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Abstract: Water constitutes an indispensable resource crucial for the sustenance of humanity, as
it plays an integral role in various sectors such as agriculture, industrial processes, and domestic
consumption. Even though water covers 71% of the global land surface, governments have been
grappling with the challenge of ensuring the provision of safe water for domestic use. A contributing
factor to this situation is the persistent contamination of available water sources rendering them unfit
for human consumption. A common contaminant, pesticides are not frequently tested for despite their
serious effects on biodiversity. Pesticide determination in water quality assessment is a challenging
task because the procedures involved in the extraction and detection are complex. This reduces their
popularity in many monitoring campaigns despite their harmful effects. If the existing methods of
pesticide analysis are adapted by leveraging new technologies, then information concerning their
presence in water ecosystems can be exposed. Furthermore, beyond the advantages conferred by the
integration of wireless sensor networks (WSNs), the Internet of Things (IoT), Machine Learning (ML),
and big data analytics, a notable outcome is the attainment of a heightened degree of granularity in
the information of water ecosystems. This paper discusses methods of pesticide detection in water,
emphasizing the possible use of electrochemical sensors, biosensors, and paper-based sensors in
wireless sensing. It also explores the application of WSNs in water, the IoT, computing models,
ML, and big data analytics, and their potential for integration as technologies useful for pesticide
monitoring in water.

Keywords: water; pesticide; pesticide detection; wireless sensor; internet of things; big data; machine
learning; pollution

1. Introduction

Pesticides play an important role in the agricultural domain, serving as tools for farm-
ers to enhance crop productivity and protect them from pest-induced losses as explained
by [1]. Nevertheless, proper measures must be implemented to mitigate potential ecological
effects associated with their introduction into the environment. Given the main objective of
their application is to eliminate specific life forms, it is imperative to systematically monitor
and assess their consequential impacts on flora and fauna to ensure their proper utilization
without compromising the delicate balance of ecosystems.

Pesticides are mobile because they drift to new regions in the form of aerosols, through
surface runoff, leaching, and infiltration processes, to reach waterways and cause con-
tamination as illustrated in Figure 1. Independent studies conducted in different parts of
the world have shown pesticides have been detected in surface and groundwater [2,3].
Researchers in Germany found that of the total sites selected for monitoring, 1/3 con-
tained active ingredients [4]. A similar study revealed the presence of glyphosate and its
degradation component AMPA in Italy. According to a report by the Heinrich Böll Founda-
tion [4], the lack of routine monitoring regimes in countries poses a significant risk to public
health, particularly concerning pesticide residues in water. The governments of developing
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countries confront substantial hurdles in regulating the lawful trade of pesticides. These
challenges are compounded by the proliferation of counterfeit imports and illicit practices
among local traders, who clandestinely market their own pesticide variants to cater for
small-scale farmers seeking affordable options.
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In recent years, the illicit pesticide trade has witnessed a sharp increase, fuelled by
enticing profit margins and inadequate government oversight. Simultaneously, the sale of
counterfeit pesticides has become a lucrative venture. Notably, in the first four months of
2020, illegal pesticides worth up to 94 million euros were confiscated across the EU and six
other countries, including Colombia, Switzerland, and the USA [4].

A significant portion of pesticides used globally comprises Highly Hazardous Pesti-
cides (HHPs), characterized by their elevated threat to human health and the environment.
HHPs encompass ingredients deemed carcinogenic, fertility impairing, or gene mutating,
or which are listed in internationally binding conventions such as the Montreal, Rotterdam,
or Stockholm Conventions on persistent organic pollutants.

Despite stringent regulations within the EU, it remains the world’s largest exporter of
pesticides, with a growing focus on investments in the Global South [4]. This trend enables
EU-based pesticide companies to export products banned domestically due to their adverse
effects, leveraging less stringent regulatory environments in developing countries.

Glyphosate, for instance, has been linked to cancer in humans according to the In-
ternational Agency for Research on Cancer (IARC) [5]. Studies have also indicated that
it interferes with some cells in bees, impairing their learning abilities and navigation [6].
Women and girls are more vulnerable to pesticides as their bodies are more hormonally
sensitive [7]. Having a large proportion of fatty tissue makes them store pollutants which
tend to bioaccumulate. Studies have discovered traces of pesticides that bioaccumulate
in food chains in the breasts of women cancer patients [2,4]. Water contaminated with
pesticides is known to cause a range of other illnesses like asthma, dermatitis, and Parkin-
son’s disease, as well as vomiting, coma, and even death [8,9]. The general impact on
biodiversity is devastating as some pesticides like acetamiprid harm non-target insects like
pollinators heavily impacting plant biodiversity in natural vegetation. The natural balance
of organisms is also affected as some insects control other pests and vectors for human
or animal diseases, and their extinction leads to an outbreak of crop pests causing food
insecurities. Some insects that act as good sources of proteins and minerals for humans
are collected from the wild already contaminated by pesticides [10]. With a growing world
population, water continues to be a scarce commodity as demand for it increases across
different sectors, including agriculture, domestic use, and industries. Reports have shown
that between 2.2 billion and 3.2 billion people lived under water stress for at least one
month per year in 2010, and with an annual water demand increase of 1%, it is projected
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that between 1.7 billion and 2.4 billion people (approximately 1/2 of the global urban
population) will face water scarcity in 2050 [11]. Climate change has escalated the situation
by altering rainfall patterns and increasing the frequency of hydro-climatic extremes like
drought, heat waves, and floods [12]. In addition to the evaluation of water scarcity, which
predominantly centres on quantitative considerations, the assessment of water quality
assumes a paramount significance as it encompasses its utilization for specific activities
such as cooking, drinking, and bathing. Monitoring of pesticide residues has gained
a great deal of interest as contamination of water sources continues to increase due to
anthropogenic activities.

Studies have been conducted on pesticide detection using various methods [13–16].
Some must be primarily conducted inside a laboratory due to the complexity of the pro-
cedures involved, while other methods permit users to carry out their tests in the field.
Studies have indicated laboratory tests, commonly referred to as traditional methods, are
time-consuming, laborious, and result in delays. The field-deployable methods are still at
the testing stage and have not reached commercialization, while those that have are not
scalable to allow wide coverage. Some of the key highlights of the papers surveyed indicate
the following.

Plug-and-play sensors are currently non-existent. The challenge arises from the nature
of most pesticides in the market, which predominantly consist of organic compounds. De-
tecting these compounds poses difficulties as they often do not induce noticeable changes
in physicochemical parameters that can be easily detected by existing sensors. Numerous
studies dedicated to monitoring water quality indexes within aquatic ecosystems pre-
dominantly emphasize physical parameters, often overlooking pesticide contamination.
The absence of readily available plug-and-play sensors specifically designed for detecting
pesticides poses a significant barrier to the establishment of sensor networks tailored for
pesticide monitoring. Given the preference for wireless networks in monitoring scenarios,
the unavailability of such sensors further inhibits the development of comprehensive mon-
itoring systems for pesticide contamination in water. A key merit of wireless sensors is
that it takes a shorter time to gather data compared to instrumental methods, an approach
providing timely and consistent determination of water quality parameters. Significant
attention has been placed on WSNs as a result of their suitability and range of advantages.
The technology exhibits robustness, reliability, speed, autonomy, and cost-effectiveness [17].
WSNs promote access to spatiotemporal data by being deployed over large geographical
areas, giving a picture of relative levels of contamination. Due to their small size and ability
to withstand harsh conditions, they enable remote monitoring in logistically hard-to-reach
areas like valuable water bodies or dense agricultural areas [18].

Current pesticide testing relies on centralized systems at storage points before water
distribution, often employing sampling methods due to cost constraints. Analytical meth-
ods of determination are used which involve carrying samples to testing stations. Reliance
on periodic sampling regimes can easily miss important events like short-term spikes in
pollution. These procedures are intensive in terms of manual labour requirements and lab
analysis sessions, making them expensive affairs to undertake and not cost-effective for
detection from many sources.

Regions that do not have a piped water infrastructure and depend on distributed
water sources for their domestic needs create a challenge for centralized systems of testing.
Decentralized efforts are essential for overcoming the limitations observed in centralized
approaches. The incorporation of newer technologies like wireless sensor networks (WSNs)
and the Internet of Things (IoT) give some promising results in terms of access and efficiency
of these solutions. While WSNs are dedicated to sensing and transmission of data, the IoT
goes beyond to incorporate more complex tasks like decision-making, automation, and
control. IoT-enabled devices provide real-time data to the users with access to the networks
by either using notification messaging or continuous streaming of data by repeatedly
updating the portals. In addition, the IoT enables remote monitoring, is scalable, and lacks
physical connections [19].
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The mobility of pesticides through various processes underscores the importance
of frequent routine monitoring and surveillance to identify and mitigate potential risks
effectively. This calls for bespoke solutions with low-cost-detection and easily accessible
methods. Current methods of testing are either too complex, with bulky equipment or
prototype devices that are still undergoing lab development. Commercial point-of-care
testing solutions are prohibitively expensive and limited to detecting samples in spiked pure
water, an unrealistic scenario in complex environmental settings with myriad compounds.
Additionally, existing alternatives are often localized and lack connectivity. Leveraging
emerging technologies offers promising avenues for developing devices with human
interfaces for use in local communities. The use of friendly devices fosters community
engagement, promoting environmental stewardship.

Certain countries use proxy data from pesticide sales as a way of determining pesticide
contamination levels. No information is available on their application or their effect
on biodiversity. Particularly in numerous African nations, detailed statistics pertaining
to pesticide usage per crop are lacking. This deficiency in systematic data collection
necessitates the utilization of sales volumes as a surrogate measure for estimating pesticide
utilization [4]. Big data analytics combined with machine learning can identify anomalous
patterns in sales data, indicating potential misuse and overuse, and unusual spikes or
trends can trigger investigations. Machine learning algorithms can be trained using data
from pesticide sales and other diverse data sets, including land use or weather patterns.
These models can forecast contamination levels across different regions. Nevertheless, the
precision of these predictions is anchored on the quality of training data and the choice
of models [20]. ML techniques can play a role in data refinement, rectifying errors and
pinpointing biases or variances and thereby improving the data quality. Furthermore,
integrating ML and big data analytics can enhance the computing power of sensors for
pesticide detection.

Various methods of pesticide detection are analysed in the following sections, giving
more emphasis to those that are low-cost for large-scale applications and can easily be
integrated into a network for wider access. Wireless networks are discussed as potential
connectivity links for transmitting test results from the field due to their several advantages.
In the discourse surrounding the refinement of detection methodologies, ML and big data
represent a compelling frontier in the advancement of accurate detections. By harnessing
their potential, future research endeavours hold the promise of yielding refined and robust
detection endowed with heightened accuracy and efficiency.

Our research sought to explore the existing literature regarding wireless sensor net-
works (WSNs) utilized for the detection of pesticides in water. Despite our thorough
investigation, it became evident that comprehensive reviews specifically addressing the in-
tegration of WSNs for pesticide detection in aquatic environments are notably scarce. While
there exists a body of literature offering comprehensive reviews on WSNs employed for
monitoring water quality [21–24], these reviews predominantly lack a focused examination
of pesticide detection.

Moreover, despite the explosion of studies dedicated to the Internet of Things (IoT)-
based water monitoring systems [25–29], the literature encompassing reviews of IoT pes-
ticide monitoring in water remains conspicuously limited. Our review of the available
literature highlighted a notable deficiency in this specific domain.

Nevertheless, we encountered several insightful surveys concentrating on point-of-
care testing methodologies for pesticide detection in fruits, vegetables, and foods [30–35].
Notably, a subset of these surveys selectively explores the analysis of pesticide detection
within aquatic environments [36–38].

In this paper, we begin by presenting analytical methods for detecting pesticides in
water. We examined the rapid detection methods detailing various modifications under-
taken to enhance their suitability for point-of-care testing by shortening detection time. In
Section 3, we present an assessment of IoT as applied to pesticide sensing, while Section 4
focuses on WSNs in water quality monitoring. Sections 5 and 6 are high-level approaches
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with significant potential for widespread application in the realm of aquatic pesticide test-
ing, demonstrating considerable promise for advancing in the field. Finally, we summarize
our work and give avenues for future research.

2. Methods of Pesticide Detection
2.1. Instrumental Techniques

Instrumental techniques such as gas chromatography (GC) and liquid chromatography
(LC) coupled to a favourable detector for pesticide detection require several steps for sam-
ple preparation, namely separation, pre-concentration, then detection and analysis [39,40].
The popularity of instrumental techniques in the detection of pesticides in water lies in
their superiority in performing trace analysis in complex matrices [41]. Very low limits of
detection (LOD) and limits of quantification (LOQ) are achieved when these techniques
are coupled with tandem mass spectrometry (MS/MS), a procedure commonly applied
while screening a wide variety of unknown contaminants in non-target analysis [42,43].
A study carried out in France applying online solid phase extraction ultra-power liquid
chromatography-tandem mass spectrometry (SPE-UPLC-MS/MS) to herbicides and phar-
maceutical compounds identified 15 emerging micropollutants in water at low detection
and quantification limits averaging 10 ng per litre and 30 ng per litre, respectively [44].
However, research points to some key challenges for their applicability in rapid detections
required in point-of-care testing of pesticides. Instrumental techniques are laborious and
consume significant volumes of organic solvents, and their complexity only permits them
to be performed in specialized labs [45–47].

2.2. Spectroscopic Techniques

The interaction of light (optical spectroscopy) or laser (Raman spectroscopy) with a
sample provides details about its electronic structure, which are important for the iden-
tification of substances [48]. Optical spectroscopy measures the absorption, emission, or
reflection of a sample by directing light in the ultra-violet visible spectrum infra-red (UV-
VIS-NIR) regions through or off it [49]. The use of this approach in the determination of
pesticides in water is limited since water shows broadband absorption and overlapping
spectra, demanding multivariate techniques to extract information [50]. The use of fluores-
cent quenching is used in the design of biosensors where fluorescent dyes, quantum dots
(QDs), carbon dots (CDs), and metallic nanoparticles (NPs) are used as probes in detecting
organophosphorus pesticides using the enzyme inhibition method [51]. Neither Raman nor
Surface-enhanced Raman (SERs) produce high intensities for vibrational modes of water
molecules, an aspect utilized in the detection of water pollutants [52]. SERs have been
widely studied due to the development of nano-substrates such as semi-conductor NPs,
quantum dots, and graphene dots, in addition to the noble metal NPs [53]. Even though
spectroscopic techniques are non-destructive and environmentally friendly as indicated
in Table 1, their major challenges in pesticide detection are their expensive and complex
instrumentation [54].

2.3. Emerging Sensor Technologies
2.3.1. Electrochemical Sensors

Electrochemical sensors work by adsorbing the analyte of interest on the surface of the
electrode, followed by a redox reaction. A quantitative relationship is established between
the electrical signals produced and the analyte concentration [55]. Identification of different
analytes involves the observation of oxidized or reduced peaks of the voltammograms [14].
Electrochemical cells usually consist of 3 electrodes: a working electrode, a counter elec-
trode, and a reference electrode. A reaction of interest takes place on the working electrode,
and therefore a great deal of current research is focussed on improving it. Modifications are
performed on the electrodes to improve their efficiency [16]. This will involve etching tech-
niques to enhance surface roughness for the adsorption of pollutants or the introduction
of active materials like carbon nanomaterials, quantum dots, conductive organics, metal
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oxide nanoparticles, antibodies, and enzymes [56]. Additionally, modifying the surfaces
using nano-structured materials promotes faster electron transfer kinetics, resulting in
quicker response times ideal for wireless sensing. The electrical characterization techniques
employed are differential pulse voltammetry (DPV), square wave voltammetry (SWV),
chronoamperometry, and electrical impedance spectroscopy (EIS) [57]. The production
of an electrical signal output requires fewer signal processing stages before it is used in
detection activities, which is an advantage for rapid monitoring schemes. Faster response
times are also observed by the use of signal amplification, such as enzyme or catalytic
reactions. This makes electrochemical sensors a good option to use when speed of sensing
is a requirement, as demanded in wireless sensing. Researchers have noted electrochemical
sensing confers several advantages, including low cost, simplicity, precision, sensitivity,
and suitability for point of care [58]. However, their commercial viability, inability to detect
multiple analytes, and failure to give results at high analyte concentrations remain their
main disadvantages [57].

2.3.2. Biosensors

A biosensor is a device that utilizes a biological element for its sensing mechanism.
The biological element used interacts with the analyte, and the result is measured and
quantified [59]. Some of the biological elements that have been used in the design of
sensors are cells, antibodies, enzymes, molecules, and aptamers [60]. Some artificially
synthesized ligands called molecularly imprinted polymers have also been utilized in the
design of biosensors. Employing techniques for the immobilization of bio-recognition
elements like encapsulation or covalent bonding fixes the elements onto the sensor surface,
improving stability and thereby reducing response times. Research in biosensors has been
fuelled by their features, which include fast detection, high sensitivity, in situ detection,
low cost, and miniaturization [61]. The shrinking of biosensors and their integration
with microfluidic systems reduces the diffusion distance between the analyte and the
recognition elements. This permits quicker transport and mixing, making them suitable for
wireless sensor networks. A suitable transduction mechanism transforms the interaction
into some measurable quantity. When those components come into contact with analytes,
their interaction can result in heat generation which is used for quantification. Other
interactions result in a colour change, or the reaction can take the place of a metal surface
causing oxidation or reduction. It is also possible to mix the interacting species with some
fluorescent elements [15]. A reaction will lead to a decrease in fluorescence, measured
using lab spectrometers. Optical and electrochemical enhancements utilizing advanced
techniques like surface plasmon resonance (SPR), SERs, or electrochemical impedance
spectroscopy (EIS) provide the rapid outputs required in wireless sensing. It is always
good to make a good choice of the transduction mechanism to use for a particular reacting
species of biomolecules.

(a) Immunosensors

The biological element used in the construction of an immunosensor is an antibody.
Antibodies are produced as a result of the immune response of organisms. Antibodies
are very specific to the antigens that trigger their production [62]. Immune sensors are
classified as labelled and label-free. Non-labelled sensors measure physical changes and
kinetic information during Antigen-Antibody (Ag-Ab) immune complex formation. They
are mostly applied in the qualitative sensing of Ag via direct observation of signal changes.
Labelled sensors use signal-producing labels like enzymes, fluorescent dyes, NPs, and
QDs for more sensitive detection in the immune complex [63]. Various studies have been
conducted on the detection of pesticides in environmental waters by the binding action of
antibodies on pesticide molecules.

Vaid et al. [64] developed immunoprobes by modifying the surface of gold working
screen-printed electrodes (SPE). Thiourea was used to immobilize the atrazine-specific
antibody on the electrode. In one procedure, thiourea was drop-cast, and then after 10 min
of incubation, gold nanoparticles (AUNPs) were added. In the other preparation procedure,
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AUNPs were linked to thiourea and then immobilized on the SPE. When nanoprobes were
tested against glyphosate and bifenthrin, high selectivity was noted. LODs of atrazine were
in the range of 0.08–0.06 ng/L. Moreover, the developed immunosensor had a wider linear
range of 50 ng/L–30 µg/L and a short response time of 0.5 min.

Fernández et al. [65] applied direct competitive immunoassay on modified screen-
printed carbon electrodes. A total of 10 µL of monoclonal imidacloprid antibody was
dropped on the surface of the AUNP-modified working electrode and incubated at 4 ◦C
overnight. The surface was washed, and then 1% Bovine serum albumin fraction was added
to avoid unspecific absorptions. The limit of detection for imidacloprid was 22 pmol L−1,
which was below the maximum permissible levels. In addition, they reported the biosensor
to have a good accuracy and wider linear range. Other attributes included being faster,
cheaper, and simpler.

In their study, Campanile et al. [66] utilized gold-coated magnetic NPs to enhance
micro-stirring. Magnetic stirring of NPs is known to improve the sensitivity of the assay
by reducing passive diffusion and enhancing their binding efficiency. A photochemical
immobilization technique was used to immobilize the antibodies. This was achieved by
exposing the antibody solution to ultra-violet radiation. When the Fe3O4@AuNPs biosensor
was tested for glyphosate-spiked tap water, an LOD of 20 ngL−1 was obtained. However,
the biosensor suffered from the prozone (hook effect), like all the other biosensors produced
by the immunoprecipitation scheme.

(b) Enzyme biosensors

The principle of operation is based on the relationship between the toxicity of a pesti-
cide and the decrease in enzyme activity. Quantitative measurement of enzymatic activity is
performed before and after exposure to a particular analyte [67]. After exposure to a certain
pesticide, this activity is measured by an appropriate transduction technique, e.g., amper-
ometry, spectrometry, fluorometry, potentiometry, etc., depending on the products of the
activity. The most commonly used enzymes are Acetylcholinesterase (AChE) and Butyryl-
cholinesterase (BChE). An important step in the development of enzyme biosensors is the
immobilization of the enzyme so that it does not lose function [68]. Enzyme biosensors
offer simpler and smoother operation, giving results faster and with higher sensitivity than
instrumental techniques.

Zambrano et al. [69] fabricated a horseradish peroxidase enzyme-based biosensor for
the detection of glyphosate. The surface of a pencil graphite electrode was cut and washed.
Poly sulfone and multiwalled carbon nanotubes were dripped on the cut surface and then
immersed in horseradish peroxidase enzyme to produce HRP/PSF/MWCNT/PGE biosen-
sor. Amperometry response showed an LOD and LOQ of 0.225 mgL−1 and 0.0084 mgL−1,
respectively. These limits showed suitability for application in the environmental mon-
itoring of glyphosate as the EPA value is set at 0.7 mgL−1 for drinking water. A wide
linear range was noted from 0.1 to 10 mgL−1. The study further noted the affordability of
materials, simplicity, and ease of manipulation as strengths. Catalytic activity decreased
from the 11th day onwards, while high selectivity was noted when interfering chemicals
were used.

Tun et al. [70] developed an AChE-based biosensor for detecting chlorpyrifos. Surface
modification of SPCE was performed using cellulose nanofibers and graphene oxide.
Electrochemical reactions were characterized by cyclic voltammetry. The activity of the
enzyme decreased as pH deviated from 7. It was further observed that no extra inhibition
by chlorpyrifos occurred after 15 min. The study revealed LOD and LOQ as 2.2 nM and
73 nM, respectively. The sensor was found to be stable after 21 days, and no significant
interference was noted with other analytes.

(c) Molecular imprinted polymers

Molecular imprinting is the process of creating an impression using a template. This
template is an analyte molecule. Once the template is eluted at the end of the process a
cavity is left which has affinity for the target molecule. Molecular imprinted polymers (MIP)
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are artificial receptors that are used to bind target molecules and thus act as recognition
elements [71]. Some functional monomers and cross-linking monomers are copolymerized
in the presence of a desired target molecule. The method gives freedom to tune the
properties of MIPs and even experiment with new designs for which natural antibodies
do not exist. Molecular imprinting overcomes some of the limitations noted with other
biosensors, like the high cost of antibodies, instability of enzymes, or a strong binding that
prevents their re-use [72]. When applied as synthetic recognizers, MIPs have been noted
to exhibit some admirable qualities like chemical inertness, stability, and insolubility in
organic compounds and water.

Elshafey et al. [73] developed a molecularly imprinted poly(o-pd-co-pyrrole) film
on a glassy carbon electrode modified by electrochemically reduced graphene oxide for
detecting propachlor in spiked lake water. Modification of the GO/GCE electrode was
achieved by sweeping a potential between 0.2 and −1.2 V. Synthesis of the MIP was then
followed by dipping the electrode in pyrrole, o-phenylene diamine, and propachlor. There
was an observed change in the binding of propachlor to the constructed electrode. The
group noted that graphene oxide increased the density of cavities on the film. Sensor
values were proportional in the range of 0.1 pM to 0.1 µM and an LOD was observed to be
0.08 pM.

Sihua Peng et al. [74] investigated imidacloprid’s presence in the environment using
a molecular imprinted polymer. Graphene oxide was used as a modifier for the SPCE.
HAuCl4 deposition solution was applied dropwise and dried, then imidacloprid chitosan
stock solution was added at −1 V for 300 s to polymerize the electrode. Differential pulse
analysis showed good linear response current with pesticide concentration. Resistance to
interference was indicated to be less than 5% for the interfering molecules considered. The
group reported an LOD of 0.5 µM; however, they used spiked water samples.

(d) Aptamers

Nucleic acid aptamers are short single-stranded Deoxyribonucleic acid (DNA) or
Ribonucleic acid (RNA) molecules that can bind to target molecules with high specificity.
These synthetic ligands have a level of selectivity which can be likened to that of antibodies.
They are selected from a large library of oligonucleotides through a process called Sequential
Evolution of Ligands by Exponential Enrichment (SELEX) [75]. In their selection, copious
oligonucleotides are allowed to bind to a certain analyte. Those that bind are eluted
and enriched through Polymerase chain reaction (PCR) amplification, and then analytical
methods of selection of the best aptamer are performed. Studies have shown that they have
high thermal stabilities and longer lifetimes, and can be easily chemically synthesized or
modified [76].

Kamkurua et al. [77] investigated the detection of paraquat by aptamer functionalized
gold NPs in a SERS substrate. The aptamer was immobilized on SERs chips by dipping
them in PQ77-SH aptamer solution for 30 min. The modified chips were then dipped in
paraquat and then rinsed in phosphate-buffered saline to remove excess chemicals. Raman
measurements were then carried out on the dried samples and spectra were analysed
using the hyperspace R package. Signal observations indicated that paraquat signature
peaks were broadened and shifted after bonding with the aptamers. A good linear range
was obtained between 0.25 and 2.5 µM, and an LOD of 0.10 ± 0.03 µM was recorded.
The aptasensor showed good reproducibility with 4% variations of peak intensities and
good stability throughout 10 days. It had a good selectivity when detecting paraquat in
interfering chemicals like glyphosate and deltamethrin.

Talari et al. [78] studied the detection of diazinon in water using reduced graphene
quantum dots (rGQDs) and a multiwalled carbon nanotubes (MWCNTs) aptasensor. The
rGQDs were synthesized from citric acid pyrolysis and reacting sodium borohydride
(NaBH4) with tetrahydrofuran. To activate the carboxylic groups, EDC and NHS were
added and magnetically stirred. The standard aptamer solution (DF20) was then added,
followed by MWCNTs. Diazinon measurement was conducted by the fluorescence of the
rGQDs-Aptamer-MWCNTs aptasensor at 460 nm. The optimum PH for diazinon was
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found to be 3–8. The introduction of other pesticides and ions in the matrix did not interfere
with diazinon detection of the aptamer, recorded at 3% relative standard deviation (RSD).
Linearity was observed in the range of 4–31 nM with an LOD of 0.4 nM.

(e) Whole-cell biosensors

These are biosensors based on whole living cells like bacteria, yeast, and fungi. Biore-
porters have two genetic elements. A promoter gene is turned on when a target analyte
enters the cell’s environment and a reporter gene is activated by the promoter to produce
proteins in a process called translation. The biomarkers produced are signal-conditioned
using suitable transducers for the detection of the target analytes. The use of bioreporters
for detection is driven by their tolerance to environmental conditions like PH and tempera-
ture. Whole cells have more enzymes, cofactors, and substrates, and can be programmed
genetically [79].

Gall et al. [80] investigated the detection of glyphosate and diuron in water using a
cyanobacteria-functionalized hydrogel-gated organic field effect transistor (HGOFET). An-
abaena flos-aquae, Af, strain ALCP B24 and Poly (N-alkyldiketopyrrolopyrrole dithienylthieno
[3,2-b]thiophene, poly (DPP-DTT) were used as the bacteria and organic semiconductor,
respectively. To immobilize alginate hydrogel on a platinum electrode, electrooxidation
of EtNH2 by cyclic voltammetry was carried out. The oxygen produced by the entrapped
cyanobacteria is reduced to water at the platinum surface. The resulting increased gate
current is amplified at the drain. The use of photosynthesis to indicate pollutants is a
low-cost method.

Silva et al. [81] fabricated an algae-based biosensor for detecting glyphosate and
atrazine by peasant communities. Freshwater algae Pseudokirchneriella subcapitata and
Scenedesmus acutus were used as bioindicators. Immobilized algae beads were formed
by dropping alginate-cell suspension over CaCl2 solution. Naked eye observation of the
algae growth indicated a gradual decrease in green colour, showing the sensitivity of the
bioassay to the contaminants. Absorbance measurements at 465 nm yielded an LOD of
10 ppm for technical-grade glyphosate and 50 bbp for atrazine.

2.3.3. Paper-Based Sensors

Paper-based sensors for pesticide detection confer many advantages, especially to
developing countries whose resources are limited and which lack standardized laboratories
or scarcity of experts. These sensors are low-cost, easy to operate, and can be biodegraded
by microorganisms or incinerated to prevent biological hazards [45].

A paper sensor consists of hydrophilic fibres that transport the fluid through a porous
medium to a desired region by capillary action. Paper is an attractive substrate because
it overcomes the challenges of other microfluidic systems which demand a pump and
instruments for fluid transfer. Several nanoparticle makers have been incorporated into the
construction of these sensors for signal enhancement, like organic nanoparticles, colloidal
gold, lanthanide, quantum dots, magnetic nanoparticles, and carbon nanotubes, among
others [82]. The incorporation of nanoparticles or nanofibers into the paper matrix increases
the surface area and provides active sites for pesticide binding. This enhancement promotes
analyte capture and expedites the detection process. Nanoparticles facilitate rapid mass
transport of analytes to the sensing sites on substrates, reducing response times—a useful
quality for their integration in wireless sensor systems. Additionally, surface function-
alization with specific receptors or ligands that show high affinity for the target analyte
accelerates binding kinetics for faster responses. Colloidal gold is the most extensively
researched, and test paper strips using this substance for the identification of pesticides
are commercially available. Colourimetric analysis is the most common technique for test
strip analysis where a sample is placed on a test zone and then reacts with a colour reagent,
changing the colour. Interpretation of colour signals is performed by use of the naked eye,
a smartphone with specific software, or a spectrophotometer measuring absorbance at a
specific wavelength. Utilizing smartphone cameras or portable spectrophotometers reduces
reading times, hence making the screening methods rapid, simple, and inexpensive—an
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admirable approach in environmental data collection. Some of the problems that need to be
addressed include the environmental effect on readings, the production of readable signals,
and the cross-reactivity of biomarkers [83].

Sankar et al. [84] studied the inhibition of Rhizopus niveus lipase by chlorpyrifos in
their paper-based biosensor. Whatmann No1 chromatographic paper was coated with
paraffin wax and then heated. Para-nitrophenol palmitate(P-NPP) and lipase were then
loaded as substrate and enzyme zones, respectively. The presence of chlorpyrifos inhibited
the discolouration of yellow P-NPP by the lipase. The image of the paper strip was
captured by an Android phone for MATLAB processing in an open environment and a
closed wooden chamber. Activity at acidic PH was lower, being 88% at PH = 5 compared to
92% at PH = 9. Up to the 15th day, the activity of the enzyme remained at 97% but dropped
significantly to 87.4% after 30 days when the strip was stored at 4 ◦C. Metal ions and drugs
inhibited the activity of the enzyme. The strip showed an LOD of 0.06 mgL−1.

Bordbar et al. [85] proposed a colourimetric sensor for the detection of 6 pesticides;
carbaryl, paraoxon, diazinon, malathion, parathion, and chlorpyrifos. Six different NPs
were synthesized for the study. AUNPs functionalized by L-arginine produced yellow and
ruby-red colours, while AUNPs functionalized by quercetin produced yellow, brown, and
red, and Ag functionalized by PGA produced yellow and red colours. The notable colour
variations were due to the preparation methods employed. The paper pad was folded
and pesticide was added to the sampling zone. After 15 s of delay, images were taken
in a laboratory cabinet and analysed using Image J software. Further statistical analysis
was performed for each pad. The limits of detection for each pesticide were given as
follows when the assay was used on spiked samples of tap water, juice, and rice in ngml−1

carbaryl-29, paraoxon-22, diazinon-45, malathion-17, parathion-32, and chlorpyrifos-36.
Sun et al. [86] developed a double-film screening card for the detection of organophos-

phorus and carbamates pesticides. AChE and indoxyl acetate solutions were sprayed on
different parts of the films. A bright blue colour would show when indoxyl acetate is
hydrolysed by AChE. A digital image was taken for colour quantification and analysed
using Image J software(NIH, Bethesda, MD, USA). Photoshop software (Adobe, San Jose,
CA, USA) was used to extract the colour pixels. LODs in mg/mL for each pesticide were
calculated at 50% inhibition concentration. Phoxim—0.05, acetate—0.5, malathion—0.5,
omethoate—0.5, carbofuran—0.04, and aldicarb—0.08. The efficiency of the card was 75%
when stored at 4 ◦C, and this decreased to 50% at 37 ◦C.

Table 1. Advantages and disadvantages of the techniques used for pesticide detection in water.

Method Merits Demerits References

High-power liquid
chromatography
(HPLC)

Can analyse small organic molecules, large
polymers, and biomolecules.
Its combination with mass spectrometry (MS)
gives it the perfect ability of separation,
increasing sensitivity to trace amounts and
specificity.
Excellent separation efficiency
Detection results can be reproduced.

Not easy to teach to a new person
Large quantities of expensive organic
compounds are required
Laborious calibrations and sample preparation
especially for routine analysis.

[87]

Liquid
chromatography-mass
spectrometry (LCMS)

Good linearity
High recoveries and precision
Low LOD and LOQ
Can analyse many pesticides compared to
GCMS
Can exclusively detect carbamates
and triazines.
Can detect OC better

Requires expensive equipment
Requires a specially trained technician [88,89]
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Table 1. Cont.

Method Merits Demerits References

Gas chromatography-mass
spectrometry (GCMS)

Highly sensitive to non-polar, volatile
pesticides
Can be used selectively or universally
Has two modes of operation (full scan and
selected ion-monitoring (SIM))
Good response

Can analyse fewer compounds compared to
LCMS
Sample preparation needs derivation
Injection head temperatures decompose some
pesticides
Responds to impurities in the carrier gas, air
leakage in the GC system, or stationary
bleeding from the column

[90]

UV-VIS-NIR

Allow rapid measurements
Fast response
Chemical free
Non-destructive
Low operating costs
Environmentally friendly
Reduced reagents required for analysis

Preconcentration steps are required
Near infra-red (NIR) spectra are more
complicated to analyse due to the combination
and overlapping of vibrational modes
Multivariate techniques required for analysis
Lower sensitivity
Light scattering by suspended solid particles
causes serious errors
Matrix interference
Longer duration of tests
UV is harmful to humans

[46,50,91–94]

RAMAN

Water and glass show low Raman scattering
Non-destructive
Does not need complex sample preparation
Symmetrical bonds show strong Raman while
they are inactive in infra-red
Shows better spatial resolution than IR
A single instrument is used in the entire
vibrational mode while IR uses different
Useful in the analysis of unknown substances

Fluorescence of impurities is very strong.
Raman spectra are weak
Expensive instruments

[95,96]

SERS

Simple pre-treatment
Selective in detecting complex environmental
pollutants
Signal amplification
Quick analyte identification using
fingerprinting SERs spectra
Portable appliances

SERS substrate deteriorates over time.
High cost
Affected by matrix effects
Poor reproducibility

[97,98]

BIOSENSORS

High sensitivity
Fast response
Robust
Low cost
Miniaturization
In situ and real-time monitoring
High specificity
Applicable in complex mixtures
Simple operation

Qualitative or semi-quantitative results
Legal limitations for genetic modification of
organisms
Some biological materials can be denatured by
the environment (PH, temp, ions)
Most devices are still in the laboratory stage

[56,61]

Paper-based sensors

Non-expert operation
Portable
Easily disposable
Low detection limits
Fast response
High reaction speed
High specificity
Multiple analyte identification
Small volumes of reagents

Short shelf life of a few days
Some have poor stability
Most devices still in laboratory stage
Long fabrication time

[99–102]

3. Internet of Things for Environmental Monitoring
3.1. Internet of Things

Nowadays, the Internet of Things is shaping the landscape of operations in many
sectors by interconnecting systems. Industries can now optimize their processes by uti-
lizing and expanding their remote operations [103]. A variety of domains have seen the
deployment of IoT products, as depicted in the Figure 2 below: smart grids, vehicle-to-
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everything, wildlife management, supply chain logistics, and smart healthcare, among
other cases [104–106].
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Sensors are the primary components of IoT systems designed for Machine-to-Machine
(M2M) communication, serving the purposes of monitoring or actuation. Temporal and
spatial information concerning environmental conditions can be easily gathered and trans-
mitted for analysis by organizing these sensors in networks [26,107]. However, there is
a limited exploration of IoT connectivity for pesticide sensors in the domain of water
testing. This is mainly attributed to the unavailability of plug-and-play sensors that can
be directly connected to other platforms. Published work shows authors interface their
developed prototypes to the internet for management purposes. Using a multispectral
sensor AS7265x, Ajira et al. [108] analysed the presence of glyphosate in spiked lab water
in their device, SpectroGLY. The presence of glyphosate is based on colourimetric chemical
reactions detectable using reflectance spectroscopy. Its response was in the form of traffic
lights with unspiked samples producing green light, while water containing 10–499 mg/L
of glyphosate triggered yellow light, and red light indicated levels of more than 500 mg/L.
A mobile application connects to the device via Bluetooth low energy (BLE) and allows
users to enter parameters, including the water source and reagents used. The control in the
mobile phone allows users to request tests, as well as change communication configurations.
Wi-Fi is chosen in urban areas, and LoRAWAN is preserved for rural setups. Additionally,
MQTT and HTPP protocols are used for communication with The Things Network (TTN),
enabled by MCU ESP32 and Heltec Wi-Fi lora modules. Smartphones give users GPS
coordinates in the dashboard display, along with additional information like sample results
and their spectral signatures.

The use of smartphone resources as a signal collector, processor, and displayer in
pesticide sensing is common in studies [109–116]. User-designed applications are used to
detect colourimetric, fluorescent, and chemiluminescent signals for analysis, while others
detect voltage and current variations [117]. Some of these developed applications upload
the same data to the internet for public viewing. Sicard et al. [118] designed a paper-based
analytical device for the detection of malathion in water. The paper sensor was based
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on the inhibition of acetylcholinesterase enzyme by the pesticides. Two images (a test
strip and a control) were captured using an iPhone installed with an algorithm for colour
determination. The images were geo-tagged for identification of the site where the test was
performed. The results were accessible via a website named WaterMap Ca. The application
allowed the uploading of location coordinates and measurements. The HTTP protocol was
utilized for uploading the data to be stored in the MySQL 5 database. Before submission,
users register an account on the WaterMap website, and a random token is supplied to
them for any data point to be uploaded. Data points are displayed with the date, name,
pesticide concentration, and GPS coordinates of the site of the test.

Vaseashta et al. [119] developed a network of connected sensors to monitor several
environmental contaminants, including metals, pathogens, organic compounds, pharma-
ceuticals, and pesticides. Commercial off-the-shelf sensors capture data and communicate
to a control centre for synthesis and analysis. GIS sensors were used to provide the location
of sensors or where samples are taken. Monitoring and identification of chemical contami-
nants in the groundwater of the Prut River basin was performed using gas chromatography
atomic absorption spectrophotometry, electrochemistry, and laboratory water analysis with
conductivity sensor SE6780/G1. To demonstrate compliance with chemical status, EU and
US EPA standards were applied.

As we edge closer to full IoT integration in pesticide monitoring of water ecosystems,
existing studies in other fields are already pointing to issues in the list of redress. There are
efforts to optimize battery life to enable the nodes to run for years with minimal charging or
to incorporate energy-scavenging modules while designing the sensors [120]. This impacts
the reliability of data due to the increased uptime of the nodes. With more devices being
connected and exchanging information, security compromise is a threat that needs to be
addressed. IoT devices are becoming vulnerable to different types of attacks like spoofing,
Botnets, Denial of service (DOS), or Man-in-the-middle attacks [121]. Appropriate measures
should therefore be taken to safeguard these networks from cyber-crime by implementing
zero-trust security models, data encryption, or the use of digital signatures [122]. Enhancing
security will build confidence in users, especially in situations when personal data is to be
shared within platforms.

3.2. Communication Protocols
3.2.1. Message Queuing Telemetry Transport (MQTT)

MQTT is a lightweight messaging protocol designed for constrained devices [123].
These are low-bandwidth, high-latency, limited-memory devices, or devices operating in
poor networks [124]. The protocol works in the publish–subscribe model and depends
on brokers. A client publishes a message on a specific topic with the broker, and then the
device(s) that have subscribed to the topic will receive the message. Its messages have
three Quality of service (QoS) levels: (1) “at most once”/“fire and forget”; (2) “at least
once”/“Acknowledge delivery”; and (3) “exactly once”/“assured delivery” [125,126]. The
protocol relies on the Secure sockets layer (SSL/TSL) for security, since it is designed for
secure networks and runs on Transmission Control Protocol/Internet Protocol (TCP/IP) in
the transport layer.

3.2.2. Hypertext Transfer Protocol (HTTP)

This is a stateless protocol where clients use request-response commands for data
communication over the World Wide Web [124]. The requests have big headers containing
more information than the body of the message, which ends up straining the network [127].
The pooling nature of this model and lack of optimization for IoT devices leads to high
power consumption. Its secure version, HTTPS, is encrypted by SSL/TLS for data integrity
and confidentiality. It uses GET, POST, PUT, and DELETE to perform operations on
resources [128].
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3.2.3. Constrained Application Protocol (CoAP)

The CoAP is a client-server model designed for nodes with low memory, limited
processing power, or in lossy networks. The CoAP supports four types of messages
(Confirmable (CON), Nonconformable (NON), Acknowledgement (ACK), and Reset (RST)),
which are exchanged asynchronously in request-response commands [123].

Security is ensured via Datagram Transport Layer Security (DTLS), utilizing User
Datagram Protocol (UDP) as its underlying transport protocol [129]. This selection mini-
mizes overhead but introduces a degree of message unreliability, characterized by potential
packet loss, unordered arrivals, or duplication.

3.2.4. Advanced Message Queuing Protocol (AMQP)

This is a binary protocol designed for interoperability and supports both publisher/
subscriber and request/response architectures [126]. AMQP is a message-oriented middle-
ware (MOM) with three QoS (At most once, at least once, and exactly once) and ensures
reliability by storing messages in queues in case of network disruptions [129]. The protocol
uses Transmission Control Protocol (TCP) for communication and is secured by SSL/TLS
or Simple authentication and security layer (SASL).

3.2.5. WebSocket

This is a full-duplex communication designed to provide real-time communication
between the server and clients [123,130]. The client initializes a conversation through
an HTTP request for a handshake, and, once connected, messages are delivered asyn-
chronously over TCP. The messages have reduced headers, minimizing bandwidth usage,
and can be forwarded sequentially in a data stream. Regular connections use port 80, while
TLS-secured connections use port 443, just like HTTPS.

3.2.6. Extensible Messaging and Presence Protocol (XMPP)

This is an instant messaging protocol mostly used for chat, voice, and video calls [124].
The exchange of data is performed in Extensible mark-up language “(XML) stanzas”, a
piece of code containing a message, presence, and info/query (IQ) [128]. XML stanzas are
known to add processing overhead.

3.3. The Cloud and Computing Models

The cloud is an essential component in the IoT ecosystem, as it provides additional
space for the storage of data and applications [131]. IoT devices are constrained in terms
of memory and processing power. The data gathered by IoT devices can be comfortably
accommodated in the cloud, as having more space saves the IoT device the burden of
putting up with too much data. Complex applications that require high processing speed
can be stored in the cloud, and can only be called when required by the devices. This will
allow them to run optimally and be efficient in data collection [132].

Computing Models

The need for data warehouses/data lakes, the high cost of maintaining hardware for
medium enterprises, and the demand for a great deal of services or applications led to the
invention of computing models. Several computing models are currently at our disposal,
like cloud computing, edge, fog, and mist computing.

(a) Cloud computing

Cloud computing involves pushing vast amounts of data to remote servers for an-
alytics and storage [133]. It is an invaluable tool in innovations that generate large data
for processing as the cloud provides the necessary infrastructure and is scalable, enabling
millions of devices to connect and share resources. Some studies have, however, noted
security concerns for uploading data to the cloud when many devices have access [132].
The handling of massive amounts of data introduces a whole set of challenges, like load
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balancing, low latency, high network bandwidth, poor real-time analytics, poor reliability,
and high energy consumption [134,135].

(b) Edge computing

The shortcomings of cloud computing led to the development of edge computing by
taking computations to the proximity of data sources [136]. This paradigm is mostly suitable
in real-time analysis where quick decisions are required, like in vehicle-to-everything and
Unmanned aerial vehicles (UAVs) [137]. The evolution of the 5G network allows edge
computing to bring cloud services closer to the users.

(c) Fog computing

Fog nodes are distributed over large geographical areas with onboard storage facilities
and computational resources [138]. The existence of these resources determines what can
be done locally and what needs to be sent to the distant cloud. One of the unique features
of fog is the possibility of data availability in offline status, which adds to security and
privacy concerns as the data components bearing fingerprint identities of users can be
analysed and extracted before onward transmission to the cloud [139].

(d) Mist computing

Mist computing lies at the extreme edge of the network [140]. It includes micro-
controller capabilities of collecting raw data, recognizing patterns, or performing filter-
ing and data cleaning before onward transmission towards the cloud [139]. The for-
warding of only essential data to routers or gateways saves the energy required in the
communication process.

4. Wireless Sensor Network for Water Quality Sensing

A wireless sensor network is a collection of tiny, low-cost electronic devices capable
of gathering data and forwarding it to a base station [141]. Figure 3 shows a typical
layout commonly used in monitoring scenarios. A major constraint that is observed in
the design of a network is energy demand; since these sensors use low-power batteries
for communication, energy-efficient mechanisms need to be employed [142]. However,
despite this challenge, WSNs have become a revolutionary technology in monitoring due
to their increased intelligence. Additionally, wireless sensors have several advantages, like
scalability and flexibility, and can be centrally accessed and do not need wires or cables [143].
These strengths have propelled them to be true assets in the fields of agriculture, health,
smart homes, military, and space exploration. Due to the existence of various wireless
technologies, a careful selection is needed to obtain optimum benefits from the chosen
network. Studies have shown that the most commonly used technologies in monitoring
aquatic environments are Radio Frequency Identification (RFiD), Bluetooth, Zigbee, radio
802.15.4, Wi-Fi, Long Range (LoRa), Narrow Band Internet of Things (NB-IoT), General
Packets Radio Service (GPRS), and Long-Term Evolution (LTE) [144]. RFiD is a dedicated
short-range communication method that does not need a line of sight to uniquely identify
items. RFiD tags can store substantial amounts of data and allow simultaneous readouts.
When several tags are read at the same time, data collision can occur, leading to a loss [145].
Bluetooth is another short-range communication protocol commonly suitable for low-
powered devices. This protocol operates in 2.4 GHz frequency of the unlicensed industrial
scientific medical (ISM) band, using frequency hopping modulation supporting point-to-
point and point-to-multipoint voice and data. Water molecules are absorbed in the same
frequency band, and microwaves also operate in that frequency, thus limiting Bluetooth
usage in water and possibly leading to interference from microwaves [146]. ZigBee devices
can communicate over distances ranging from 10 to 100 m. This distance can be increased
significantly using mesh networks, a common topology employed for these devices, though
power consumption is higher due to the additional routers [147]. A Wi-Fi access point
spans an area of up to 1 km radius. Wi-Fi networks are occasionally flooded with large
amounts of data, and unintended users can gain access or cause interference due to poor



Sensors 2024, 24, 3191 16 of 32

encryption [148]. Cellular or mobile networks are characterized by high cost and high data
throughput, reaching speeds of several Gbps, and low latency. They consist of various
standards like General Service Mobile (GSM), LTE, General Packets Radio Service (GPRS),
Code Division Multiple Access (CDMA), Enhanced Data for Global Evolution (EDGE),
and 5G [149]. The devices operate in Frequency Division Multiple Access (FDMA) or
Orthogonal Frequency Division Multiplex (OFDM) and need frequent synchronization,
leading to high power demands. However, one of the variants known as NB-IoT has low
data rates and uses extremely low power, rendering itself useful in monitoring applications.
LoRa is a communication technology that utilizes global free bands 433, 868, and 915 MHz.
This protocol uses a chirp spread spectrum, spreading the bandwidth and making it
resistant to multipath and fading [150]. Additionally, its devices are asynchronous and use
Advocates of Linux Open-source Hawaii Association (ALOHA) in communication, thus
increasing the battery lifetime [151]. LoRa devices have a range of up to 15 kms and use two
keys for authentication; however, their data transmission rate is low at 50 Kbps [152,153].
Several groups have carried out research in aquatic environments using these technologies
to investigate various parameters [154–157].
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Figure 3. A wireless sensor system.

Jen-Yung et al. designed a system for monitoring several water parameters using
sensors integrated into the ESP-WROOM-32 Wi-Fi module [158]. The monitoring data were
relayed to the Thing Speak IoT and viewed via the Thing View APP. Message queuing
Telemetry Transport (MQTT) was used as a messaging protocol to the ThingSpeak cloud
and Hypertext transfer protocol for the application layer. Data streams were visualized
and analysed using MATLAB. Software design was performed under an open source
Arduino-integrated development environment supporting both C and C++.

Huan et al. monitored water quality for aquaculture ponds using NB-IoT [159]. The
data were sent serially by the MCU to the NB module, encapsulating the payload into the
message of the constrained application protocol, and then forwarded to a preconfigured IoT
Telkom cloud platform. An STM32L151C8 chip with an ultra-low power Arm Cortex-M4
CPU was connected to four sensors. Its internal timer controlled the sending of data every
30 min, and the internal ADC converted the analogue values of PH and dissolved oxygen
to digital. The communication module was Yiyuan BC95-B5, based on the NB-IoT which
uses the 3GPPRel.13 protocol operating in 850 MHz. To facilitate the parsing of data, IP
addresses and International mobile subscriber Identity (IMIS) were added to the data
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packets. When the platform received a command, it was converted to a HEX decimal code
stream and sent to the end device for intelligent control, while reported data were stored
for monitoring. The packet loss rate from cloud data was 0.42% for a communication range
of 3 km between the node and the gateway.

L. Vacariu et al. designed a real-time water parameter monitoring system using a
LabVIEW hierarchy [160]. Measuring nodes sampled the quantities from the sensors and
conditioned them before transmitting them to the gateway using the 802.15.4 radio protocol.
The gateway communicated with the measuring nodes using a short-range protocol of
less than 1.6 km. The data received by the gateway was stored using the FIFO structure
and was available on a web server accessible via the HTTP protocol. Data transmission to
the gateway consumed a great deal of energy, and thus it stayed disabled until the time
to transmit.

A. M. C. Ilie et al. [161] built a WSN using three Waspmotes (sensor nodes) and a
gateway called Meshlium for monitoring pH, temperature, ORP, and EC. Waspmotes are
low-power devices immune to water and dust, but which lack a storage facility. They were
equipped with a 6600 mAh battery and a solar panel of 2 W. This made them autonomous
and easily deployable. The Waspmotes package also included an Atmega 1281 processor
with 32 KB RAM and a 14 Mhz clock. A low-power 802.15.4 radio covering a few hundred
meters (line of sight) sent the data to Meshlium. The Meshlium acted both as a data logger
and gateway featuring several interfaces, including an 802.15.4 radio, RJ45 ethernet, Wi-Fi,
and a GPRS/3G modem. It had an x86 CPU running Linux OS with 256 MB memory
and 500 Mhz clock speed. The data sent by the Waspmotes was stored in the Meshliums
database using the Frame Parser, and it was possible to synchronize it to an external
cloud partner.

Faustine and Mvuma [162] worked on a Bluetooth wireless system to detect water
parameters in Lake Victoria. The sensors were connected to an ATmega 256 microcontroller
with 70 I/O and powered by a 3.7 V 6AH polymer lithium battery. To enable communication
with the U-WQR Mobile Application, the Android Open Accessory Protocol was applied.
A connection was established via the serial Bluetooth, which works with USB. The system
provided mobile reporting of water quality in graphical form to stakeholders. It was noted
that some parts of rural areas lacked sufficient network coverage, which limited instant
data deliveries.

Singh, S. et al. [163] deployed an IoT RTWQMS (real-time water quality monitoring
system) in the river Ganga in India. The system monitored 17 quality parameters and
consisted of a sensor package, a data processing and publishing server, and a GPRS
for communication. The system was based on SCADA (supervisory control and data
acquisition). A data logger connected to a router received the data gathered by the sensors
and sent it to a central database in real-time. Data validation was performed with laboratory
values obtained at the time of deployment.

Geetha designed an IoT system to monitor turbidity, water level, and PH [164]. A
single-chip microcontroller TI CC3200 with an in-built Wi-Fi module and ARM Cortex
M4 core was used. Sensors were directly interfaced with the controller and the data
gathered was uploaded to the “Ubidots” cloud. The platform had a dashboard that allowed
data analysis and sent SMS alerts to concerned persons for action when threshold values
were exceeded.

K. A. U. Menon et al. [165] proposed a wireless system for monitoring PH in a river.
A hierarchical topology was adopted for the monitoring. The sensor nodes transmitted
gathered data using Zigbee to cluster heads. Zigbee was notably cheap and had low
power consumption. Outdoors, the range of transmission was approximately 70 m. A Pic
microcontroller PIC16F877 was used for the aggregation of data from the sensor nodes. This
microcontroller had an inbuilt ADC, reducing the cost and power needs. A UART serial
interface sent the data to the communication module, a chipcon CC2420 radio transceiver
operating on IEEE802.15.4 standard. The data rate was 250 Kbs, operating in the 2.4 GHZ
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ISM band. The data were then wirelessly transmitted using Zigbee to the Mote at the base
station for analysis.

D. Nguyen and P. H. Phung [166] presented the design of a WSN to monitor en-
vironmental conditions with minimal data packet losses in transmission. Sensors were
powered with 2AA batteries. The smart evaluation board RF05 was the coordinator and
was connected to the SIM 300CZ GMS/GPRS module via RS 232 as a UART. After setting
up the Zigbee network, it would receive data from the node and check its ACK number.
New data would be forwarded to a server through a TCP/IP link. Additionally, an SMS
would be sent to users for any data falling outside the appropriate range. Connection
failure would cause the data to be stored in an NV flash memory device (NV CC2530) to
await reconnection. Users could query the server using the client user interface, built on
the Windows OS.

Jia [167] developed a WSN with two types of multisensory combination modules
(MSCM): one for water, and another for air. Each MSCM had a GPS sensor attached to
identify the problem location. The system used an FX1278 Lora remote modem with a
power consumption of 100 mW and a sensitivity of −148 dBm. The module operated at
433 MHz and was connected to seven sensors. Data acquisition nodes were connected to
the STM 32 processor through I/O pins. The processor was noted to have a low power
consumption. Another similar processor was used for the base station which uploaded the
data to the cloud via LTE. A queue-based data upload algorithm was employed utilizing
the TDMX technique. To save energy and prolong the lifetime of the network, data fusion
based on fuzzy decision-making was carried out at the collection node.

Sendra et al. [168] fabricated a LoRa-based network for monitoring coastal water
quality parameters, including water temperature, turbidity, and humidity. A data storage
integration service by The Things Network was included. This data in the database could
be extracted and visualized using Ubidots. The gateway operated between 868 MHz and
915 MHz, and its antennae had 14 dB gain. The Things Uno with LoRAWAN RN2483
Microchip was used, which is compatible with Arduino Uno and existing shields. The
protocol for accessing data in the server was HTTP, both of which are supported by TTN.
Using the received signal strength Indicator (RSSI), the maximum distance that a node can
send data was 910 m while working at 968 MHz.

Qian et al. [169] presented the design of a flexible RFID tag for sensing minerals
in water using a smartphone. The front-end sensing module was a capacitive-to-digital
converter CDC chip PCAP02 with a power supply of 2.1 V and 2.5 µA. A radio frequency
harvesting module HF RFID chip M24LR16E was used for efficient inductive coupling,
with low power demands capable of producing 2.1 V/1 mA max power output. The
chosen MCU MSP430FR2433 operated at 1.8 V 126 µA/MHz and 1 µA/MHZ in active
and standby modes, respectively. When an interrogating smartphone equipped with
an HF RFID taps the sensor tag, sensor data is instantly displayed on the screen as an
NFC message. Sensor data transmission was performed efficiently through the NFC data
exchange format. Carrying out TDS tests using the proposed method revealed that the
sensitivity of the capacitor decreased with increasing mineral concentration.

The work presented in [170] proposes the design of a WSN based on GPRS. A total of
four water quality indexes were monitored using composite electrode sensors. A sensor
node was constructed using the STM32F103 microcontroller programmed in C language. A
low-power FSK-based RF transceiver A7139 was chosen for communication. This module
offered a 1000 m range and 100 mW power consumption during transmission. The gateway
node had a similar processor, along with a serial communication module and an SD card
for storage. The flooding routing protocol was chosen for its effectiveness and robustness;
however, a registration sheet was created in the memory of every processor node to prevent
network congestion challenges associated with flooding. The packet loss rate was evaluated
to determine the network reliability and found to be 3.55%.

The authors of [171] evaluated the performance of the LoRa-based system in the
detection of water pollution based on its PH and temperature. In their assembly, an
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Arduino Uno board was used alongside a Dragino Lora shield for the transmission of
detected values to a cloud. Three compounds (Phosphate, Potassium Hydrogen Phthalate,
and Sodium tetraborate) were used for the measurement of the different PH values. RSSI
values were determined for different distances measured using Google Maps. For 3 km, an
RSSI value of −29 dB was obtained. For 7 km and 10 km, the RSSI values were −77 dB and
−116 dB, respectively. The PH values measured were validated with the voltage values
given in the data sheets.

Parra et al. designed a water quality monitoring system for coastal areas [172]. They
designed the sensor node using Arduino Leonardo and three sensors, namely salinity,
turbidity, and temperature sensors. They designed a salinity sensor using two solenoids, an
enamel copper wire of 0.4 mm, and a PVC tube with a diameter of 2.6 cm. A 7555Ic was used
to generate a square wave for powering the sensor. For turbidity measurement, an RGB
LEDS arrangement was established alongside an LDR. The three LEDs were powered from
the digital pins of Arduino. An RTC DS3231 was used to add a time tag to gathered values
and also set the node to make measurements on an hourly basis. This timer is not affected
by variations in temperature. An ESP 32 module was used for communication. The sensors
were calibrated using volumes of 100 mL. Measurement was performed by introducing the
samples into the pipe and carefully extracting them using pipettes. The node was kept in
the dark to reduce interference from ambient light. Multivariate techniques were used for
analysis of the results.

A. Belsare et al. [173] monitored the quality of water using a floating module equipped
with various sensors. The system gathered the PH, temperature, and turbidity of the water.
An ultrasonic sensor was also included to monitor the distance of the floating device from
the water surface. A WIR-1186 module was used for communication. Its range was a 2 km
line of sight. A PIC18F2520 microcontroller was used for data processing. At the receiving
end, a single push button on the GUI made the system acquire the environmental data and
store it in an Excel format.

The work presented in [174] proposes the design of an array of electrochemical sensors
for monitoring pH, free chlorine, BPA, and temperature in water. The read-out circuit
consists of Arduino Uno with stacked water quality monitoring and potentiostat boards.
These two boards contained the circuits associated with analogue and mixed-signal sensors.
A Bluetooth transceiver was connected to the board for communicating wirelessly to a
custom Android application in a smartphone. BPA sensing relied on Voltametric mea-
surements. The smartphone application consisted of an interface to upload the measured
data to an online storage. The sensitivity of the PH potential metric sensor was very high
(57.5 mV/pH) while the chlorine was 186 nA/ppm. An Android application named Smart-
phone Suite was developed in Java, and on opening would prompt the user to select the
kind of measurement to run. The screen also displayed three graphs corresponding to the
sensor outputs. Sensor data were updated every second and historical data accumulated in
time graphs.

Lastly, Razman et al. [175] reported the design of a water quality and filtration system.
Sensors were used to detect the PH, oxidation-reduction potential, turbidity, temperature,
and electrical conductivity. Arduino Uno and Mega formed the processing unit, while the
data transmission block was the ESP8266 Wi-Fi module. A water pump and filter made
up the filtration unit. After processing, the data were uploaded to the cloud and could be
monitored on the ThingSpeak platform. If the values from sensors indicated that the water
was not fit, then it would be sent to the filtration block. Box plot analysis is used to identify
abnormal data. One-way ANOVA is also applied in the analysis. A box plot of three water
samples was performed for lake, tap, and river water.

5. Innovations in Pesticide Detection and Environmental Analysis
5.1. Machine Learning for Enhanced Pesticide Detection

The advances made in artificial intelligence are growing daily due to the introduction
of machine learning as a new tool in that domain. As an advanced form of statistical
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analysis, ML involves predictions and decisions based on data. Accurate predictions
depend on the information fed into the system. There are various types of supervised and
unsupervised machine learning methods. Supervised methods require more human input
when training on data using superimposed labels [176]. This involves the development
of predictive models based on patterns and relationships between inputs and outputs.
Some common algorithms in this category are Logistic Regressions, K-Nearest Neighbours
(KNN), Random Forests (RF), Support Vector Machines (SVMs), and convolutional neural
networks (CNNs) [177]. Unsupervised machine learning can figure out things that have
not explicitly been stated [176]. The models in this category are Principal Component
Analysis (PCA), Gaussian mixture models, Apriori algorithm, and Hierarchical temporal
memory [177]. Other techniques, called Ensemble methods, have been developed that
combine predictions of multiple models to improve the performance and give better
predictions. Bootstrap Aggregating, Adaptive Boosting and Voting Classifiers fall under
this category [178]. Many sectors of the industry have been able to benefit enormously from
this tremendous leap in technology. The employment of machine learning algorithms for
the identification of parameters in complex environmental situations has yielded interesting
results, as suggested by [179] by using the binary classification algorithm SVM to maintain
the quality of data for environmental sensors deployed in very noisy environments instead
of performing routine preventive or corrective maintenance for obstructed sensors.

In the development of the models, the focus should be on the quality of training data,
feature selection, and identification of appropriate algorithms. The authors of [180] used
ML to identify four pesticides on Cedrus Libani’s paper using silver nanoparticles. The Ra-
man spectra are used in their original form without pre-treatments. A total of 583 samples
are collected for the experiments with the following distribution: myclobutanil 122 samples,
thiram 167, abamectin 151, and phosmet 143. After the reduction in dimensionality using
PCA, five models were used for classification: SVMs, KNNs, Decision Trees (DTs), and
AdaBoost, all giving prediction accuracies of more than 88%. KNN is considered a tradi-
tional method and had the highest success rate of 93%. The authors, however, noted that
classification accuracy could be improved by creating a database with more pesticide types.
A similar observation regarding the use of larger samples for more robust models was made
by [181] while comparing the performance of conventional ML methods (LR, SVM, and
RF) with deep learning CNN and ResNet methods. In a study to detect pesticide residue
on grapes using hyperspectral imaging, the deep learning method ResNet produced better
results than the other models for both VIS-NIR and NIR spectra. Overall, all the models
had accuracies of over 90% in training, validation, and prediction, except for RF which
showed overfitting in both spectra ranges.

In ref. [182], the authors designed an optimized Resnet-based deep learning model to
classify multiple organophosphorus pesticides in environmental water. Other co-existing
compounds are known to mask the SERs signals, hence their identification through visual
inspection is limited. A total of 9000 multicomponent samples of the SERs spectra were
collected for the training model using an established multicapture SERs platform and
split at 90% and 10% for training and testing, respectively. The model achieved close to
100% accuracy for the classification and regression, while results from the confusion matrix
posted greater than 97% accuracy in classifying all six Organophosphorus pesticides.

5.2. Big Data Analytics in Environmental Monitoring

The monitoring of environmental parameters calls for the deployment of many sensors
spanning the area of interest. Thus, IoT sensors for data collection generate large data
sets, often coming from a variety of sources in real-time. As such, IoT data is referred
to as big data having variety, volume, and velocity [183]. With some suitable integra-
tion mechanisms, these datasets can be used to provide more insights and hence deliver
more useful information. Analytics is the conversion of raw data by the use of tools and
technologies into actionable insights by finding trends and patterns [184]. To facilitate
aggregation, cleansing, storage, and analysis of massive data, technologies such as Spark,
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Apache Hadoop distributed file system (HDFS), MapReduce, NoSQL databases (MongoDB,
Redis, and Hbase), Hive, Kafka, and Storm have been suggested [185]. In the field of
environmental monitoring real-time sensors, IoT and social media platforms produce a
large variety of data whose analysis provides crucial information on the existing conditions.
Using knowledge discovery in the database, ref. [186] monitored 170 plant protection prod-
ucts (PPPs) to identify residues in water surfaces. The study led to the identification of nine
main PPPs in the Puglia River, with Glyphosate, AMPA, Imidacloprid, and azoxystrobin
as the dominant residues. Samples for quantification were analysed by UPHLC-MS/MS
with a 3-month sampling regime stretching for 4 years. A multidisciplinary approach was
applied for analysis, including heatmaps, cluster analysis, GIS analysis for land use, and
Apriori algorithm for data mining. A total of 1461 PPS from 2018 to 2021 were reported,
with Glyphosate and AMPA being the most common in three years (2021—62%/38%,
2020—21%/36%, and 2019—18%/36%). The data mining results allowed the identification
of mixtures containing up to nine compounds, while correlational heat maps on normal-
ized scales presented easily readable patterns. In-depth discoveries like the presence of
Glyphosate and AMPA in lagoons in the first quarter of the year were explained by rainfall
data from weather stations. Big data is adequate for training ML models to have high
accuracy in prediction; however, cleaning is a vital step in the pre-processing stage, as data
is unstructured or in a semi-structured format. The complexity of these formats requires
good curation and storage, as well as advanced statistical approaches to extract relevant
information. While monitoring 165 water fields with approximately 25,000 samples at a
time, ref. [187] included a module for data cleaning in his water quality monitoring system.
The module was designed to determine the validity of data before storage by removing
outliers. The group noted that captured data may be non-numeric, wrong, or missing. The
missing values were obtained by performing linear regression fitting interpolation. After
the clean-up process, the values were stored in the MySql database, a relational database
management system used for web applications. Analysis of the data was performed using
influxDB due to its open-source nature and suitability for time series data. To cut costs,
they rented Tencent Cloud for computing resources and visualized the data using Baidu
Echarts and WeChat for communication with users. The dimensionality curse is a common
phenomenon while dealing with big data which needs to be dealt with during data process-
ing [188]. According to Zhong et al. [189], big data slows down the processing speed of data.
Therefore, they explored improving on the existing Fuzzy c- means clustering algorithm
while analysing water quality data in the Three Gorges Reservoir Area. The algorithm
was meant to put a distribution of data points in multidimensional data space into several
classes. The suggested fast Fuzzy C-means clustering algorithm reduced the number of
iterations in classifying 1024 sample data from 44 steps to 24, speeding up convergence and
improving efficiency.

6. Integration of Technologies for Comprehensive Solutions

Several benefits can be realized when WSN, IoT, ML, and big data are integrated into
monitoring pesticides in water. A high degree of granularity of information concerning
the water ecosystem is obtained. Aggregation of data concerning the weather patterns,
topography, and the history of contamination levels alongside pesticide determination will
offer a more holistic view of the contributions of the other players in the water ecosystem.
Each of these methods used in the measurement of pesticides has its inherent advantages
and their combination will reinforce their capabilities, further stretching their horizons
beyond criticism. Figure 4 illustrates an envisaged integration that holds promise for
enhanced pesticide detection outcomes.
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WSNs have for a long time been lauded for providing more spatially distributed data
due to their inherent property of being deployed over large geographical regions and
difficult-to-reach areas. When coupled with IoT infrastructure, the collected data extends
beyond mere snapshots of large environments. The connectivity and diverse capabilities
offered by various applications within the cloud enable the realization of multi-modal
data integration. With more studies following the route of integration, well-detailed and
synthesized results will become available. Even though the integrations have happened in
the detection of other water parameters, their application in pesticide sensing can bring the
required and necessary change in the domain of pesticide monitoring.

The authors of [17] apply several approaches while monitoring pollution along a river
basin water. Using Libellium Waspmotes, they monitored pH, temperature, Oxidation-
reduction potential, DO, conductivity, fluoride ions, nitrate ions, and calcium ions. The
sensor nodes were connected in a star topology to a base station to minimize latency while
the GSM modem uploaded measured data to the cloud from locations where stakeholders
could view the analysed data. The sensor node architecture was partitioned into a sensing
sub-system, power, communication, and computing, which also had a prediction of power
requirement. Sensor nodes were programmed to send data once every 30 min, while cloud
uploads would be performed once the connection was established; otherwise, they would
revert to sleep mode to save energy. A system to indicate received packets by base station
was established, although sometimes a packet would be sent more than once due to failure
of acknowledgement. One of the challenges they faced was biofouling; they realized the
common methods of removing, like chlorine evolution, and use of wipers or copper, were
not applicable in their case. Other challenges included damage to sensor probes, untimely
recharge of data packets from service providers, and malfunctioning equipment.

Edge computing is instrumental in WSN monitoring, especially in situations where
large areas are involved. Park et al. [190] noted in their study performed in the river Keum
for green tide prediction that while ML/DL has been used in many studies involving
centralized cloud computing to predict pollution in rivers, the models do not accurately fit
in certain cases. The authors proposed federated learning (FL) because the sensors were
being deployed over a very large geographic area. If the sensors send data to a central
cloud, measurements will sometimes arrive unsynchronized, due to network degradation
and the distances involved. The study proposed several edge servers along the river which
would receive data from the sensors and then use it to train a local model. They then
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forward their optimized local parameters to a central cloud in synchronized unit time for
aggregation and computation of a global model which will be passed to the edge servers.
Barrages provide power to the local servers along the river and smart sensors are deployed
close to them, sending their packets using NB-IoT. The algorithm for FL in the distributed
network avoids imbalance in local training data and allows some edge servers to continue
local learning, with data quantity unsatisfactory for target performance. He proposed an
edge queue model with a feature to store all the data received by an edge server in a queue
and use it for learning, even if it exceeds the threshold data for a single iteration training.
In situations where the data received is less than the baseline, the server waits for the next
scheduling to meet that requirement. Seven real-time water quality indicators, including
Dissolved Oxygen (DO), Total Organic Carbon (TOC), Total Nitrogen (TN), Chlorophyll-a
(chl-a), PH, turbidity, and temperature were employed to train the model. In the interest
of simulation, data spanning a five-year period retrieved from state-managed sites was
utilized. The authors noted that setting the number of values of collected data which can
initiate training prevents overfitting and underfitting. The accuracy of the model increases
as the number of values required to initiate learning increases from 20. It rises sharply to
80% for 50 values, then converges to greater than 90% for data values beyond 100. However,
increasing this reduced the number of edges that performed the training, thereby negatively
impacting the performance of the model even though good accuracies were attained. High-
performance models can be obtained with a large baseline. However, this can only happen
if the baseline exceeds the threshold sample data, in which case it is impossible for many
edge servers to train. It is clear from this study that the training of ML models with
historical data from IoT devices can bring the capability of forecasting future potential
events with high levels of certainty. In support of this, the authors of [191] used 3-year data
collected from three locations (Roorkee, Haridwar, and Dehradun in the river Ganga) and
monitored 12 physicochemical water parameters: dissolved oxygen (DO), PH, biochemical
oxygen demand (BOD), calcium, total coliform, hardness, magnesium, dissolved solids
(DS), chlorides, alkalinity, chemical oxygen demand (COD), and temperature. They applied
mathematical modelling coupled with ML algorithms to formulate a trend analysis and
hence predicted contamination of the three areas from 2020 to 2025. A comparative analysis
of the proposed analysis and existing work showed a good match from 2013 to 2021.

While focussing on battery lifetime and longevity of nodes, ref. [192] chose four sites,
each with a unique focus for investigation: (1) Ayadat Lake—cyanobacterial evolution;
(2) the Allier River—impact on biodiversity by flood; (3) Roffin—the impact of nuclear waste
on vegetation and water; and (4) Montoldre—crop development. They built each node to
have an assembly of sensors suitable for the purpose for which it was meant and deployed
them in their respective areas using a star topology with LoRAWAN as a communication
platform to the gateway. The nodes were developed on an STM32 microcontroller and a
NoSQL database was included in the structure, while a multi-pipeline architecture was
designed for data visualization. Packet retransmission rates varied between 4 and 54%
while RSSI values were between −32 dBm to −120 dBm for the node range distance to
the gateway. An RF regression model used to identify visibility variables arising from
deviations of RSSI values not induced due to the standard log-normal path-loss model,
performed poorly by explaining only 49.23% variance. The initial discharge of the battery
showed a strong correlation with estimating its lifespan, albeit with approximately 20%
precision. Temperature variations at the deployment were not factored in, yet it remains an
important basis for scheduling battery maintenance.

In their investigation of oil spillage, the authors of [193] designed a WSN aimed at
classifying petroleum products using artificial neural networks. The sensor nodes consisted
of an ESP32 microcontroller, LoRa, GPS module, and a pair of 3.7 V/1400 mAh Li-Po
batteries charged by solar power. There were three partitions (signal acquisition, energy
management, and processing) whose architecture made it possible for data classification
to be performed in the embedded structure before forwarding it to the server. Supervised
training was done with 7936 samples, with the ANN classifier consisting of three neurons
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and two hidden layers. The model accurately predicted 83% of samples, while its sensitivity
and specificity were 88% and 74%, respectively. Seven out of fifty-four samples were
misclassified, and the F score metric value was 86%. This innovative approach seems able
to generate good results if applied in pesticide detection.

7. Conclusions and Future Directions

Monitoring of water ecosystems is crucial given the increasing global growth rate
while the available water resources are declining over time, alongside increasing pollution
levels. The release of agricultural runoff into freshwater bodies leading to contamination
contributes significantly to water scarcity. Given the hurdles to creating new water sources,
the preservation and sustainable management of existing water sources emerge as key
strategies in averting prospective crises associated with water scarcity. Future directions in
water ecosystem monitoring necessitate the seamless integration of diverse technologies to
establish a robust methodology for protecting existing water sources.

Harnessing the power of IoT architectures to enhance transparency and data avail-
ability will lead to better-developed models and adaptive management strategies. This
necessitates investment in stable and fast connectivity infrastructure to facilitate seamless
data exchange among systems. The adoption of 5G connectivity will play a crucial role in
enhancing data exchange speeds and improving the accuracy of predictive models.

Future directions involve reducing reliance on cloud-based data management and
analysis by developing devices with self-computation capabilities. Fog computing will play
a pivotal role in handling large volumes of data locally, hence minimizing energy consump-
tion and optimizing data processing efficiency. Efforts should focus on striking a balance
between local processing and cloud support to ensure optimal scalability and performance.

Emphasis should be laid on advancement in sensor technology, prioritizing enhance-
ment of their intelligence to interpret data effectively. This will involve integrating advanced
algorithms and machine learning techniques to allow them to autonomously analyse com-
plex environmental data.

Fostering collaboration among various players in the sensor industry is key to suc-
cessful monitoring. Various organizations are engaged in competitive efforts to establish
their technologies as industry standards, a phenomenon with notable implications for
interoperability. A move towards the adoption of a unified standard technology and the de-
velopment of standardized protocols and frameworks across diverse monitoring platforms
would be strategic.
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