV-UGV
system similar to that in [39], with the objective to have the UAV (quadcopter) dock on the
moving UGV (rover). Note that this framework further illustrates that it can accommodate
very different dynamical systems, unlike the ASLB system, where the left and right leg
dynamics were identical.

Table 2 provides a summary of the key variables and terms used for the development
of the ASLB dynamical model.

Table 2. Summary of key variables used for description of the quadcopter and rover kinematics
and dynamics.

FB body fixed reference frame (quadcopter)
mq mass of the quadcopter
Jq moment of inertia of the quadcopter
xq state vector of quadcopter
ICq(θq) = ICq rotation matrix for quadcopter
fq total thrust generated by motors in the body frame
tq moments generated on the body
uq input vector for the quadcopter model
g acceleration due to gravity
[u1 u2 u3]

T unit vectors representing the body frame
mr mass of the rover
Jr moment of inertia of the rover
xr state vector for rover dynamics
ICr rotation matrix of the rover
ur inputs to the rover

7.1. Quadcopter Dynamics

The six-degree-of-freedom (DoF) rigid body dynamics with mass (mq) and moment
of inertia (Jq) of the quadcopter are represented in (60). The model’s states are denoted as

xq =
[

pT
q vT

q θT
q wT

q

]T
∈ R12, where pq = I pq ∈ R3, vq = Ivq ∈ R3, θq ∈ R3 and

wq = Bwq ∈ R3 are inertial position, inertial velocity, Euler angles, and angular velocity,
respectively. Given the Euler angles, the rotation matrix for the quadcopter is denoted as
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ICq(θq) = ICq. The inputs of the system are denoted as uq =
[

fq tT
q

]T
∈ R4, where

fq is the total thrust generated by the motors on FB and tq ∈ R3 is the column matrix of
moments generated on the body defined in FB. Eq(θq) is the mapping between wq and θ̇q
such that wq = Eq(θq)θ̇q for pre-defined rotation sequence. The quadcopter properties are
taken from the work [45].

ẋq =


ṗq
v̇q
ėq
ẇq

 = f (xq, uq)

=


vq

gu3 − (1/mq)ICq fqu3
E−1(θq)wq

J−1
q (−wq × Jqwq + tq)


(60)

7.2. Rover Dynamics

The dynamics of the rover are calculated with mass mr and moment of inertia Jr,
assuming that it runs on a flat surface and provided in (61). Based on this assumption,
model states are denoted as xr =

[
pr,x pr,y Ψr vr,x wr,z

]T , where pr,x and pr,y represent
inertial position on the x − y plane, Ψr is the Euler angle about the z axis, Bvr,x = vr,x is
the horizontal velocity of the rover, and Bwr,z = wr,z is the angular velocity of the rover.
The composite rotation matrix for the rover is denoted as ICr = ICr(Ψr). Inputs to the
system are denoted as ur = [ fr,1 fr,2]

T , which represent the traction forces applied on the
surface by a set of wheels on the right- and left-hand sides of the rover, respectively. mr is
taken as 1 kg, and Jr = diag{0.1} kg·m2.

ẋr =


ṗr,x
ṗr,y
Ψ̇r
v̇r,x
ẇr,z

 = f (xr, ur)

=


uT

1 ICrvr,xu1
uT

2 ICrvr,xu1
wr,z

(1/mr)( fr,1 + fr,2)
J−1(r1 × fr,1 + r2 × fr,2)


(61)

8. Cooperative Model-Predictive Control Methodology

This section introduces a unified MPC strategy to maintain a docking approach for
the long range and a finer docking maneuver in the short range by accommodating a non-
linear and a linear MPC designed with edge weight information and task prioritization.
This section is divided into four subsections, where non-linear MPC (NMPC), linear MPC
(LMPC), cooperative task prioritization, and implementation of the control strategy are
described in Sections 8.1, 8.2, 8.3, and 8.4, respectively.

The introduced method can be applied on all of the agents as the formulation only
considers local neighbor information; therefore, formulations will be provided for the agent
denoted as i, which is defined by the states xi(t) ∈ Rnx , inputs ui(t) ∈ Rnu , and outputs
yi(t) ∈ Rny . Given the states and inputs, the non-linear dynamics of agent i are given in
the following form:

ẋi(t) = fi(xi(t), ui(t))

yi = hi(xi(t), ui(t))
(62)
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Equation (63) provides the discrete linear representation of the agents’ dynamics.
This is obtained by linearizing the current state and input, which is denoted as (xi,c, ui,c)
and then by converting the continuous time system in a discrete system using Euler
discretization (see [46]).

∆xi,k+1 = Ai∆xi,k + Bi∆ui,k

∆yi,k = Ci∆xi,k + Di∆ui,k
(63)

where k is the current sample such that ∆xi,k = xi,k − xi,c, and ∆ui,k = ui,k − ui,c. In this
work, we assumed that full state information is shared among the agents. Therefore,
matrices Ci and Di are assumed to be I and 0, respectively, with compatible sizes.

8.1. Non-linear MPC Formulation

Equation (64) represents the non-linear problem that runs in NMPC whereLi(xi,k, ui,k, xi,re f )
is the objective function, and Ceq(xi,k, ui,k) and Cineq(xi,k, ui,k) are equality and inequality
constraints, respectively. M in (64) denotes the prediction horizon for the NMPC.

minimize
xi,k ,ui,k

M

∑
k=1

Li(xi,k, ui,k, xi,re f )

s. t. ẋi(t)− fi(xi(t), ui(t)) = 0

Ceq(xi,k, ui,k) = 0

Cineq(xi,k, ui,k) ≤ 0

(64)

The objective function implemented in this work has the following quadratic form.

Li(xi,k, ui,k, xi,re f ) =

M

∑
k=1

Li,tp(xi,re f , xi,k) + uT
i,kRui,k + xT

i,kQxi,k
(65)

where Q ∈ Rnx×nx and R ∈ Rnu×nu are square matrices. This objective function drives the
system to achieve the cooperative task defined by Li,tp(xi,re f , xi,k), which brings a nuanced
cooperativeness with task prioritization to the tracking and is explained in Section 8.3.

The equality and inequality constraints serve the following purposes. Ceq(xi,k, ui,k) is
introduced to ensure the initial conditions, which are xi,c = xi(t = 0) and ui,c = ui(t = 0),
and Cineq(xi,k, ui,k) is introduced to enforce states and inputs to stay in the predefined
ranges. These constraints are provided in [45].

8.2. Linear MPC Formulation

The LMPC method implemented in this work is the implicit LMPC applied in [26,45],
and details can be found therein. Therefore, the method is summarized here for complete-
ness. The quadratic problem for the LMPC is provided in (66).

minimize
ui,K

Li(xi,K, ∆ui,K, xi,re f )

Ceq(xi,K, ui,K) = 0

C ineq(xi,K, ui,K) ≤ 0

(66)

The quadratic objective function is denoted as Li(xi,K, ∆ui,K, xi,re f ) and given in (67),
where the decision variable is ∆ui,K and xi,K is a function of ∆ui,K.

Li(xi,K, ∆ui,K, xi,re f ) =

Li,tp(xi,re f , xi,K) + uT
i,KRui,K + xT

i,KQxi,K
(67)

where R = diag{R}M
1 , Q = diag{Q}M

1 and Li,tp(xi,re f , xi,K) is calculated in Section 8.3.
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Due to the implicit formulation, state predictions are described with respect to the
decision variables and combined in a lumped representation. Similarly, decision variables,
which are the inputs, are also collected under a lumped term. These lumped states and
inputs are denoted as ∆xi,K and ∆ui,K and provided in (68).

∆xi,K =

 ∆xi,k
...

∆xi,k+M−1



∆ui,K =

 ∆ui,k
...

∆ui,k+M−1


(68)

The relationship between ∆xi,K and ∆ui,K is provided below with matrices Fi ∈
RMnx×nx and Hi ∈ RMnx×Mnu for the prediction horizon of M.

∆xi,K = Fixi,c + Hi∆ui,K

Fi = col{Fi,m}M
m=1

Fi,m = A(m−1)
i , m = [1, · · · , M]

Hi = col{Hi,m}M
m=1

Hi,m = 0 m = 1

Hi,m = row{hi,l} m = [2, · · · , M]

hi,l = A(m−l−1)
i Bi , l = [1, · · · , m − 1]

(69)

Terminal states are given as a function of xi,k and ∆ui,K below.

∆xi,k+M = AM
i xi,k + Bi∆ui,K

Bi =
[

AM−1
i Bi · · · A1

i Bi Bi
] (70)

Ceq(xi,K, ui,K) and C ineq(xi,K, ui,K) serve the same purpose with Ceq(xi,k, ui,k) and
Cineq(xi,k, ui,k); however, they are modified to comply with LMPC notation. The calculations
of these constraints are provided in [26].

8.3. Cooperative Task Prioritization

Let ϵi,t ∈ Rnϵt , as provided in (71), represent a cooperative task for agent i based on
local neighbor state information that is received from neighboring agents, denoted as j.
Assume that ϵi,t ∈ Rnϵt is defined for a subset of states denoted as x̂i ⊂ xi and x̂j ⊂ xj,
where x̂i ∈ Rns and x̂j ∈ Rns . It should be noted that x̂i and x̂j are assumed to be measured
with respect to the same coordinate frame. Otherwise, the task ϵi,t becomes non-linear.

ϵi,t = aij(x̂j − x̂i), t = 1, · · · , T (71)

where T is the maximum number of tasks. The first derivative of ϵi,t is calculated as follows:

ϵ̇i,t = aij( ˙̂xj − ˙̂xi)

ϵ̇i,t =
[

aij Ins −aij Ins

][ ˙̂xj
˙̂xi

] (72)

Collecting the terms on the right-hand side Mi(aij) =
[

aij Ins −aij Ins

]
and Ṡi,t =[

˙̂xT
j

˙̂xT
i

]T
∈ Rnst , the mapping in (72) between task space (TS) velocities and local state

space (LSS) velocities takes the form
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ϵ̇i,t = Mi(aij)Ṡi,t (73)

Following that, the inverse mapping from TS to LSS is calculated as

Ṡi,t = M+
i ϵ̇i,t (74)

where M+
i is the pseudo inverse of Mi,t and aij is dropped from the expression for brevity.

Note that xj is the state of a neighboring agent.
As illustrated in [47] for robots, excessive (redundant) LSS can be utilized to manage

secondary tasks. Let ϵi,1 and Si,1 denote the first TS and LSS and ϵi,t, and let Si,t, t =
2, · · · , T denotes the remaining ones; then, following task management methodology can
be used [40]:

Ṡi,1 = M+
i,1ϵ̇1

Ṡi,t = Ṡi,t−1 + (Mi,tΦi,t−1)
+(ϵ̇i,t − Mi,tṠi,t−1)

(75)

where Φi,t is the null space projection matrix and calculated is as follows:

Φi,1 = Inst − M+
i,1Mi,1

Φi,t = Φi,t−1 − (Mi,tΦi,t−1)
+(Mi,tΦi,t−1)

(76)

The formulation defined in (75) is collected in a minimal representation as in (77).

Ṡ = Ψϵ̇ (77)

where Ṡi =
[

ṠT
i,1 ṠT

i,t · · · ṠT
i,T

]T
and ϵ̇i =

[
ϵ̇T

i,1 ϵ̇T
i,t · · · ϵ̇T

i,T

]T
. Thus, a quadratic

function can be written as in (78) based on (77).

L(ϵ̇i) := ṠT Ṡ = ϵ̇T
i ΨTΨϵ̇i (78)

Finally, based on (78), Li,tp(xi,re f , xi,k) and Li,tp(xi,re f , xi,K) are calculated as given in
(79) and (83), respectively, where QT

s = Qs ≥ 0 ∈ Rnϵt×nϵt .

Li,tp(xi,re f , xi,k) = ϵ̇T
i ΨT

[
Qs 0
0 Qs

]
Ψϵ̇i

= ϵ̇T
i Qϵϵ̇i

(79)

Remark 1. If states of the agents i and j are linearly related, then x̂i and x̂j are linearly related;
therefore Mi,1 is constant. As a result,

• L(ϵ̇i) outputs a quadratic function of ϵ̇i,t with scalars γt such that L(ϵ̇i) = ∑T
t=1 γtϵ̇

2
i,t, where

γ1 ≥ · · · ≥ γt ≥ · · · ≥ γT .
• The relationship given for derivatives of state space and task space in (78) is also valid for the

state space and task space as follows:

L(ϵi) := STS = ϵT
i ΨTΨϵi (80)

which results in

Li,tp(xi,re f , xi,k) = ϵT
i ΨT

[
Qs 0
0 Qs

]
Ψϵi

= ϵT
i Qϵϵi

(81)

Let Qϵ be partitioned as in (82), and let Xi,re f := 1 ⊗ xi,re f , where 1 = [1 · · · 1]T ∈ RM.
Then, the overall task matrix ϵi can be written as an affine function of Xi,re f , and xi,K) and
Li,tp(xi,re f , xi,K) is calculated as provided in (83).
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Qϵ =

[
Qϵ,11 Qϵ,12
Qϵ,21 Qϵ,22

]
(82)

Li,tp(xi,re f , xi,K) = ϵT
i Qϵϵi (83)

where Qϵ,⋆∗ = diag{Qϵ,⋆∗}M
1 and ⋆, ∗ = {1, 2}.

Qϵ =

[
Qϵ,11 Qϵ,12
Qϵ,21 Qϵ,22

]
(84)

8.4. Implementation of the MPCs

The docking controller is designed to have several layers to decide how to perform the
docking maneuver based on the distance between the agent i and the neighboring agents.
The layers, as mentioned earlier, are the selector NMPC and LMPC. Essentially, the selector
works as a governor and decides the reference trajectory that the LMPC tracks. If the absolute
distance between agent i and neighboring agents is greater than a threshold, the NMPC
generates a trajectory toward the neighboring agents using neighboring state information.
Note that NMPC does not aim to achieve the terminal state constraint, but it repeatedly
minimizes the state error within the given prediction horizon. Then, the generated trajectory,
which creeps toward the neighbors, is passed to LMPC. If the distance is smaller than the
threshold, LMPC receives the neighboring state information to generate control inputs without
needing NMPC. The distance and threshold are denoted as e = ∥

[
pj
]
− [pi]∥2

2 ∈ R and
ed ∈ R. The currently available state and input information are denoted as xi(t − 1),
xj(t − 1) and ui(t − 1), where t represents current sample and (t − 1) represents previous
sample. The pipeline for the control strategy described above is given in Figure 16.

Figure 16. Unified MPC framework for docking.
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When triggered, NMPC generates a rough trajectory toward agent j for a given
prediction horizon M based on the formulation given in (64). Then, a portion of this
trajectory that is determined by the control horizon Mu is extracted, and this is denoted
as xnmpc. The optimization parameters for NMPC such as M, t f , and Mu are selected
empirically to achieve a rough trajectory and allow a time interval to queue a new trajectory
to guide the agent i to the vicinity of other agents. The selection of the optimization
parameters with the right-hand-side sparsity template described in [46] provides a longer
time to queue a new trajectory. Before the LMPC receives the output of the NMPC or the
neighboring state information, i.e., xnmpc ir xj(t − 1), respectively, a line or a set of line
segments are populated based on the prediction horizon of the LMPC. Finally, the tracking
based on the optimization provided in (66) is performed by the LMPC.

9. Cooperative MPC Simulation and Results

This section presents the simulation results for the proposed strategy based on the
simulation setup of a quadcopter and a rover, as illustrated in Figure 17.

Figure 17. Snaps of the realized trajectory during long range docking maneuver (see [39]).

The NMPC and LMPC parameters are provided in Figure 18, and the quadcopter
properties are given in [45] in Table 1. Two scenarios are illustrated—(1) proximity docking
on a moving agent and (2) large range docking on a moving agent—where LMPC and
NMPC-LMPC strategies are tested, respectively. Let Ps = {1, 2, 3, 4} represent the priority
of states, where 1 is the highest priority and 4 is the lowest priority, and s = p, v, e, w
represents the subset of states that P is representing. On this basis, LMPC uses the priority
map of {Pp,Pv,Pe,Pw} = {2, 3, 1, 4}. Priority mapping is used to arrange tasks defined as
ϵi,t, where i ∈ {1, 2, 3, 4}. This mapping is valid for both LMPC and NMPC.
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Figure 18. (a) LMPC parameters. (b) NMPC parameters. t f is the relevant time for prediction horizon.
* represents the discrete algebraic Ricatti solution; see [39,48].

9.1. Case Study 1: Proximity Docking on the Rover

The initial conditions for the quadcopter and the rover are xq,0 =

[0 0.5 − 10 0 0 0 0 0 0 0 0 0]T and xq,0 = [0 0 0 0.5 0 0 0 0 0 0 0 0]T , respectively.

The initial inputs for the quadcopter are ui,c =
[
9.81mq 0 0 0

]T to temper the behavior
of the fq. Given the initial values, the quadcopter is guided to the rover with −0.1 m
offset in the z direction, as illustrated in Figure 19. As shown in Figure 19, the quadcopter
makes a free fall in 3/4th of a second, and then it recovers. During this phase, it loses
altitude and gains speed in the w component up to 6 m/s. The duration of the free fall
is correlated to R in the cost function and inequality constraints provided to the LMPC,
which is C ineq(xi,K, ui,K). After the free fall, after approximately t = 1 (s), the controller
makes a correction in e and starts approaching the rover in the x- and y-directions.
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Figure 19. State trajectory of the agent of the quadcopter.

As mentioned above, free fall can also be seen in Figure 20 in the fq subplot, where
fq stays at 0 N for that period. During the maneuver, fq is upper-bounded by 12 N.
The maximums for tq are reached in the x-direction, where −0.52 and 0.05 Nm of toque are
observed at the extremes.
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Figure 20. Inputs fq and tq over the duration of the docking maneuver.

Figure 21 provides an overview of the performed trajectory along with the heading
direction of the quadcopter, which is aligned with the u1 axis of FB.

Figure 21. Trajectory and heading of the quadcopter.

9.2. Case Study 2: Long-Range Docking on the Rover

The initial conditions for the quadcopter and the rover are xq,0 = [0 0 − 10 0 0 0 0 0 0 0 0 0]T

and xr,0 = [10 10 0 0.5 0 0 0 0 0 0 0 0]T , respectively.
The initial inputs for the quadcopter are ui,c =

[
9.81mq 0 0 0

]T . This case illustrates
the long-range capability of the proposed control strategy. The overview of the scenario is
provided as a set snapshot in Figure 17, and the video of the performed scenario can be
found in https://www.youtube.com/watch?v=QJ-NuwZQ8zw (accessed on 12 May 2024).

In this scenario, LMPC tracks the xnmpc that the NMPC generates until e is less than ed.
At about 41 s, a transition happens, and LMPC starts tracking the xj(t − 1). Figure 22 shows
the states of the quadcopter. An important feature of this motion is that the signal oscillates
at a velocity level in both the linear and angular motion. The same oscillatory behavior is
visible for inputs fq and tq, as provided in Figure 23, which is because the quadcopter’s

https://www.youtube.com/watch?v=QJ-NuwZQ8zw
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current states are changing as the xnmpc is generated on the NMPC side, sent to the LMPC,
and populated as line segments. Figures 22 and 24 reveal the difference in proximity and
long-range docking maneuvers, to which LMPC is more sensitive and can be seen from the
magnitude of the tracking error e.
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Figure 22. State trajectory of the agent of the quadcopter.
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The positional errors between the rover and the quadcopter in Figure 24 illustrate
that the positional errors in the x− and y−directions approach zero, while the error in the
z−direction approach −0.1 m.
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Figure 24. Position error between the rover and the quadcopter.

Figure 25 illustrates the calculation time of each NMPC trigger. Initially, the generation
costs approximately 0.1 s, and as the quadcopter settles on the trajectory trajectory genera-
tion, the times decrease to 0.05 s. For a given elapsed time profile, the overall calculation
time is calculated to be 13.91 s. The upper bound line illustrates the control horizon Mu for
the NMPC; see [39]).
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Figure 25. Calculation time for the NMPC problem at every instant.
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10. Discussion

The central premise of this paper is to show that a complex dynamical system and/or a
control system can be decomposed into parts. These parts can be constrained to develop
the governing equations to study the dynamics or to synthesize a control strategy for the
composite system using the the interconnection between the sub-systems as constraints.
Note thatwhile these are two separate applications, they can be studied using the same
framework. In the biped dynamics, the legs (left and right) and the torso are considered as
sub-systems, which are coupled via constraints and thus modeled using the cooperative
system framework. The trajectory for the biped robot is computed using a sequence of
optimizations. Given a desired amount of forward movement of the center of mass, one
would begin from the contact phase optimization, the results of which then feed into the
swing phase optimization, hwich provides the necessary smooth trajectories for moving
to the new location. This is finally passed on to the cooperative force optimization, which
computes the necessary generalized forces to accomplish the movement.

While there are promising early results from this approach, further study is warranted
to investigate the sensitivity of the optimization approaches to parameters such as the
number of phases, the number of sample instants, the sampling period, the contact force
models (friction cone), and the asymmetry in the legs, sensor noise, and other unmodeled
terms in the dynamics.

Similarly, in the case of a cooperative docking scenario, the quadcopter and ground
rover are two separate sub-systems of the overall system and are constrained to work
together in the cooperative setup. In this context, the framework also allows one to
choose different control schemes and combine them together for the overall cooperative
mission. For example, a nonlinear MPC was chosen to bring the quadcopter closer to the
ground rover faster because we wish for a faster approach to the goal; however, when
one is close to the goal, a linear MPC controller is activated since when it is closer to the
desired state, the linear terms typically dominate higher-order polynomial terms and/or
harmonic functions.

In the cooperative task decomposition for the UAV-UGV problem, one would have to
further study the impact of communication delays and environmental disturbances such as
unstructured terrain models to fully understand the efficacy of the proposed cooperative
control formulation.

11. Summary and Conclusions

This paper presents a cooperative modeling framework that is shown to reduce the
complexity of deriving the governing dynamical equations of complex systems composed of
multiple bodies. The approach also allows for an optimization-based trajectory generation
for the complex system.

The results show that such cooperative modeling enables online trajectory generation
through a series of optimizations that generate approximate trajectories and pass them to a
final optimization that refines the motion with the cooperative system framework.

The paper also proposes a unified MPC control strategy capable of handling long-
range to proximity docking maneuvers. A rough but fast NMPC method is run to propagate
the agent to a closer vicinity, and then the LMPC handles more sensitive proximity motion.
The sensitivity of the LMPC is apparent in Figures 22 and 24, where a smooth approach
suddenly becomes relatively violent. Based on the simulations, the selection of the matrices
Q, R and Qs makes the transition from NMPC-LMPC to LMPC smoother. Note that
the docking of the quadcopter is almost tangential to the x − y plane, and during the
final section of the maneuver, it penetrates the docking platform. The latter problem
can be resolved with an approach constraint to the MPC controllers. Most importantly,
the proposed method is readily applicable among dynamic systems, including non-linear
systems, since the controller’s structure stays the same. Using local neighbor information
instead of external sensors or observers naturally makes this control strategy decentralized.
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