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Abstract: Electricity consumption in homes is on the rise due to the increasing prevalence of home
appliances and longer hours spent indoors. Home energy management systems (HEMSs) are emerg-
ing as a solution to reduce electricity consumption and efficiently manage power usage at home. In
the past, numerous studies have been conducted on the management of electricity production and
consumption through solar power. However, there are limited human-centered studies focusing
on the user’s lifestyle. In this study, we propose an Intelligent Home Energy Management System
(i-HEMS) and evaluate its energy-saving effectiveness through a demonstration in a standard house in
Korea. The system utilizes an IoT environment, PID sensing, and behavioral pattern algorithms. We
developed algorithms based on power usage monitoring data of home appliances and human body
detection. These algorithms are used as the primary scheduling algorithm and a secondary algorithm
for backup purposes. We explored the deep connection between power usage, environmental sensor
data, and input schedule data based on Long Short-Term Memory network (LSTM) and developed
an occupancy prediction algorithm. We analyzed the use of common home appliances (TV, computer,
water purifier, microwave, washing machine, etc.) in a standard house and the power consumption
reduction by the i-HEMS system. Through a total of six days of empirical experiments, before
implementing i-HEMS, home appliances consumed 13,062 Wh. With i-HEMS, the total consumption
was reduced to 10,434 Wh (a 20% reduction), with 9060 Wh attributed to home appliances and
1374 Wh to i-HEMS operation.

Keywords: HEMS; home appliance; energy consumption; standby power; supervised learning

1. Introduction
Background and Study Objectives

The world is facing environmental challenges such as resource depletion and global
warming due to energy overuse. Electricity consumption in buildings in OECD countries is
increasing every year, and electricity consumption in buildings accounts for 55% of global
electricity consumption [1]. Countries are developing policies to minimize energy waste by
establishing energy-saving policies and systems.

Recent scientific research has developed numerous methodologies and technologies to
mitigate energy and environmental impacts. Over the past decades, energy systems used
in buildings have been utilized to improve human comfort and convenience. However, in
terms of home energy management, they have been used at a simple monitoring level. There
are three main types of power loads in a home. Base loads are loads that are not subject
to load usage scheduling, such as microwave ovens, TVs, computers, and other essential
loads that consume low power or are not responsive to electricity prices. “Curtailable load”
refers to power loads that vary in energy consumption. Examples include temperature-
controllable appliances like water heaters, air conditioners, and heaters. These appliances
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are major contributors to peak loads due to their high power usage and frequency. Lastly,
“Deferrable Load” refers to loads with flexible usage times, allowing adjustment based
on electricity prices. Electric vehicles (charging) fall into this category. Home energy
management systems (HEMS) are a growing technology as a solution for reducing electricity
usage in homes and efficiently managing power consumption. Electricity consumers can
minimize energy costs through active demand management. In addition, IoT technology,
which embeds sensors and communication modules in various objects to send and receive
data over the Internet, has recently provided many services [2].

However, products that use electricity consume standby power even when turned off.
Standby power is the power consumed by an electronic device when it is connected to an
external power line and is not performing its main function or waiting for an operating
signal from the outside. In Korea, household electricity consumption is estimated to be
80,996 MkWh in 2022, and the proportion of standby power is estimated to be about 0.86%.
This is equivalent to 5% of a household’s monthly electricity bill [3].

In the case of Smart HEMS, the energy consumption used in the home is minimized to
reduce the cost of electricity [4]. These technologies are evolving as new technologies for
energy conservation. Typically, the power used in offices and homes is controlled by smart
controllers and applications, and power wastage is reduced through transformer alterna-
tors, voltage alternators, and circuit breakers [5,6]. In addition, Ab-HPMS (Appliance based
control for home power management system), which controls the power consumption of
energy-saving appliances, was developed to improve energy efficiency while securing user
convenience. Appliance-based control plays a crucial role in home power management
systems, enabling efficient energy usage and remote monitoring. Various systems incorpo-
rate this concept, such as a power management system with a battery that controls loads
based on energy information [7], a smart home module allowing appliance control and
real-time energy monitoring [8], and a transformer less power controller providing low
standby power and adjustable power levels based on appliance needs [9]. Additionally, an
intelligent home appliance power control system utilizes socket controllers to detect loads,
automatically turning off standby appliances to save energy [10]. Furthermore, a power
control system for home appliances predicts operating patterns based on sensor data and
controls appliance drives accordingly. These systems collectively enhance energy efficiency,
user convenience, and remote management capabilities in modern households.

Current research is actively exploring various developments in both hardware and
software domains. Ghazal, M et al. used smart plugs in homes in the UAE to control energy
consumption by monitoring household energy consumption through an application [11]. Deep
learning technology can be used as a way to predict energy consumption in smart homes.
Electricity demand forecasting in smart homes helps to reduce energy wastage and improve
energy consumption efficiency. The use of LSTM, Bi-LSTM, and GRU algorithms in electricity
supply and production has been reported for demand forecasting methodologies [11,12].
The smart home control platform in the study by Josimaret et al. proposed a smart home
customized automatic control scheme using IoT and machine learning [12]. Zhao et al.
proposed a machine learning method to effectively mine and analyze intelligent home user
behavior patterns to improve personalized services through behavior pattern analysis. It has
the ability to analyze preferences and provide targeted services based on behavior patterns [13].
Xing hua et al. improved the existing behavioral pattern analysis method by mining and
analyzing smart home user behavior patterns using a two-layer neural network and Apriori
algorithm based on cloud computing [14].

J, Menaka et al. proposed FPS-Tree (frequent pattern stream tree) algorithm and effi-
ciently modeled home behavior patterns using sensor data to detect activity recognition and
power consumption in smart homes to operate power management system [15]. Mohd’s
research introduced a time series-based sequence prediction algorithm, M-Speed, to ana-
lyze the behavioral patterns of residents using the on-off status of devices and detect daily
life activities in smart homes. M-speed had an accuracy rate of 96.8% for smart home
activities [16]. Moreover, the integration of IoT technology in legacy air conditioning systems
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can significantly enhance energy management efficiency [17,18]. By utilizing IoT sensors and
actuators, along with sophisticated control algorithms, energy consumption can be optimized
without compromising user comfort [19]. Previous studies have attempted to provide energy
management and personal health, safety, and convenience services through the combination
of hardware and software in smart homes by predicting human behavior. However, there
is a lack of research on energy saving demonstration and analytical data for sensor-based
intelligent control solutions.

In this study, we propose an Intelligent Home Energy Management System (i-HEMS)
and verify the energy saving effect of the proposed system based on the general energy
usage of a standard house and the demonstration of the proposed system with IoT sensing
and behavioral pattern algorithm.

2. i-HEMS System Description

i-HEMS monitors the energy consumption of devices such as home appliances, air
conditioning, and lighting used in the house. It provides energy consumption monitoring
results and conducts environmental monitoring and human behavior pattern analysis
through environmental monitoring sensors and human body detection sensors. It is an
intelligent power management and environmental management system that can efficiently
save power in the home by turning on/off power devices or controlling operation modes
according to user-set schedules and behavior pattern algorithms.

The configuration of the i-HEMS system is shown in Figure 1. The main components
are IoT broker (Main panel), energy smart device, Wifi–environment sensor modules and
a multi control module. The IoT Broker communicates with the energy smart device,
Wifi–environment sensor module and multi control module to control the device according
to the behavior pattern algorithm, schedule and environmental conditions based on the
measurement data. The energy smart devices directly implement power supply and discon-
nection and power metering functions. In addition, power data are transmitted wirelessly
to the IoT Broker. Wifi–environment sensor modules provide IoT broker with information
on indoor temperature, humidity, illumination, and human presence through human body
detection sensors. Table 1 shows the specifications of each sensor type. The multi control
module is a controller that controls the on/off settings of electrical appliances based on IR.
IoT broker and HEMS software (Ver 1.0) have the functions of extending the interface of
energy smart devices, relaying energy smart device communication, and collecting and
transmitting data. Each function receives data through the Zigbee communication module
and controls electric air conditioners, TV, etc., through the IrDA (Infrared Data Association)
communication module.

The i-HEMS system can manage the power consumption of the house and conduct
behavioral pattern analysis according to the environment, and can control remote devices
including on/off. In addition, it can reduce energy consumption by actively reducing the
unnecessary use and standby power of electrical appliances without user intervention.
In addition, by providing users with real-time electricity usage data and analysis data,
it is possible to expand awareness of energy conservation. The controlled device in this
study is a home appliance scheduler that prioritizes user convenience. User convenience
entails scheduling the device to operate effectively based on external temperature changes
or established habits. Additionally, an intelligent system is employed to control the device
intelligently when a person is not detected via a human sensor. The product under the base
load learns the user’s usage schedule and performs power control according to the learned
user’s schedule, and cuts off standby power during non-use periods. The product under the
curtailable load learns the user’s schedule and setting conditions and controls the setting
conditions according to the schedule. In addition, the device’s operation is controlled by
determining the user’s presence or absence through the human body detection function.
To process big data measured from external weather, indoor environment monitoring data,
and energy smart device measurements, we used “hadoop” and “Spark”, which are open
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source frameworks that can effectively handle large amounts of data. The distributed
filesystem enables the distributed storage, analysis, and visualization of data.
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Table 1. i-HEMS environment sensor modules specifications.

Items Types Range

Temperature SHT31
Humidity and temperature sensor

(0~125) ◦C, Accuracy ±0.3 ◦C
(0~100)% R.H. Accuracy ±2% R.H.Humidity

Light Silicon Labs Si1132 UV index and
Ambient Light Sensor (1~128) Klx (100 mlx resolution)

Motion sensor Passive Infrared Sensor Sensitivity range:
110◦ × 70◦ detection range, 7 m

For example, at 0 o’clock every day, i-HEMS Server sends three types of data to HDFS:
power usage data for each plug on the day, weather data from the Korea Meteorological Ad-
ministration, and measurement data for each environmental sensor on the day, and “hadoop”
distributes the files to the master, slave01, and slave02 clusters block by block. For big data
analysis, we used “Spark”, an in-memory processing method that is 5 to 50 times faster
than MapReduce of “hadoop”. In addition, Zeppelin is used to check the analysis results of
“Spark”, with visual results such as graphs at a glance.

Figure 2 shows a block diagram for the power management and control of the i-HEMS
system. The power usage information of the device, based on the user’s usage event, is
transmitted to the IoT Broker through Zigbee communication and then sent to the web
and server for storage as data. The stored power data are sent to the IoT Broker for the
determination of the power device control algorithm.
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3. Methods

In this study, the energy-saving performance of i-HEMS was verified by comparing the
relative power usage before and after the system application using a standard experimental
house of 59 m2. The standard experimental house is located at Latitude 36◦54′04.9′′ N,
Longitude 127◦32′29.7′′ E. The experimental period was conducted from 4 July to 10. In
Case 1, i-HEMS monitored power 24 h a day without any algorithmic control. The i-HEMS
collected learning data based on the behavioral patterns of the occupants for three days.
In Case 2, according to the analysis of the behavior pattern of the resident in Case 1 for
3 days, the time when the resident was in the room was identified and the standby power
was turned on when the resident was in the room, and the power was turned off when the
resident was not in the room. The monitoring results of Case 1 without standby power and
Case 2 with standby power were compared to see the power savings.

In this study, the general household appliances of the TV, washing machine, computer,
bidet, water purifier, and lighting, which are environmental control devices, were studied.
The details of the appliance groups are shown in Table 2.

Table 2. Schematic of home application specifications in field test housing.

Items Types Install Location Common Operating
Schedule

TV
Set top box

HD32′′ Stand, Voltage: (220~240) V, 50/60 Hz
Electric consumption 48 W

Standby mode power consumption 0.3 W
Room 07:00~09:30

19:00~23:30

Personal computer INPE_G4400(3.3 GHz)/4 G/500 G
Voltage: 220 V/60 Hz Room 19:00~21:00

Monitor 24′′ Monitor, Voltage: 220 V/60 Hz Room 19:00~21:00

Hot and cold water purifier

Cold water tank:3.8 L,
Temperature: (2~8) ◦C
Hot water tank: 1.8 L,

Temperature: (82~92) ◦C
Heater types: Sheathed heater
Voltage: (220~240) V, 50/60 Hz

Kitchen 07:00~09:30
19:00~23:30

Microwave
Volume:23 L

Voltage: 220 V/60 Hz, Output: 700 W,
Electric consumption 1100 W

Kitchen 19:00~19:10

Washing machine Electric consumption 480 W Balcony 19:50~20:10

Electric bidet
Electric consumption 1170 W

Voltage: 220 V/60 Hz,
Heater capacity:1100 W

Toilet 07:00~09:30
19:00~23:30
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The measurement error and hardware operation status of each instrument and sensor
of the prototype developed in this study were reviewed through preliminary experiments.
The measured values of the Energy Smart Device were compared with a calibration stan-
dard device with higher precision and accuracy to verify the homogeneity and performance
of the product for power measurement. The calibration AC power meter was the PM
3000A model from VOLTECH (Abingdon, UK). In addition, the temperature and humidity
sensors were checked for measurement errors under temperature and humidity conditions
in a constant temperature and humidity chamber. In the case of the human body sensor,
the measurement error depending on the position of the human body sensor was also
reviewed in advance. The reliability of the i-HEMS measurements was preliminarily vali-
dated. Figure 3 shows the exterior and floor plan of the standard house test building and
the installed appliances.
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4. Learned Home Appliance Operating Pattern

In this study, we proposed a behavioral pattern algorithm through learning using
power usage monitoring data and human body sensing data as a standard primary schedul-
ing algorithm and a secondary algorithm. The most important factor in an energy-saving
system that automatically cuts off standby power is to determine when to return to opera-
tion from standby mode. When the standby power is cut off, the home appliances cannot
be controlled wirelessly or wired, which causes inconvenience to the user. A basic way
to do this is to set a time schedule to automatically enter and return to standby mode
after a certain period of time. In intelligent learning methods, Supervised Learning uses
schedule input as the basic input. To predict the user patterns of occupants, we explored
the deep connection between power usage, environmental sensor data, and input schedule
data based on a Long Short-Term Memory network (LSTM) and prepared an occupancy
prediction algorithm. The smart meters in the i-HEMS provide data on daily household
load consumption, but to achieve effective results with the proposed HEMS, data on load
usage patterns at the device level was needed. Therefore, the standard Korean house-
hold appliance usage patterns were used as the basic scheduling algorithm. Using the
occupant’s appliance usage patterns and human body sensors, we developed a learning
scheduling algorithm to identify the appliance usage patterns through the device operation
and occupancy data of the i-HEMS users. As shown in Table 2, the usage schedule of each
home appliance in Korea was used as a generalization condition.

The i-HEMS performs priority management based on user behavior analysis and
power plug control. The system detects the first user’s event. For instance, it identifies
user interactions with household appliances like light switches, televisions, and personal
computers. Additionally, it senses human presence using dedicated sensors. Energy-
efficient devices achieve this by analyzing historical power consumption patterns and
applying predefined rules. Figure 4 shows the sequence of shutting off the standby power
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and entering standby mode according to human recognition and user demand. In the case
of the TV and Setbox, PC and Motor, Microwave and Washing machine, the standby power
was programmed to be cut off if the power consumption of the object device was 12 W or
less twice during the three-day study period. That is, the user’s behavior was considered
as ON when the user did a specific behavior, and as OFF when the user finished a specific
behavior. Figure 3. Shows the i-HEMS flowchart of standby power reduction mode. For
the electric bidet and water purifier, we set the same time based on the TV usage time when
the room is occupied. It checks the minute-by-minute power usage history of the electronic
device and judges that the device is used if the power measurement of 12 W or more is
recorded for each minute, and judges that the device is not used if the measurement is
less than 2 W. In addition, among the recently used data, if the measurement is used for
each minute, the schedule for that minute is judged to be ON, and if the measurement is
not used, it is set to OFF and saved. Figure 5 shows the operation signal before applying
the standby power cutoff algorithm. In the case of the water purifier, it was observed that
the power consumption varied significantly depending on the product operation logic to
continuously store hot and cold water in the tank at a certain temperature. Figure 6 shows
the power consumption change in a water purifier that is always running. In this study,
an automatic learning pattern was applied. Figure 7 shows the system operation schedule
derived through device learning in the test-bed. It can be seen that the operation of home
appliances by occupants was concentrated in the morning before work and after work.
This operation pattern was reflected in the i-HEMS, and the i-HEMS was programmed to
cut off standby power through the energy smart device hardware control during the period
when the system was off.
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5. Electricity Consumption Reductions

By identifying the behavioral patterns of the residents of the demonstration house over
a three-day period, we compared the power consumption before and after the application of
the behavioral pattern analysis algorithm. Figure 8 shows the change in power consumption
by applying the behavioral pattern algorithm for each home appliance over the course of a
day. According to the user’s behavior pattern, the standby power was turned off when not
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in use, and the power consumption was measured as 0 W. It can be seen that the change in
power consumption of the water purifier in Case 1 in Figure 6 changed significantly from
the change in power consumption in Case 2 in Figure 8.
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Figure 8. Results of the application power consumptions (Case 2).

Table 3 shows the electricity usage of each appliance for 3 days in Case 1 before the
algorithm was applied and 3 days after the algorithm was applied in Case 2. The device
with the largest reduction in electricity usage was the water purifier, which was reduced
by 54% from 4904 Wh in Case 1 to 2694 Wh in Case 2. The power consumption of the
TV and setbox, PC and monitor, and Microwave, which are subject to base load, also
showed a significant reduction. The electric bidet, hot and cold water purifiers, and electric
devices that require temperature control with a ‘curtailable load’ were the most significant
contributors to the reduction in power usage. In contrast to the constant use of electricity
even at night when users were not using it, i-HEMS’s user pattern recognition allowed it to
cut off the power when not in use, significantly reducing power consumption. Figure 9.
shows the results of daily power consumption. The washing machine and lighting, with
the same usage time and frequency, did not change in power consumption. However,
the reduction in power consumption varied among devices with different usage loads,
depending on the duration of use and operating conditions.

Table 3. Result of daily power consumptions.

Category
Case 1 Electric Consumption (Wh) Case 2 Electric Consumption (Wh) Sum

(B)
Reduce

Rate (A/B)4 July 5 July 6 July Sum(A) 7 July 8 July 9 July

TV and setbox 534 548 521 1603 352 357 353 1063 33%

PC and Monitor 438 437 437 1313 206 205 205 617 54%

Hot and cold water
purifier 1663 1611 1630 4904 927 881 885 2694 45%
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Table 3. Cont.

Category
Case 1 Electric Consumption (Wh) Case 2 Electric Consumption (Wh) Sum

(B)
Reduce

Rate (A/B)4 July 5 July 6 July Sum(A) 7 July 8 July 9 July

Microwave 416 389 418 1223 337 337 337 1013 18%

Washing machine 406 405 406 1217 406 407 407 1221 −0.2%

Electric bidet 184 178 187 549 63 61 64 188 66%

Lighting 751 752 751 2254 754 754 757 2264 −7%

i-HEMS - 458 458 458 1374 -

Sum 4392 4320 4350 13,062 3047 3004 3009 10,434 20%Energies 2024, 17, x FOR PEER REVIEW 11 of 13 
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Figure 9. Result of daily power consumptions.

In Case 1, the total power consumption of home appliances before applying i-HEMS
was 13,062 Wh, and in Case 2, the total power consumption of home appliances after
applying i-HEMS was 10,434 Wh due to the standby power cut-off function through the
operation of the behavior pattern recognition algorithm, which was reduced by about 20%.
Of the 10,434 Wh of power consumption in Case 2, 9060 Wh is for home appliances and
1374 Wh is for i-HEMS operation (Figure 10.). In this experiment, we analyzed the energy
consumption savings of home appliances by turning off standby power. In the future, we
will study how performance is affected by load fluctuations in indoor air conditioning and
heating systems in response to changes in the outdoor environment.

Energies 2024, 17, x FOR PEER REVIEW 11 of 13 
 

 

 

Figure 9. Result of daily power consumptions. 

In Case 1, the total power consumption of home appliances before applying i-HEMS 

was 13,062 Wh, and in Case 2, the total power consumption of home appliances after ap-

plying i-HEMS was 10,434 Wh due to the standby power cut-off function through the op-

eration of the behavior pa�ern recognition algorithm, which was reduced by about 20%. 

Of the 10,434 Wh of power consumption in Case 2, 9060 Wh is for home appliances and 

1374 Wh is for i-HEMS operation (Figure 10.). In this experiment, we analyzed the energy 

consumption savings of home appliances by turning off standby power. In the future, we 

will study how performance is affected by load fluctuations in indoor air conditioning and 

heating systems in response to changes in the outdoor environment. 

 

Figure 10. Result of power consumption with i-HEMS system. 

6. Conclusions 

The world is facing environmental challenges such as resource depletion and global 

warming due to energy overuse. Electricity consumption in buildings in OECD countries 

is increasing annually, and it represents 55% of global electricity consumption. Home en-

ergy management systems (HEMSs) are an emerging technology designed to reduce elec-

tricity usage in homes and efficiently manage power consumption. Previously, the power 

Figure 10. Result of power consumption with i-HEMS system.



Energies 2024, 17, 2404 11 of 12

6. Conclusions

The world is facing environmental challenges such as resource depletion and global
warming due to energy overuse. Electricity consumption in buildings in OECD countries is
increasing annually, and it represents 55% of global electricity consumption. Home energy
management systems (HEMSs) are an emerging technology designed to reduce electric-
ity usage in homes and efficiently manage power consumption. Previously, the power
management system for home solar energy production and consumption was studied. A
proposed system was developed to manage energy by aligning the load characteristics of
home appliances with the behavior patterns of users.

In this study, we proposed an Intelligent Home Energy Management System (i-HEMS)
and verified the energy-saving effect of the proposed system based on the general energy
usage of a standard house. We demonstrated the effectiveness of the proposed system
using IoT sensing and a behavioral pattern algorithm. We proposed a behavioral pattern
algorithm for learning using power usage monitoring data and human body sensing data
as the primary scheduling algorithm and a secondary algorithm. The most crucial factor in
an energy-saving system that automatically cuts off standby power is determining when to
resume operation from standby mode. The average power consumption of the plug over
3 days was analyzed. We analyzed the behavioral patterns by identifying the residents’
occupancy time using an IoT broker and induction sensor for 3 days.

(1) In Case 1 we did this before the algorithm was applied, and 3 days after the algorithm
was applied in Case 2. The device that showed the most significant reduction in
electricity usage was the water purifier, which decreased by 54% from 4904 Wh in
Case 1 to 2694 Wh in Case 2.

(2) The total power consumption of home appliances before applying i-HEMS was
13,062 Wh, and in Case 2, the total power consumption of home appliances after
applying i-HEMS was 10,434 Wh due to the standby power cut-off function through
the operation of the behavior pattern recognition algorithm, which was reduced by
about 20%. Of the 10,434 Wh of power consumption in Case 2, 9060 Wh is for home
appliances and 1374 Wh is for i-HEMS operation.

As we move toward a low-carbon society, it is expected that blocking standby power
will become a necessary requirement for households.
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