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Abstract: Regional lung ventilation assessment is a critical tool for the early detection of lung
diseases and postoperative evaluation. Biosensor-based impedance measurements, known for
their non-invasive nature, among other benefits, have garnered significant attention compared
to traditional detection methods that utilize pressure sensors. However, solely utilizing overall
thoracic impedance fails to accurately capture changes in regional lung air volume. This study
introduces an assessment method for lung ventilation that utilizes impedance data from the five lobes,
develops a nonlinear model correlating regional impedance with lung air volume, and formulates an
approach to identify regional ventilation obstructions based on impedance variations in affected areas.
The electrode configuration for the five lung lobes was established through numerical simulations,
revealing a power–function nonlinear relationship between regional impedance and air volume
changes. An analysis of 389 pulmonary function tests refined the equations for calculating pulmonary
function parameters, taking into account individual differences. Validation tests on 30 cases indicated
maximum relative errors of 0.82% for FVC and 0.98% for FEV1, all within the 95% confidence intervals.
The index for assessing regional ventilation impairment was corroborated by CT scans in 50 critical
care cases, with 10 validation trials showing agreement with CT lesion localization results.

Keywords: regional ventilation information; biosensor; pulmonary function parameters; ventilation
disorders

1. Introduction

In the post-epidemic era, regional lung diseases such as pneumonia have seriously
jeopardized people’s lives and health and are widely seen in populations of critically ill
patients [1]. The accurate assessment and management of the local ventilation status of the
lungs is critical for the postoperative monitoring of critically ill patients and early identifi-
cation screening of normal individuals [2]. Imaging is used as a primary means of regional
lung ventilation assessment, utilizing sensors such as X-ray detectors and radiofrequency
receivers to obtain lung image information [3]. Its application is limited by a specific
detection environment and cannot provide continuous lung ventilation information in real
time. Pulmonary ventilation parameter support is widely used in clinical practice because
of its portability and rapidity. FVC and FEV1 are used to assess the level of pulmonary
ventilation as the main evaluation parameters of lung health status [4,5]. Conventional pul-
monary function testing uses flow rate sensors and pressure sensors to measure gas flow at
the respiratory passages, which, in turn, indirectly assesses changes in lung air volume [6].
Pulmonary ventilation parameters are widely used in clinical practice. It is not suitable
for critically ill patients because of the large expiratory resistance in its measurement pro-
cess [7], and it cannot provide regional ventilation parameters. Bioimpedance technology is
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based on biosensors for physiological measurements and enables non-invasive ventilation
assessment [8–11]. However, current bioimpedance-based lung ventilation assessment
methods rely on overall thoracic impedance to infer lung air volume changes, resulting in
low accuracy of ventilation parameter calculations and failing to consider the relationship
between regional impedance and local lung ventilation.

Biosensing technology employs biomaterials and sensors to capture biological data
from tissues and organs, transforming these data into clinically relevant information that re-
flects the physiological status of the human body [12]. The effectiveness of using biosensors
for measuring body impedance to identify internal structural abnormalities in the human
body has been well documented [13–16]. Given the significant changes in medium and
tissue structure within the lungs during respiration, bioelectrical impedance techniques
have increasingly been applied to evaluate lung ventilation [17–19]. A study referenced
in [20] investigated lung impedance under continuous ventilation using an impedance
tracing method, establishing a link between lung impedance and ventilation function.
Further, research in [21] identified a nonlinear mathematical relationship between lung
impedance and ventilation via experimental studies. To develop a model for calculating
lung function parameters, Yang et al. created a four-electrode thoracic impedance measure-
ment device and proposed a method based on controlled experimental data [22]. Zhao
Pengcheng et al. extended this work by calculating lung function parameters through
thoracic impedance measurements in two orthogonal directions [23]. However, due to
the thoracic contour’s undulation and the non-uniform flow of fluids within the thoracic
cavity during respiration, total thoracic cavity impedance changes encompass both lung air
volume changes and impedance shifts in other thoracic media. Consequently, models based
on overall impedance inaccurately estimate lung air volume changes, failing to capture
regional variations.

The research documented in reference [24] indicates significant variability in bioimp-
edance measurements across different electrode configurations. To derive bioimpedance co-
efficients that more accurately reflect local lung lesion characteristics and to develop a more
precise calculation model, reference [25] first analyzed the sensitivity of impedance mea-
surements using a four-electrode setup, establishing a benchmark for targeted impedance
analysis. Subsequently, reference [26] demonstrated the targeted measurement of pul-
monary edema through a specific electrode configuration, further validating the efficacy
of focused impedance measurement. Reference [27] integrated focused impedance tech-
niques with traditional spirometry to facilitate the straightforward evaluation of restrictive
lung ventilation disorders. Additionally, reference [28] explored the depth sensitivity of
impedance measurements in lung tissues using a six-electrode model, suggesting that
focused impedance measurements in specific lung regions can be achieved by designing an
appropriate driven measurement model.

In order to improve the accuracy of the calculation of pulmonary function parameters
and to realize the assessment of regional lung ventilation status based on impedance
sensing information using biosensors, the five lobes of the lungs were used as the ROI, and
the impedance focus evaluation method of the region of interest was studied, and a method
of calculating pulmonary function parameters based on impedance information of the five
lobes and a method of assessing the regional lung ventilation status were proposed. The
advantage of this method is that it makes full use of the different electrode configurations
for different lung regions of interest by designing the five electrode patterns with the
highest degree of interest for the five lung lobes, enabling the focused measurement
of impedance changes in each lung region. In addition, the coefficient matrix of the
pulmonary function parameter calculation model is calibrated according to the test data
of the pulmonary function department, and the coefficient matrix is optimized based on
the individual difference parameters, which makes the calculation model universal and
effectively improves the calculation accuracy. Based on the clinical data of critically ill
patients, the evaluation index of regional ventilation obstruction in five lung lobes was
determined to provide clinical support for regional ventilation information.
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Therefore, the work in this paper focuses on the following points:

• The design of an impedance-focusing evaluation method for thoracic ROI, deriving
and validating the model using different electrode configurations with an interest in
evaluating the impedance change in five lung lobes, and proposing an interest-focusing
measurement method for five lung lobes accordingly.

• The construction of a 2-D longitudinal simulation model of the thoracic cavity, quali-
tatively analyzing the most interesting electrode configuration combinations for the
five lung lobes. The 3-D simulation model of the lung was reconstructed to quanti-
tatively analyze and verify the feasibility of the quadrant measurement mode, and
the mathematical calculation model between air volume and zonal impedance was
initially constructed based on the numerical results of the simulation.

• Based on the ADS1292, a biosensor analog front-end developed by Texas Instruments,
a multi-channel bio-impedance acquisition system was designed, 389 subjects were
selected to carry out lung function parameter testing, and the calculation method
was established based on the optimized calculation model of individual influence
coefficients. Then, 30 subjects were selected to carry out experimental validation, and
the results showed that the calculated values of this method were in good agreement
with the standard values, with small errors, and had better accuracy than other
impedance measurement methods.

• The regional lung ventilation obstruction evaluation test was conducted by selecting
50 critically ill patients with localized lung ventilation obstruction, and the ventilation
obstruction evaluation index was obtained. Ten more critically ill patients were
selected to carry out the test validation, and the results showed that the evaluation
method was consistent with the evaluation results of CT images and could provide
auxiliary guidance for clinical diagnosis.

2. Methods for Evaluating the Region of Interest of the Pentapulmonary Lobes

Human body impedance measurements use the body as a current conductor by inject-
ing current diffused in all directions into the body from body surface excitation electrodes.
The current in the body converges to the high conductivity region and flows through
to the measuring electrodes to form the specific potential, which is used to characterize
changes in the internal physiology of the body by calculating impedance changes. Due
to the non-homogeneous nature of tissues within the human body, changing the excita-
tion measurement pattern restricts the flow of excitation current through a specific region
and focuses on measuring impedance changes in specific regions of the body to assess
region-specific pathological changes. Currently, the most common electrode configuration
for human thoracic impedance measurement is the four-electrode square structure shown
in Figure 1a, in which the electrodes are placed on the thoracic body surface in a square,
symmetrical pattern to realize impedance-focusing measurements in the square area. The
red region between the two equipotential lines crossing the electrode in Figure 1b represents
the region of interest (ROI) for this configuration. This means that the impedance changes
measured by this electrode configuration are most sensitive to conductivity changes in the
ROI and that impedance-focused measurements in the ROI can be realized by designing
specific electrode configurations.

The structure of the human thoracic cavity is highly inhomogeneous and anisotropic.
The complex internal organization poses great difficulties for the convergence of numerical
analysis in 3-D simulations. Because the body surface excitation current forms spindle-like
current fields inside the thoracic cavity, the effect of the normal direction can be neglected
for deeper ranges and regions with small differences in cross-sectional conductivity distribu-
tions. Therefore, the 3-D field calculation problem can be simplified to a 2-D field analysis to
assess the ROI with the ability to measure impedance focusing in 2-D longitudinal sections
of the thoracic cavity.
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Figure 1. Four-electrode square configuration and visualization of ROI. (a) Four-electrode square
configuration; (b) isopotential distribution in the ROI.

In order to further validate the above conclusions, the 3-D longitudinal thorax-like
model, as shown in Figure 2a, is established in this article, and the field is partitioned into
ROI and non-interested regions (N-ROIs) according to the focusing characteristics of the
four-electrode square configuration, and the impedance changes in the specific regions are
simulated and analyzed (see Section 3 for the simulation parameters).
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Figure 2. Three-dimensional longitudinal−like thoracic cavity modeling and simulation. (a) Three-
dimensional longitudinal−like thoracic cavity modeling; (b) potential and equipotential line distribution.

The potential and isopotential line distributions derived from the simulation in
Figure 2b show that for the same electrode arrangement pattern placed within the longitu-
dinal section of the thoracic cavity at different depths h, the potential distribution of the red
ROI varies very little in the longitudinal section normal to the square and the isopotential
lines in this region are distributed perpendicular to the longitudinal section. Thus, the
tangent direction in the longitudinal section is the main potential change direction. In addi-
tion, the simulation results of the model at different depths h lead to the same conclusion.
Then, the potential changes between the measurement electrodes with the same electrode
arrangement on the body surface at the corresponding position of the chest cavity in the
3-D model are capable of being characterized by analyzing the 2-D longitudinal section
model of the chest cavity.
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In order to comparatively analyze the focusing effect of impedance measurements on
the ROI with the same electrode arrangement at different longitudinal section depths, the
rate of change of conductivity in each region was synchronously recorded with the rate
of change of the potential difference of the measuring electrodes, as shown in Figure 3.
When the ROI and N-ROI generate the same rate of change in conductivity, the ROI has
the largest rate of change in boundary potential. Therefore, the red region is the ROI in
this electrode mode. In addition, the boundary potential rate of change curves of ROI
and N-ROI are approximately the same when the electrodes are placed in the longitudinal
section at four different depths h. The boundary potential change rate curves of ROI and
N-ROI are approximately the same. This means that there is no significant difference in the
focusing measurement pattern of the ROI obtained by any 2-D thoracic longitudinal section
simulation, and it is possible to provide guidance for body surface electrode deployment
by 2-D longitudinal section simulation.
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Figure 3. Impedance versus conductivity rate of change curves at different depths h.

When the traditional four-electrode method is used to measure bioelectrical impedance
to characterize ventilation parameters, the boundaries of the region of interest range are
unclear, and the computational model of ventilation parameters is constructed by the
equivalent impedance in only one direction, which is associated with large nonlinearity.
Based on the traditional four-electrode method, a lung-specific ROI measurement and
evaluation method is proposed to provide ventilation parameters containing impedance
information of the penta-lobe region by designing the driven measurement mode of
the electrodes.
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The nature of the ROI for the particular electrode mode is defined as the change in
potential of the measuring electrode being most sensitive to the change in conductivity
in the ROI. The longitudinal section of the lung is uniformly partitioned into x discrete
regional units, and for y electrode patterns, the conductivity σ and the measured voltage v
of all discrete units can form the mathematical relationship shown in (1):

v1 = w1(σ1, σ2, σ3, · · · σx)
v2 = w2(σ1, σ2, σ3, · · · σx)

· · ·
vy = wy(σ1, σ2, σ3, · · · σx)

(1)

Defining the above mapping relationship between the x-dimensional conductivity
vector and the y-dimensional measured voltage vector as W, the nonlinear relationship
between the potential values and the conductivity distribution of the thoracic body surface
measurement electrodes can be described as follows:

V = W(σ) (2)

where V in (2) characterizes the boundary voltage measurement at the measurement
electrode, and σ is the conductivity distribution inside the chest cavity. Then, the Taylor
expansion of (2) at σ = σ0 is

V = V0 +
dW(σ)

dσ
|
σ=σ0

(σ − σ0) + O[(σ − σ0)
2] (3)

When a slight perturbation of the internal conductivity of the chest cavity occurs,
the quadratic term in (3) can be approximately neglected, and then the expression for the
change in voltage measured at the boundary at this point can be simplified as follows:

∆V = V − V0 ≈ dW(σ)

dσ
|
σ=σ0

∆σ (4)

Discretizing (4) to obtain the relationship between small changes in conductivity ∆σ
and measured voltage in the discrete region:

S =
∂V
∂σ

(5)

where S is the x × y evaluation matrix of interest:

S =


∂V1
∂σ1

· · · ∂V1
∂σx

...
. . .

...
∂Vy
∂σ1

· · · ∂Vy
∂σx

 (6)

The magnitude of the value of the Sij element in the i-th row and j-th column of
the evaluation matrix of interest S indicates the gradient of the potential change of the
measurement electrode for the i-th electrode configuration when the conductivity of the
area cell labeled j is changed slightly. If the amplitude of an element of the evaluation
matrix of interest is large, it means that that particular discrete region space is the ROI for
the current measurement pattern.

There are similarities in the derivation of the evaluation matrix of interest S proposed
in this paper and the sensitivity matrix utilized in Electrical Impedance Tomography (EIT),
both focusing on the relationship between the change in conductivity and boundary poten-
tial in the field. However, there is a fundamental difference between the methodology of
this paper and EIT in the use of this matrix. The research in this paper focuses on exploring
the relationship between discrete changes in conductivity and corresponding changes in
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boundary potentials within a specific region, with the aim of developing a focused mea-
surement method suitable for lung partitioning rather than lung image reconstruction, as
investigated using EIT. While the underlying calculations may appear similar to those used
in EIT, the application of our derived coefficients specifically addresses discrete regional
analysis rather than full-field image reconstruction.

Figure 4 shows the 3-D modeling of pentapulmonary lobes of interest designed in
this article. Different color regions characterize the set of regional units of a specific lung
lobe. The five lung lobes are treated as five regions of interest, respectively, and in order
to evaluate the optimal measurement method for each ROI, the coefficient of interest P is
proposed, and the coefficient of interest PROI for a specific ROI can be expressed as follows:

PROI = ∑
j∈ΩROI

∣∣Sij
∣∣ (7)

where ΩROI is the set of all discrete regional units within the ROI. A larger value of the
coefficient of interest PROI means that the ith measurement mode is more sensitive to
perceiving the ventilation changes in the ROI. In contrast to the traditional EIT approach to
sensitivity matrices by regularization, this paper evaluates impedance-focused measure-
ments of any combination of discrete regions of the lung by (7). The fundamental reason
for adopting this evaluation method the focus of this article is to assess the sensitivity of
region-specific conductivity changes in a defined electrode stimulation pattern rather than
to perform extensive image reconstruction of a region. The method greatly simplifies the
computational model and reduces the effect of noise in less relevant regions.
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Based on the results of the simulated numerical studies in Section 3, the electrode
mode of most interest for each of the five lung lobes was determined, and the impedance
change and airflow change for each lung lobe satisfy a specific nonlinear relationship. In
this article, this nonlinear relationship is defined as O. Then, the change in lung ventilation
∆L for each ROI satisfies the following multivariate nonlinear relationship:

∆LROI−i = O(∆ZROI−i), i ∈ {1, 2, 3, 4, 5} (8)

Figure 5 shows the process of regional impedance measurement and air volume
change calculation in five lung lobes. By switching to the specific lung region to focus the
measurement mode through the analog switch to realize the simultaneous measurement
of the impedance change volume of the specific lung lobe, and then calculate the lung
function parameters according to the regional ventilation change volume calculated using
Equation (8).
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3. Simulation Studies and Regional Lung Ventilation Assessment Method
3.1. Simulation Theory and Modeling

The real-time measurement of thoracic impedance is mainly performed by injecting a
low-frequency AC current of 64 kHz into the body by means of the excitation electrodes
on the body surface. Based on the scattering frequency theory of bioelectrical impedance,
each biological tissue is capable of neglecting the effect of displacement current under
low-frequency excitation, and this sinusoidal time-varying electromagnetic field is approxi-
mated as a magnetic quasi-static field. Then, the Poisson equation for the forward solution
of the simulation study is as follows:

∇2 φ = −∇σ·∇φ

σ
(9)

From (9), it is shown that changes in tissue conductivity and conductivity distribution
within the thoracic cavity are capable of inducing changes in the boundary measurement
voltage φ.

The excitation current is set to 1 mA during the simulation, the current injection place
is assumed to be uniformly distributed, and the boundary potential at the non-current
injection place is consistent with the distribution within the thoracic field, then the normal
current density Jn at the boundary target is satisfied:

Jn =

{
1 mA/S, Current injection place
0, Non − current injection place

(10)

To further investigate the optimal electrode pattern using pentapulmonary lobes as
the ROI, a 2-D thoracic longitudinal model, as shown in Figure 6a, was constructed for
this qualitative simulation study. Based on the electrode mode determined by the 2-D
simulation, the 3-D thoracic cavity model shown in Figure 6b was constructed and the
numerical study was carried out by using finite element simulation software.

A previous study [29] showed a negative correlation between lung tissue conductivity
and lung gas filling coefficient n, which is the ratio of lung gas volume to total lung volume,
as shown in (11). Considering the uncertainty of the lung contour change during human
breathing, the human thoracic impedance change under the dynamic breathing change is
mainly studied equivalently by the conductivity parameter change during breathing in the
simulation process.

σLung ∝
k

n0.1942 (11)

where σLung represents the conductivity of the lungs, and k is the conductivity
scaling factor.
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To further determine the conductivity scaling factor k, the conductivity of the lung
tissue samples was measured based on a bioimpedance analyzer at an excitation frequency
of 64 kHz to obtain a lung conductivity function based on the experimental data:

σLung =
0.1802
n0.1942 (12)

In order to make the simulation results more accurate and reliable, the corresponding
conductivity is set for each tissue of the refined model during the simulation process, and
the specific design of human tissue conductivity parameters is shown in the following
Table 1:

Table 1. Conductivity parameter setting for each human tissue.

Tissues/Organs Electrical Conductivity (S/m)

Skin and subcutaneous tissues 0.035
Blood layer 1.323

Muscle layer 0.479
Lung tissue 0.1802/n0.1942

Bioelectrodes 5.998 × 107

3.2. Qualitative Study Based on 2-D Longitudinal Thoracic Section Modeling

To evaluate the regional impedance focusing level, the 2-D thoracic longitudinal
section model was partitioned into a grid of discrete cells, as shown in Figure 7, and the
whole lung region was discretized into a total of 2704 regions. In order to fully investigate
the optimal electrode configuration using the pentapulmonary lobe as the ROI, all electrode
combinations consisting of 12 electrodes were numerically analyzed in this simulation.
To reduce the influence of human contact impedance, the excitation electrode and the
measurement electrode need to be separated, leading to a total of C2

12 × C2
10 = 2970

electrode modes. The degree of interest of each electrode mode on different lung lobes was
solved via simulation to provide the basis for the subsequent 3-D numerical study.
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Figure 7. A discrete network of regions in a two-dimensional thoracic model.

Based on the conductivity of each region set in Table 1, the evaluation matrix of interest
S is calculated by (6). The resulting S-matrix is a matrix of 2970 rows and 2704 columns, and
each row element in the matrix characterizes the level of interest of the electrode pattern
corresponding to all discrete regions of the lung.

To facilitate the analysis of ROI for specific electrode modes, all electrode modes
were processed with matrix labeling. The 2970 electrode modes can be divided into
C2

12 = 66 excitation electrode configurations, and each electrode configuration contains
C2

10 = 45 measurement electrode configurations under each electrode configuration, then
the 2970-dimensional evaluation coefficient column vectors of interest computed for a
specific lung region can be transformed into a 66 × 45 evaluation matrix. Where 66 rows
of the evaluation matrix characterize the number of all combinations formed by selecting
2 non-identical electrodes for the 12 electrodes, and 45 columns represent the number of
all combinations formed by selecting two electrodes out of the ten electrodes, excluding
the two excitation electrodes. Both permutation traversal modes use pairing of the least-
labeled element with each subsequent element one at a time in ascending order. The matrix
of evaluation coefficients of interest for each mode for the 2970 × 5 five lung lobes was
calculated according to (7), and each column was processed as described above to obtain
five 66 × 45 evaluation matrices, the distribution of which is shown in Figure 8.
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From the definition of (7), when the coefficient of interest is maximized, then the
corresponding lung region is the ROI for that electrode mode. The three electrodes in
equidistant rows from the right thoracic cavity to the left side of the lowermost layer
were labeled sequentially as electrode No. 1, electrode No. 5, and electrode No. 9,
with each column of electrodes labeled from the bottom upwards in ascending order.
The optimal electrode configurations for the five lung lobes as ROI were determined
based on the location of the largest element of the five lung lobes of interest evalua-
tion matrix shown in Figure 8, as shown in Table 2. Then, it was determined that elec-
trodes 2 and 7 were for excitation, electrodes 3 and 8 were for measurement, and the
upper lobe of the right lung was the ROI. Electrodes 1 and 6 were excited, electrodes 2
and 7 measured, and the middle lobe of the right lung was the ROI. Electrodes 1 and
9 were for excitation, electrodes 2 and 6 were for measurements, and the lower lobe
of the right lung is the ROI. Electrodes 7 and 9 were for excitation, electrodes 8 and
10 were for measurements, with the upper lobe of the left lung as the ROI. Electrodes 2 and
6 were for measurements, with the lower lobe of the right lung as the ROI. Electrodes 6 and
9 were excited and electrodes 7 and 10 measured with the upper lobe of the left lung as the
ROI. Subsequent quantitative studies of 3-D modeling followed these measurement modes
of research.

Table 2. Optimal electrode configuration for pentapulmonary lobes.

ROI Max P Excitation Measurement

Upper lobe of right lung 22.712 Electrode (2,7) Electrode (3,8)
Middle lobe of right lung 18.733 Electrode (1,6) Electrode (2,7)
Lower lobe of right lung 12.472 Electrode (1,9) Electrode (2,6)
Upper lobe of left lung 29.542 Electrode (7,9) Electrode (8,10)
Lower lobe of left lung 19.675 Electrode (6,9) Electrode (7,10)

In addition, based on the distribution of the coefficients of interest in each electrode
mode shown in Figure 8, it can be seen that for the five specific lung zones, in addition to
the optimal electrode modes, other electrode modes with higher sensitivity coefficients also
exist. Since the goal of the study in this article is to achieve an optimal balance between
measurement accuracy and clinical utility, the eight electrodes using the setup shown
in Table 2 were able to provide sufficient resolution for focused measurements in the
five specified lung zones. Adding other measurement modes would surely increase the
number of electrodes, which introduces greater complexity, increases setup time, and may
cause patient discomfort. Therefore, this paper discusses and investigates the 8-electrode
configuration described above.

To further demonstrate the feasibility of using the coefficient of interest as an evaluation
index, the corresponding heat map of the region of interest under each configuration was
plotted according to the obtained optimal electrode configurations of the pentapulmonary
lobes, as shown in Figure 9.
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3.3. Quantitative Study Based on 3-D Thoracic Modeling

Considering that the respiratory process of the subject was deep breathing, the range of
variation in the gas filling coefficient of the lungs was selected as n ϵ (0.2~0.4). To obtain the
mathematical relationship between the change in gas volume and the amount of impedance
change in the five lobes of the lungs during the respiratory process, a parameterized
scanning simulation was performed on the gas filling coefficient using the 3-D five-lobe
model, and the impedance measurements were recorded for the five electrodes modes when
the gas volume changed individually within the five lobes, as shown in Table 3. Zi denotes
the impedance value of the ith ROI region at different respiratory states, respectively. ∆Zi%
denotes the rate of change of impedance at the end of inspiration with the beginning of
inspiration for the ith ROI region, respectively.

Table 3. Regional impedance-focusing measurement simulation dataset.

n Z1 (Ω) ∆Z1% Z2 (Ω) ∆Z2% Z3 (Ω) ∆Z3% Z4 (Ω) ∆Z4% Z5 (Ω) ∆Z5%

0.2 0.6864 0 0.7427 0 0.6363 0 0.8951 0 0.7427 0
0.25 0.7058 0.0283 0.7563 0.0182 0.6472 0.0171 0.9089 0.0155 0.7567 0.0188
0.3 0.7216 0.0512 0.7673 0.0331 0.6561 0.0311 0.9201 0.0281 0.7681 0.0341

0.35 0.7347 0.0704 0.7765 0.0453 0.6636 0.0429 0.9296 0.0387 0.7777 0.0471
0.4 0.7461 0.0867 0.7844 0.0561 0.6701 0.0531 0.9378 0.0478 0.7860 0.0582

0.45 0.7558 0.1011 0.7913 0.0654 0.6758 0.0620 0.9451 0.0558 0.7932 0.0680
0.5 0.7646 0.1138 0.7975 0.0737 0.6809 0.0701 0.9514 0.0631 0.7997 0.0767

0.55 0.7724 0.1253 0.8031 0.0813 0.6855 0.0773 0.9572 0.0695 0.8056 0.0846
0.6 0.7795 0.1357 0.8081 0.0880 0.6897 0.0839 0.9624 0.0753 0.8109 0.0918

0.65 0.7861 0.1451 0.8128 0.0943 0.6935 0.0899 0.9672 0.0807 0.8159 0.0984
0.7 0.7921 0.1539 0.8170 0.1001 0.6971 0.0955 0.9717 0.0856 0.8204 0.1045

0.75 0.7976 0.1619 0.8210 0.1053 0.7004 0.1007 0.9758 0.0903 0.8246 0.1102
0.8 0.8027 0.1694 0.8247 0.1103 0.7035 0.1056 0.9796 0.0946 0.8285 0.1154

0.85 0.8076 0.1765 0.8282 0.1150 0.7064 0.1101 0.9832 0.0986 0.8322 0.1204
0.9 0.8121 0.1831 0.8314 0.1194 0.7091 0.1144 0.9866 0.1024 0.8357 0.1251

0.95 0.8164 0.1893 0.8345 0.1235 0.7117 0.1185 0.9898 0.1059 0.8390 0.1295
1 0.8204 0.1951 0.8374 0.1274 0.7142 0.1223 0.9928 0.1093 0.8421 0.1336

1.05 0.8242 0.2007 0.8401 0.1311 0.7165 0.1261 0.9957 0.1125 0.8450 0.1376
1.1 0.8278 0.2060 0.8428 0.1346 0.7187 0.1295 0.9984 0.1156 0.8478 0.1414

1.15 0.8313 0.2110 0.8453 0.1380 0.7208 0.1329 1.0010 0.1184 0.8505 0.1450
1.2 0.8345 0.2158 0.8476 0.1412 0.7229 0.1361 1.0034 0.1212 0.8531 0.1484

1.25 0.8377 0.2204 0.8499 0.1443 0.7248 0.1391 1.0061 0.1240 0.8555 0.1518
1.3 0.8407 0.2247 0.8521 0.1473 0.7266 0.1420 1.0081 0.1264 0.8578 0.1549

1.35 0.8436 0.2289 0.8542 0.1501 0.7285 0.1448 1.0103 0.1288 0.8601 0.1580
1.4 0.8464 0.2330 0.8563 0.1528 0.7302 0.1475 1.0125 0.1313 0.8623 0.1609

The maximum rate of change in measured impedance in the ROI indicates the degree
of impedance change during inspiration. It is capable of indirectly characterizing the
perceived sensitivity of this measurement mode to gas changes in a specific lung region.
Figure 10 shows the maximum rate of change of impedance for the five optimal electrode
configurations when the same air volume change occurs in the five lung lobes. It can be
seen that each electrode configuration has the largest value of the maximum rate of change
of impedance for its ROI, further demonstrating the feasibility of the optimal electrode
design for the five lung lobes.

In addition, Figure 10 also indicates that the optimal electrode configuration for a
specific lung lobe also has a sensitivity of about 5% to impedance changes caused by changes
in air volume in other lung lobes. This means that the optimal electrode configuration for a
specific lung region may be affected by changes in air volume in other lung regions. Since
the fundamental purpose of designing a specific biofocused measurement method is to seek
the relatively most sensitive electrode pattern, it is unrealistic to achieve a fully focused
measurement. Moreover, for a given lung region, the impedance information measured by
other electrode modes contains much less information about air volume changes in that
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lung region than in other lung regions. Therefore, in the subsequent study, the impedance
measurement data of one optimal electrode mode were used to construct a mathematical
model for air volume calculation in a specific lung region.
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Figure 11. Curves of impedance changes in each lung lobe versus air volume in the lung area. 
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Figure 10. Rate of change in impedance in pentapulmonary lobes with optimal electrode configuration.

When the human body completes a respiratory cycle, the main medium of change
within the thoracic cavity is air. The impedance change amount ∆Zi of each lung lobe can
characterize the amount of regional gas change to a certain extent. According to Table 3,
the impedance change volume versus air volume curve shown in Figure 11 was obtained,
which shows that the larger the gas volume change in the lungs of the subject, the larger
the bioelectrical impedance change in the lungs. In addition, there is a strong positive
correlation between the amount of regional lung impedance change caused by breathing
and the amount of gas volume change. This is because the main medium of change in the
body during respiration is the change of air in the lungs, and it can be approximated that
there is a definite mathematical relationship between the change in pulmonary impedance
and the change in lung gas volume.
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Loss of gas exchange function in localized regions of the lungs is the most distinctive
feature of localized ventilation dysfunction diseases, such as localized pulmonary fibrosis,
pulmonary embolism, and emphysema. To further obtain information on regional lung
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lesions in five lobes, localized lesion studies were carried out by calibrating the amount of
impedance change in specific lobes of the 3-D lung model to zero.

The impedance change volume curves measured using the five electrode configu-
rations when localized lesions occurred in the pentapulmonary lobes were obtained via
3-D lung model simulation, as shown in Figure 12. It can be seen that when a ventilation
disorder occurs in a specific lung lobe region, the amount of impedance change measured
by the electrode configurations using this region as the ROI is significantly lower compared
with normal ventilation. This phenomenon is consistent with the air volume changes
characteristic of localized regional lesions in the lungs. Therefore, regional lung ventila-
tion dysfunction was subsequently assessed and simply calibrated by characterizing the
amplitude change of the impedance change volume in each lung region.
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3.4. Design of a Methodology for the Assessment of Ventilatory Function in Pentapulmonary Lobes

In order to further obtain the mathematical model of the impedance change volume of
the five lung lobes and the gas change volume of each lung lobe, the curve data in Figure 11
were nonlinearly fitted, and it was found that the power function between the regional
impedance change volume of the five lung lobes, ∆Zi, and the gas change volume of the
various groups of lung areas, ∆Li, fitted best, all satisfying (13), and the R2 were 0.09956,
0.9927, 0.9965, 0.9982, 0.9974, and 0.9974, and R2 were all greater than 0.99, which were
good fits.

∆Li = ai × (∆Zi)
bi + ci (13)

where ai denotes the multiplicative coefficient, bi denotes the power coefficient, and ci
denotes the constant coefficient.
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According to (13), five sets of [ai bi ci] coefficient vectors exist for the calculation of the
amount of gas change in a specific lung region of the five lung lobes. Then, the coefficient
matrix A is defined as follows:

A =


a1 b1 c1
a2 b2 c2
a3 b3 c3
a4 b4 c4
a5 b5 c5

 (14)

The simulated data derived from the simulation only reflect the generalized mathemat-
ical relationship between the amount of gas change in the lungs and the amount of regional
impedance change, and the optimal characteristic coefficient matrix A was subsequently
determined from the clinical trial data presented in Section 4.

Under the deep breathing state, the impedance information of five lung lobes was
measured continuously, and the impedance waveform curves shown in Figure 13 were
obtained for each lung region. Where ∆ZiFVC is the difference between the maximum
impedance and minimum impedance in one respiratory cycle of the impedance curve of
ROI-i, and ∆ZiFEV1 is the value of impedance change at the end of inhalation and at 1 s of
exhalation in one respiratory cycle of the impedance curve of ROI-i. Defining FVCi and
FEV1i as the regional exertion lung volume and one-second exertion expiratory volume of
ROI-i, substituting the above two parameters into (13), we were able to calculate FVCi and
FEV1i used to characterize the ventilatory capacity of ROI-i.{

FVCi = ai × (∆ZiFVC )bi + ci

FEV1i = ai × (∆ZiFEV1)
bi + ci

(15)
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Figure 13. Waveform curves of regional impedance versus air volume over time (including inter-

pretation of FVCi and FEV1i parameters). 
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Conventional pulmonary function parameter testing instruments are not yet 
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Figure 13. Waveform curves of regional impedance versus air volume over time (including interpre-
tation of FVCi and FEV1i parameters).

Conventional pulmonary function parameter testing instruments are not yet equipped
to provide ventilation parameters for lung regions, and imaging devices only provide a
qualitative assessment of ventilation impairment in lung regions. Therefore, the evaluation
of the method in this paper adopts the medical lung function testing instrument as a
benchmark instrument and compares the ventilation parameters of the whole lung region
to verify the consistency. Then, the pulmonary function parameters of the five lung lobes
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are calculated using (15), and the ventilation parameters of the whole lung area can be
obtained via (16). 

FVC = ∑
i∈{1,2,3,4,5}

FVCi

FEV1 = ∑
i∈{1,2,3,4,5}

FEV1i
(16)

In order to further design an assessment method for establishing pentapulmonary
lobes pathology, the normal ventilation of each lobe needs to be calibrated. The contribution
of different lung lobes to lung ventilation is more consistent during the completion of
respiration in normal lungs. Defining the ventilation contribution of each lung lobe as
λROI-i, the right upper lung ventilation contribution λROI-1 was 25%, the right middle lung
ventilation contribution λROI-2 was 10%, and the right lower lung ventilation contribution
λROI-3 was 20%. The upper left lung ventilation contribution λROI-4 was 20% and the lower
left lung ventilation contribution λROI-5 was 25%. Based on the characteristic changes in
impedance signal amplitude due to regional lung lesions derived from 3-D simulation, the
design (17) was used for regional ventilation assessment.{

FVCi ÷ FVC = αiλROI−i
αi ≤ ω

(17)

where αi is the regional ventilation contribution coefficient, the magnitude of which indi-
cates the extent to which the actual contribution of ventilation change in the ith region of
interest to the overall lung ventilation change differs from the ideal contribution. ω is the
coefficient for evaluation of ventilation impairment, which is subsequently calibrated from
the clinical trial data.

In addition, the traditional method of evaluating lung ventilation function utilizes the
ratio of FEV1 and FVC in the whole lung area, and when the ratio is lower than 70%, it is
defined as the presence of ventilation impairment in the lungs. Therefore, the ventilation
parameters calculated from each lung lobe were designed (18).{

FEV1i ÷ FVCi = βi
βi ≤ 70%

(18)

where βi is the proportion of FEV1 of the ith region of interest to the FVC of the ith region
of interest.

This article associates conventional evaluation methods and the characterization of
changes in regional impedance amplitude to achieve pathological assessment of the ventila-
tory function of the five lung lobes. When any of the inequalities in Equations (17) and (18)
are satisfied, the presence of ventilation impairment in that lobe is evaluated.

4. Experimental Design and Discussion of Results
4.1. Pentolung Lobar Ventilation Test System Construction

In order to collect the regional impedance change data of five lung lobes at any
respiratory moment in real time, a multi-channel human impedance acquisition system
was designed, and its architecture is shown in Figure 14. The measurement system is
mainly composed of a biosensing analog front-end ADS1292, a constant current source, a
micro-processor unit (MCU), the switch array modules, the serial communication interface,
and the signal processing unit. The current excitation with a frequency of 64 kHZ and
an amplitude of 1 mA is injected into the human thoracic cavity by the ADS1292 built-
in constant current source through a silver chloride electrode. The maximum size of
impedance measurement noise that can be detected by the detection system is 15 mΩ.
Then, when the amount of impedance change generated by the respiratory process exceeds
15 mΩ, the corresponding respiratory change can be detected. To ensure that the respiratory
impedance curves of the five lung zones could be reconstructed, the sampling rate of the
device was set to 2 KSPS. The voltage signal of the voltage measurement end is processed
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through filtering, differential amplification and demodulation to calculate the impedance
data of the channel, and according to the MCU control of high-speed cross-switch action,
the impedance data of the five lung lobes are collected synchronously, and the regional
impedance data are transmitted to the upper computer in real time through the serial
module, and the data preprocessing and parameter calculation algorithms are used to
perform the operations such as waveform display, parameter calculation and data storage.
The system can meet the demand of five-lung-lobe impedance synchronous detection.
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In order to clearly and intuitively perform the data measurement of the transmission
impedance in each measurement mode and to facilitate the recording, management, and
analysis of real-time measurement data of different experimental individuals, the upper
computer software was developed, and the upper computer interface is shown in Figure 15.
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4.2. Experimental Flow Design

The clinical trial was divided into two parts: calibration of ventilation parameters and
regional pathology assessment. For the five-lung-lobe ventilation parameter calculation,
subjects were mainly selected from the pulmonary function department to carry out the
test, and the Yeager lung function test instrument was used as the control instrument. The
lung pathology assessment test was carried out mainly using patients with lung diseases,
such as localized pulmonary fibrosis, from the critical care unit, and the test was carried
out by means of a combined ventilator for patients in the rehabilitation stage. The data
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collection of this study was mainly carried out in tertiary hospitals, and its trial site diagram
is shown in Figure 16a.
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The accuracy of human thoracic impedance measurements is susceptible to inter-
ference from external factors, and therefore, the testing criteria for subjects need to be
standardized when performing human trials. In order to minimize the influence of in-
dividual factors on the measurement data, subjects should avoid consuming drugs and
foods that affect the level of lung function and ensure sufficient sleep two days before the
test. The working electrodes were uniformly selected as commercially available disposable
AgCl (silver chloride) electrocardiographic electrodes with an electrode diameter of 51 mm
and an AC impedance of 3 KΩ or less. The specific standardized testing procedures were
as follows:

1. The subject’s sitting posture was adjusted to ensure that the plane on which his or
her upper body rests was perpendicular to the floor to minimize the effect of changes
in the volume of air and blood in the lung tissue with changes in body posture. The
subject’s clothing was also adjusted to ensure that there was no clothing contact
on the surface of the chest and axillary body surface areas, and the position of the
arms was controlled so that they did not come into contact with the skin of the chest
body surface.

2. The intersection of the center of the first rib (labeled No. 8) and the center of the
eighth rib (labeled No. 5) on the midclavicular line was found. Electrode positions
No. 7 and No. 6 were marked equidistantly on the line between No. 8 and No. 5. The
intersections of these four horizontal positions with the right axillary midline were
labeled No. 1 through No. 4 from the bottom up, and the intersections with the left
axillary midline were labeled No. 9 through No. 12 from the bottom up. Eventually,
No. 1, No. 2, No. 3, No. 6, No. 7, No. 8, No. 9, and No. 10 were selected as the
electrode placement points.

3. Medical alcohol was used to wipe the sweat and surface dirt at the electrode to
be affixed, eight silver chloride electrodes were selected with the same specifica-
tions, and the electrode positions shown in Figure 16b were followed to ensure
that the electrodes were in good contact with the surface of the skin to complete
electrode affixation.

4. According to the patient category corresponding to the use of the German JAEGER
company’s medical lung function tester JAEGER TOENNIES or ventilator at the
same time to start the measurement, the switch array was used to complete the
impedance of the five lobes of the lungs of the simultaneous measurement, continuous
recording of a set of smooth breathing and a set of deep breathing of the subject data,
and impedance data were entered into the database to complete the assessment of
pulmonary ventilation function.
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Following the test procedure described above, the average time required to complete a
lung function test was 5 min per subject. This time has an absolute competitive advantage
over traditional lung function testing machines.

4.3. Experimental Validation and Result Analysis

In order to verify the accuracy of the calculation of the five-lobe ventilation parameters,
repeat experiments were carried out on 60 subjects according to the test specifications
against the medical JAEGER TOENNIES lung function tester, and after completing a set
of respiratory tests, each subject was kept in a state of relaxation for 10 min and then the
testing process was repeated, and so on for each person until completing 20 sets of tests.

The data from the repeated trials for each subject were nonlinearly fitted according
to (15). The results of fitting the data from 20 consecutive sets of repeated trials for one
of the subjects are shown in Table 4. The fitting coefficients R2 were all greater than 0.995,
which is close to 1, and the fit was good. SE-a, SE-b and SE-c in Table 4 are the standard
errors of each regression parameter. It can be seen that the standard errors are all within
5%, indicating that the estimates of each regression parameter are good.

Table 4. Table of fitting results of 20 sets of repetitive tests for a single individual.

ROI a SE-a b SE-b c SE-c R2

ROI-1 1.216 × 105 2.795 × 103 7.127 0.192 218 7.194 0.99738
ROI-2 5.396 × 104 9.173 × 102 6.343 0.027 104 3.016 0.99653
ROI-3 7.145 × 104 1.512 × 103 6.563 0.126 153 3.273 0.99564
ROI-4 7.364 × 104 8.823 × 102 6.728 0.105 172 3.027 0.99523
ROI-5 9.143 × 104 1.737 × 103 6.943 0.217 192 2.936 0.99842

The matrix of characteristic coefficients A for this subject is obtained from (15) as
shown in (19):

A =


1.216 × 105 7.127 218
5.396 × 104 6.343 104
7.145 × 104 6.563 153
7.364 × 104 6.728 172
9.143 × 105 6.343 192

 (19)

Based on the fitting effects of repeated trials with 60 subjects, it was found that the
nonlinear fit of the five-lobe impedance data for a single individual was good, but the
characteristic coefficient matrix A obtained from the fitting of different individuals differed
significantly. To seek a model for calculating regional lobar ventilation parameters that can
be used for different individuals, the individual factor with the greatest degree of influence
was introduced to optimize the characteristic coefficient matrix A.

The single-test trial was conducted on 389 subjects and basic individual parameters
such as height, weight, and age were selected and analyzed and found to have no significant
correlation. Chest circumference and the ratio of longitudinal maximum thoracic spacing
to transverse maximum thoracic spacing were further selected as specific parameters, and
differences in spirometric changes were recorded synchronously, and a strong correlation
was found between the ratio of longitudinal maximum thoracic spacing to transverse
maximum thoracic spacing and pulmonary function parameters, which were then defined
as ξ.

To further introduce a to optimize the eigencoefficient matrix A, the 389 subjects were
divided into five groups according to ξ, and the elements of the eigencoefficient matrix
A corresponding to the same ξ were fitted to obtain the set of correction coefficients, as
shown in Table 5.
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Table 5. Set of correction coefficients based on human testing.

ξ ROI a b c R2

1.6

1 1.216 × 105 7.127 218.317 0.9993
2 5.396 × 105 6.343 104.579 0.9982
3 7.145 × 105 6.563 153.781 0.9965
4 7.364 × 104 6.728 172.361 0.9979
5 9.143 × 104 6.943 192.748 0.9986

1.7

1 7.828 × 104 7.062 207.133 0.9988
2 4.287 × 105 6.283 98.218 0.9964
3 5.015 × 104 6.502 145.903 0.9977
4 5.156 × 104 6.665 163.592 0.9991
5 5.784 × 104 6.881 183.057 0.9993

1.8

1 5.715 × 104 7.011 202.575 0.9973
2 3.732 × 105 6.232 95.107 0.9981
3 3.945 × 104 6.453 142.692 0.9965
4 4.183 × 104 6.614 159.347 0.9963
5 4.105 × 104 6.827 178.849 0.9971

1.9

1 4.656 × 104 6.976 199.623 0.9987
2 3.453 × 105 6.195 93.016 0.9983
3 3.231 × 104 6.422 140.613 0.9972
4 3.437 × 104 6.578 156.278 0.9974
5 2.984 × 104 6.792 176.243 0.9974

2.0

1 4.029 × 104 6.951 198.174 0.9976
2 3.312 × 105 6.174 92.213 0.9987
3 2.883 × 104 6.401 139.592 0.9980
4 3.158 × 104 6.557 155.034 0.9971
5 2.426 × 104 6.768 174.964 0.9969

By fitting the column vector data corresponding to the eigen coefficient matrix A with
different values of ξ, it is found that the monoexponential function gives the best fit. For
any ξ, (20) always holds.

ai = mai × exp(−nai × ξ) + kai {i ∈ 1, 2, 3, 4, 5}
bi = mbi × exp(−nbi × ξ) + kbi {i ∈ 1, 2, 3, 4, 5}
ci = mci × exp(−nci × ξ) + kci {i ∈ 1, 2, 3, 4, 5}

(20)

In (20), m denotes the scale coefficient, n denotes the exponential coefficient, and
k denotes the constant coefficient. The fitting relationship between the characteristic
coefficients of different lung lobe regions and ξ is shown in Figure 16.

According to the fitting results in Figure 17, the correction coefficients in (20) are
obtained for each correction coefficient, and then the correction parameter matrix, as shown
in (21), can be obtained.

ma1 na1 ka1 mb1 nb1 kb1 mc1 nc1 kc1
ma2 na2 ka2 mb2 nb2 kb2 mc2 nc2 kc2
ma3 na3 ka3 mb3 nb3 kb3 mc3 nc3 kc3
ma4 na4 ka4 mb4 nb4 kb4 mc4 nc4 kc4
ma5 na5 ka5 mb5 nb5 kb5 mc5 nc5 kc5



=


5.15 × 109 6.872 3.51 × 104 38.25 3.151 6.881 1.96 × 106 7.151 197
1.38 × 109 6.896 3.17 × 104 30.68 3.018 6.098 2.87 × 105 6.228 91
5.52 × 108 5.856 2.43 × 104 55.84 3.466 6.345 1.38 × 106 7.149 138
1.08 × 109 6.299 2.79 × 104 43.71 3.257 6.491 2.57 × 105 5.942 153
8.67 × 108 5.855 1.73 × 104 33.24 3.053 6.692 1.28 × 106 6.954 174


(21)
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Figure 17. The fi�ing relationship between the fusion coefficient and ξ. 
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Figure 17. The fitting relationship between the fusion coefficient and ξ.

According to the modified parameter matrix of (21), the characteristic coefficient
matrix A was optimized to form a five-lobe-based lung function parameter calculation
method applicable to all individuals.

In order to verify the feasibility of the optimized calculation method, 20 trials were
carried out again for validation in accordance with the standard test procedure, and the
amount of impedance change in the five lobes of the lungs was synchronously recorded
with the standard value of the standard pulmonary function tester, and the impedance
dataset based on the human trials is shown in Table 6.

Table 6. Impedance datasets based on human trials.

ξ
∆Z1 (Ω) ∆Z2 (Ω) ∆Z3 (Ω) ∆Z4 (Ω) ∆Z5 (Ω)

∆Z1FVC ∆Z1FEV1 ∆Z2FVC ∆Z2FEV1 ∆Z3FVC ∆Z3FEV1 ∆Z4FVC ∆Z4FEV1 ∆Z5FVC ∆Z5FEV1

1.7 0.51542 0.50224 0.45696 0.44353 0.50108 0.48751 0.5147 0.5010 0.52705 0.51355
1.6 0.49771 0.48538 0.45417 0.44123 0.48894 0.47608 0.50287 0.4899 0.50754 0.49491
1.7 0.52187 0.50988 0.46354 0.45132 0.50777 0.49537 0.52142 0.5089 0.53369 0.52137
1.8 0.56098 0.54176 0.48845 0.46937 0.54387 0.52401 0.55622 0.5363 0.57899 0.55899
1.7 0.53277 0.51765 0.47465 0.45924 0.51907 0.5034 0.53279 0.5170 0.54492 0.52935
1.8 0.54785 0.53428 0.47541 0.46194 0.53029 0.51631 0.54263 0.5286 0.56531 0.55122
1.6 0.48058 0.46792 0.43618 0.42286 0.47109 0.45799 0.48487 0.4716 0.49001 0.47713
1.9 0.58102 0.56367 0.4971 0.48021 0.5624 0.54448 0.57276 0.5549 0.60732 0.58901
1.9 0.55491 0.53964 0.47169 0.45684 0.53547 0.51983 0.54592 0.5303 0.57979 0.56377
1.8 0.52059 0.5111 0.44836 0.43894 0.5023 0.49263 0.51456 0.5048 0.53707 0.5273
1.6 0.51245 0.50424 0.46965 0.46102 0.50441 0.49578 0.51844 0.5097 0.5227 0.51424
2.0 0.57874 0.56801 0.48779 0.47748 0.55955 0.54849 0.56805 0.5571 0.61257 0.60111
1.8 0.55287 0.53354 0.48039 0.46121 0.53547 0.51556 0.54782 0.5278 0.57053 0.55046
2.0 0.56001 0.54193 0.4698 0.45245 0.54027 0.52179 0.5489 0.5305 0.5926 0.57341
1.6 0.47506 0.46643 0.43038 0.4213 0.46537 0.45646 0.47909 0.4701 0.48439 0.47562
1.9 0.55801 0.53918 0.4747 0.45639 0.53865 0.51936 0.5491 0.5298 0.58305 0.56329
1.6 0.50927 0.49708 0.46631 0.45351 0.50106 0.48828 0.51507 0.5022 0.51942 0.50689
1.8 0.53193 0.51335 0.45961 0.44118 0.5139 0.49492 0.5262 0.5072 0.54879 0.52962
2.0 0.58318 0.56422 0.49205 0.47384 0.56414 0.54459 0.5726 0.5532 0.61732 0.59708
1.7 0.50535 0.4862 0.4467 0.42715 0.49071 0.47109 0.50425 0.4845 0.51673 0.4972
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In this article, we verified the accuracy of the five-lobe ventilation calculation by
comparatively analyzing the overall lung function parameters derived based on the five-
lobe ventilation calculation. Then, the calculated values of lung function parameters FVCC
and FEV1C were obtained by substituting the zonal impedance data in Table 6 into (16).
Comparative analysis of the reference values of lung function parameters FVC and FEV1
recorded synchronously by the Yeager lung function tester, as shown in Figure 17, reveals
that the calculated values of the lung function parameters obtained by the two methods are
approximately equal to the standard values with a high accuracy rate.

In order to further verify the substitutability and consistency of this method with
other methods, based on the optimized matrix of feature fusion coefficients A, a control
test was carried out again on 10 subjects according to the same test specification, this time
synchronously recording the measurement results of the medical lung function tester, and
the results of the control test are shown in Table 7.

Table 7. Controlled trial results.

Testers FVC FEV1 FVCC FEV1C E1% E2%

1 4512 4106 4519 4115 0.17 0.23
2 4121 3586 4109 3568 −0.29 −0.48
3 3692 3064 3711 3089 0.52 0.83
4 3921 3294 3898 3272 −0.57 −0.66
5 4338 3601 4333 3595 −0.11 −0.17
6 4007 3487 4040 3521 0.82 0.98
7 4871 4384 4883 4402 0.26 0.42
8 3827 3138 3812 3120 −0.39 −0.57
9 4633 3892 4643 3905 0.21 0.33

10 4418 4021 4449 4055 0.72 0.85

According to the comparison data in Table 7, the relative errors of the corresponding
parameters measured by the method in this paper were E1% and E2%, respectively, and the
maximum values of E1 and E2 were 0.82% and 0.98%, respectively, which were less than
1%. Compared with the current method of calculating lung function parameters using lung
biosensing information, the method presented in this manuscript has better accuracy. In
addition, Figure 18 shows the comparison of the lung function parameters calculated by
our test device with those obtained by a medical lung function tester, which can be seen to
have a high degree of consistency compared with conventional instruments.
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Considering the advantages of the Bland–Altman method for assessing the agreement
between the two measurement techniques, it was chosen to verify the agreement of the
calculated values with the standardized values based on the anthropometric data presented
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in Table 7. The Bland–Altman scatter plot is shown in Figure 19. All data points in Figure 19
are discretely distributed within the middle range of y = −1.96 SD and y = +1.96 SD, i.e.,
within the 95% confidence interval, indicating that the results of the two measurement
methods are in good overall agreement. In addition, the mean deviation of FVCC vs. FVC
was 5.7 mL, and the mean deviation of FEV1C vs. FEV1 was 6.9 mL, which was a negligible
data deviation compared with its own deviation of 85 mL, and it had good consistency and
strong substitution ability compared with the testing methods of medical lung function
testing instruments.
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Figure 19. Bland-Altman scatter plot diagram of consistency analysis (a) Scattered point diagram
about relation of FVCC and FVC; (b) scattered point diagram about relation of FEV1C and FEV1.

Consistency analysis of pulmonary function parameters by the whole lung only vali-
dates the accuracy of the five-lobe ventilation calculation method from the summation point
of view. To further assess the feasibility of five-lobe single-region ventilation calculation
and pathological assessment, 50 patients with localized lung ventilation disorders were
selected from the Respiratory and Critical Care Unit, and the amount of impedance change
in the five lobes of the lungs and the amount of gas change in the lungs were measured
synchronously with the combined ventilator. Substituting the data of 50 patients into
(17) and (18), the αi and βi corresponding to each of the five lung lobes of each patient
were calculated, and a 50 × 10 factor matrix was obtained. Based on the CT data of the
50 patients, the lobes with ventilation obstruction were labeled 1, and those with normal
ventilation were labeled 0, enabling the formation of a 50 × 5 evaluation matrix consisting
of five columns of binary variables.

To evaluate the correlation between the 10 factors and the occurrence of ventilation
impairment in the five ROI zones, a point-two column correlation analysis was carried out
for each column of the evaluation matrix using the factor matrix separately. The point-two
column correlation coefficients were plotted on a heat map, as shown in Figure 20.

As can be seen from the individual correlation coefficients shown in Figure 20, for the
ith binary variable of lung lobe ventilation impairment, the point two column correlation
coefficients of the two variables, αi and βi, are very close to −1, indicating that there is a
very strong negative correlation between them, and the variables evaluated for ventilation
impairment. This means that when ventilation dysfunction occurs in the ith lung lobe, the
value of its binary variable changes from 0 to 1, with a significant decrease in the values
of the two continuous variables, αi and βi, thus assessing the lobe pathologic status. For
the other lobes, the pointwise dichotomous correlation coefficients for the two variables α
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and β were close to 0, indicating a weak correlation. It was further demonstrated that the
two indicators of lung pathology evaluation, αi and βi, designed for the data of impedance
changes in specific lobes, can provide guidance for the assessment of ventilation disorders
in specific lobes.
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In order to design the evaluation coefficient ω for ventilation impairment and to verify
the feasibility of the β evaluation index, the violin distribution was plotted using data from
50 subjects, as shown in Figure 21. Where αROI and βROI represent the data distribution
of αi and βi corresponding to the ROI when the ROI has lesions, and αN-ROI and βN-ROI
represent the data distribution of αi and βi corresponding to the region of non-interest.
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a very strong negative correlation between them, and the variables evaluated for ventila-
tion impairment. This means that when ventilation dysfunction occurs in the ith lung lobe, 

the value of its binary variable changes from 0 to 1, with a significant decrease in the values 

of the two continuous variables, αi and βi, thus assessing the lobe pathologic status. For 

the other lobes, the pointwise dichotomous correlation coefficients for the two variables α 

and β were close to 0, indicating a weak correlation. It was further demonstrated that the 
two indicators of lung pathology evaluation, αi and βi, designed for the data of impedance 

changes in specific lobes, can provide guidance for the assessment of ventilation disorders 

in specific lobes. 

In order to design the evaluation coefficient ω for ventilation impairment and to ver-

ify the feasibility of the β evaluation index, the violin distribution was plo�ed using data 

from 50 subjects, as shown in Figure 21. Where αROI and βROI represent the data distribution 
of αi and βi corresponding to the ROI when the ROI has lesions, and αN-ROI and βN-ROI rep-

resent the data distribution of αi and βi corresponding to the region of non-interest. 
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It can be seen that the maximum value of αi does not exceed 60% when a ventilation
disorder occurs in the region of interest, and ω is set to 60% when no lesion occurs, and
its value is in the range of [90%,110%]. Additionally, βi also satisfied (18) when lesions
occurred in the ROI, and its values were all below 70%. Therefore, the method of evaluating
ventilation impairment in the five lung lobes was determined using (22).{

αi ≤ 60%
βi ≤ 70%

(22)
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To further validate the feasibility of the pathology assessment method based on
impedance sensing information of the five lung lobes, two patients, each with regional
ventilation disorders occurring in specific lung lobes, for a total of ten subjects, were
selected for a clinical trial. Pathologic assessment data were obtained, as shown in Table 8.

Table 8. Pathological assessment results.

No. CT Text α1 α2 α3 α4 α5 β1 β2 β3 β4 β5

1 ROI-2 ROI-2 103% 27% 100% 86% 33% 0.86 0.33 0.79 0.82 0.85
2 ROI-3 ROI-3 105% 106% 41% 103% 106% 0.92 0.72 0.56 0.91 0.82
3 ROI-5 ROI-5 103% 102% 108% 109% 52% 0.91 0.85 0.82 0.76 0.31
4 ROI-2 ROI-2 106% 43% 105% 102% 104% 0.88 0.42 0.83 0.87 0.86
5 ROI-1 ROI-1 38% 104% 107% 109% 103% 0.46 0.75 0.82 0.79 0.81
6 ROI-4 ROI-4 107% 105% 106% 50% 99% 0.93 0.87 0.79 0.45 0.75
7 ROI-5 ROI-5 107% 101% 106% 104% 0.49 0.93 0.89 0.86 0.81 0.49
8 ROI-1 ROI-1 55% 105% 102% 104% 1.01 0.62 0.9 0.91 0.93 0.91
9 ROI-4 ROI-4 101% 105% 103% 43% 1.07 0.88 0.83 0.77 0.42 0.72

10 ROI-3 ROI-3 104% 110% 58% 101% 0.98 0.78 0.8 0.4 0.86 0.93

As can be seen in Table 8, the calculation results of the five-lobe regional ventila-
tion barriers obtained from the evaluation indexes of (22) are the same as the evaluation
results of CT imaging, which further validates the feasibility of the regional lung ventila-
tion evaluation method based on the impedance sensing information of the five lobes of
the lung.

5. Conclusions

In this article, a method for calculating pulmonary function parameters and assessing
regional lung ventilation status based on impedance information of five lung lobes is
proposed. The method realizes impedance-focused measurements in each lobe region by
selecting the electrode pattern with the highest degree of interest in a specific lobe. This
innovative approach more accurately characterizes the changes of impedance information
in specific lung lobes during respiration, provides a feasible solution for the calculation
of regional lung ventilation and state assessment, and improves the calculation accuracy
of lung function parameters. On this basis, a corresponding detection system based
on the biosensor analog front-end ADS1292 was designed and developed for clinical
trials. Based on the measured data of 389 subjects in the pulmonary function testing
department, the nonlinear equations between the gas changes and impedance changes of
each lung lobe were constructed, and the coefficient matrix A was determined to obtain the
parameter calculation equations. A secondary test was conducted to validate the method on
30 subjects, and the results showed that the maximum errors of FVC and FEV1 obtained
by the method were 0.82% and 0.98%, respectively, which demonstrated a more excellent
accuracy. Bland–Altman analysis of the synchronized measurement data showed good
agreement of the method with the synchronized measurement data of medical spirometers.
Based on the clinical five-lobe impedance measurement data of 50 critically ill patients, the
evaluation index of five-lobe regional ventilation impairment was determined. Additionally,
the validation test was carried out again in 10 cases. The results showed that the evaluation
results of the method were consistent with the results of the CT image localization of the
lesion area according to the structure of the lung lobes. Therefore, the method proposed
in this article can not only be used for the detection of pulmonary function parameters
in patients with various types of lung diseases to provide ventilation parameter support
for each lung lobe but also has the ability to provide some preliminary evaluation for the
localization of lung ventilation disorder foci.

In the follow-up work, in order to provide richer information on regional lung venti-
lation disorders, the amplitude–frequency characteristics of the impedance information
of the five lung lobes corresponding to different degrees of lesions occurring in the lung
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region will be studied in depth, and the evaluation criteria and calculation model of the
degree of lesions in the lung region will be constructed.
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Nomenclature
The following abbreviations and symbols are mainly used in this manuscript:

FVC Forced ventilation capacity
FEV1 Forced expiratory volume in one second
ROI Region of interest
σi The conductivity of the ith discrete region
S The sensitivity matrix
∆L The total air changes in the lungs
∆LROI-i The volume of air change in the ith ROI
Zi The impedance value of the ith ROI region
∆Zi The amount of impedance change in the i-th ROI region
A The coefficient matrix

ξ
The ratio of the maximum longitudinal distance of the thoracic cavity to the maximum
distance of the transverse cavity

FVCi Forced ventilation volume for the ith ROI
FEV1i One-second ventilation for the ith ROI
FVCC The calculation of forced ventilation capacity
FEV1C The calculation of forced expiratory volume in one second
αi The ratio of ventilation in the ith ROI region to the overall ventilation
βi The ratio of one-second ventilation to forced ventilation for the ith ROI
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