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Abstract: Precise and prompt predictions of crop yields are crucial for optimising farm management,
post-harvest operations, and marketing strategies within the agricultural sector. While various
machine learning approaches have been employed to forecast crop yield, their application to grain
quality, particularly head rice yield (HRY), is less explored. This research collated crop-level HRY
data across four seasons (2017/18–2020/21) from Australia’s rice-growing region. Models were
developed using the XGBoost algorithm trained at varying time steps up to 16 weeks pre-harvest.
The study compared the accuracy of models trained on datasets with climate data alone or paired with
vegetative indices using two- and four-week aggregations. The results suggest that model accuracy
increases as the harvest date approaches. The dataset combining climate and vegetative indices
aggregated over two weeks surpassed industry benchmarks early in the season, achieving the highest
accuracy two weeks before harvest (LCCC = 0.65; RMSE = 6.43). The analysis revealed that HRY
correlates strongly with agroclimatic conditions nearer harvest, with the significance of vegetative
indices-based features increasing as the season progresses. These features, indicative of crop and grain
maturity, could aid growers in determining optimal harvest timing. This investigation offers valuable
insights into grain quality forecasting, presenting a model adaptable to other regions with accessible
climate and satellite data, consequently enhancing farm- and industry-level decision-making.

Keywords: head rice yield; crop yield forecast; XGBoost; knowledge discovery; Shapley additive
explanations

1. Introduction

In the agricultural sector, accurate and timely crop yield forecasts are crucial for
stakeholders ranging from farmers to policymakers. These forecasts enable growers to
refine management practices, such as variety selection and fertilisation, to maximise profits
based on expected productivity [1,2]. Similarly, businesses in agricultural supply chains
rely on these predictions for budgeting and planning, while at the government level, they
may inform food security policy decisions [3,4].

Traditionally, crop productivity forecasting has relied heavily on field and farmer
surveys, a method widespread across various countries and crop types but burdened
with significant time and labour costs [5,6]. The need to address these limitations has led
to a shift towards crop simulation and empirical models, offering a more efficient and
accurate approach to forecasting [7]. Process-based crop models, such as the Agricultural
Production Systems sIMulator (APSIM) [8], are foundational in agricultural science, built
on the intricate interplay between crops, their environment, and management practices [9].
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These models are invaluable for understanding crop behaviour under various conditions
but hinge on extensive field data for calibration and validation. Despite their utility, the
application of these models is often constrained by the assumptions they make about
crop-environment–management relationships, which may not hold in new contexts [10].

In contrast, empirical models adopt a data-driven approach, relying on historical
data and machine learning algorithms to forecast crop yields [6]. These models diverge
from process-based counterparts by allowing the data to reveal underlying patterns and
relationships independent of predefined theoretical frameworks [11]. This methodology
capitalises on the vast amounts of data collected by agribusinesses for various purposes
and aligns well with the growing availability of detailed agricultural data. This surge
in data availability is propelled by advances in Internet of Things (IoT) technologies,
sensor networks, climate data interpolation techniques, and the expanding capabilities of
remote sensing platforms [12]. With their capacity to process and learn from large datasets,
empirical models offer a flexible and powerful tool for predicting crop yields, adapting
readily to the dynamic nature of agricultural environments and data landscapes.

Forecasting systems in agriculture, encompassing crop simulation and empirical
models, have made significant strides in estimating crop yields. Yet, the focus on crop
quality metrics, particularly for staple grains like rice, remains underexplored. Rice is
a critical global commodity, serving as a vital calorie source and a primary income for
farmers [13]. In the rice supply chain, assessing head rice yield (HRY) before storage
poses a significant challenge. HRY, an essential metric in milling quality, measures the
proportionate weight of intact rice grains after processing from harvested paddy rice
samples [14]. The preference for white rice and the premium on unbroken grains in
traditional markets underscore the economic importance of HRY, as broken grains receive
only 60% of the market value of whole grains [15].

In the Australian context, HRY is pivotal for rice growers’ and millers’ revenue. Yet its
measurement is hindered by the high moisture content of rice at delivery, delaying HRY
assessments until post-harvest drying. While ensuring an accurate HRY measurement, this
process imposes substantial costs on the industry, including sample transport, storage, and
milling tests [16]. While the ability to predict HRY at the delivery stand has been reported
by Clarke et al. [17], the potential for pre-harvest HRY forecasting and its implications for
harvest timing remain unexamined. Such forecasts could significantly benefit the Australian
rice sector by enhancing grower and industry decision-making, particularly for SunRice™,
the industry’s primary player. The capacity to forecast HRY during the growing season
and at the point of delivery unlocks opportunities for SunRice to enhance post-harvest
management to maximise milling revenue. By categorising delivered rice into defined HRY
grades, the milling process can be aligned with the forecasted milling potential. These
processes include the storage drying temperatures [18], the rotational speed and pressure
of abrasive rollers during milling [19], or the incorporation of a tempering phase during
milling [20]. Additionally, the allocation of rice to brown rice markets can be improved,
where crops with a lower forecasted HRY may be better suited to these markets, as brown
rice milling bypasses the bran removal stage, thereby reducing the likelihood of grain
breakage during milling.

In its 2022 Annual Report, SunRice highlighted a notable increase in revenue attributed
to the improved availability of Australian rice following a prolonged drought period [21].
Despite this positive development, the company faced challenges in achieving its potential
milling revenue. This shortfall was primarily due to an unexpectedly high HRY, which
resulted in a surplus of whole grains and a deficit in the forecasted quantity of broken rice
for flour production. To meet the obligations of existing sales contracts for broken rice,
SunRice re-milled whole grains further, breaking the grain in the process. This process
diminished the value of these grains and escalated milling costs due to the extended
processing time required. The scenario underscores the critical need for accurate in-season
forecasting capabilities, enabling rice milling companies to manage the balance between
whole and broken rice in their sales contracts.
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This study embarks on developing a sophisticated model to forecast HRY within the
Australian rice industry, a critical factor influencing milling revenue and market value.
By compiling training datasets that integrate crop-level records with an array of variables
derived from climate data, satellite imagery, and soil characteristics collected over var-
ious pre-harvest time intervals, this research seeks to harness the predictive power of
machine learning for HRY estimation. The objectives outlined for this investigation include
the following:

1. Develop machine learning models for forecasting HRY at time intervals before harvest.
2. Quantify the difference in prediction accuracy based on model development using a

climate-only and a climate with vegetative indices-based dataset.
3. Quantify the relative importance of pre-harvest time intervals and individual predictor

variables in determining HRY.
4. Identify potential predictor variables that may inform grower decisions to improve

HRY management.

Through data mining techniques, this study intends to bridge the gap between empiri-
cal predictions and the underlying biological mechanisms that influence HRY, translating
these findings into actionable insights for growers. By achieving this, the research aspires
to empower rice producers with knowledge and tools to improve HRY percentages.

2. Materials and Methods
2.1. Study Area

Rice cultivation in Australia is predominantly concentrated in the Murrumbidgee,
Coleambally, and Murray irrigation districts of southern New South Wales [22] (Figure 1).
This localisation is attributed to the availability of irrigation infrastructure, coupled with
the region’s temperate summer climate, extensive flat landscapes, and the prevalence of
heavy clay soils conducive to rice farming [23].

Figure 1. Location of the rice growing regions where crop records were collated in this study. The
field boundaries included in this study are coloured to highlight the rice-growing regions of the
industry: MIA—Murrumbidgee Irrigation Area; CIA—Coleambally Irrigation Area; EMV—Eastern
Murray Valley; WMV—Western Murray Valley. Australian Grain Storage (AGS) receival site lo-
cations are shown in orange. State reporting regions were taken from the Australian Bureau of
Statistics—Statistical Areas Level 4 (SA4). Datum GDA2020 (print in colour.)
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2.2. Datasets and Pre-Processing

The datasets curated for this investigation adhered to the TOPSAW framework
delineated by Filippi et al. [24], designed to summarise the principal determinants of
crop yield. Given the constraints of data accessibility, this study concentrated on the
agronomy/management, weather, soil, and plant measurements outlined within the
TOPSAW framework.

2.2.1. Agronomy

The Australian Rice Industry operates through a vertically integrated model. Growers
procure seed from SunRice and, in turn, sell and transport their harvested rice to SunRice via
its subsidiary, Australian Grain Storage (AGS), for processing, packaging, and marketing.
SunRice supplied farm-level crop production records, detailing the irrigation valley, nearest
AGS site, rice variety, sowing and harvest dates, harvest moisture levels, and the achieved
HRY for each cultivated crop. These primary records served as the ‘baseline’ dataset, to
which all subsequent data were integrated.

The analysis focused on a four-year dataset of the medium grain rice cultivar, Reiziq,
where field shapefiles for the sown areas were accessible. The selected subset encompassed
around 3500 crop production records from the 2017/18 to 2020/21 seasons. During this
timeframe, the extent of land cultivated under rice production varied significantly, from
a low of 2800 hectares in 2019/20 to nearly 35,000 hectares in 2020/21. Concurrently, the
seasonal average HRY ranged from 65.4% in the 2019/20 season to 54.3% in the 2017/18
season, while across the four seasons, the crop level HRY ranged from 4.8% to 71%, with an
average HRY of 58.7% (Figure 2).

Figure 2. HRY distribution across four rice growing seasons in the Riverina region of Australia. The
histograms represent the frequency of HRY records, with each colour corresponding to a different
season, as indicated. The dataset average HRY (58.7%) is displayed as the dashed vertical line.

2.2.2. Weather

Weather variations, including temperature, relative humidity, and evaporation, exert
significant effects on the physiological development of rice grains and their propensity
for fissure development, all of which are key factors affecting HRY [25,26]. To account for
this influence, daily climate data were obtained from the Scientific Information for Land
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Owners (SILO) point database [27] (available at https://www.longpaddock.qld.gov.au/
silo/, accessed on 5 March 2023). Weather data were matched to crop records based on the
nearest AGS site (Figure 1).

2.2.3. Soil

Soil-type variables were chosen based on their impact on crop evaporative demand,
thereby affecting the grain dry-down rate, which is a significant factor influencing HRY [28].
Soil properties were obtained from the ‘Digital soil maps for key soil properties over New
South Wales’ (DSM-NSW), which provides a comprehensive dataset of modelled soil at-
tributes at the 100 m pixel level [29]. Zonal statistics were calculated using the grower record
field boundaries to produce records of the average clay content, cation exchange capacity
(CEC), and electrical conductivity (EC) at two depths (0–30 cm, 30–100 cm) (Table 1).

Table 1. List of features included in each dataset, including the crop production records and the
feature-engineered climate, satellite, and soil variables calculated by each aggregation stage. Calcu-
lated meteorological features are shown in italics.

Category Variable Abbreviation Format Source Calculations Stage Specific

Crop production
data Sowing date Date (DDD) SunRice N

Sowing method Text SunRice N
Harvest date Date (DDD) SunRice N
Season length Days SunRice N

Average delivery trash trash_pc % SunRice N
Average delivery moisture agm_pc % SunRice N

Head rice yield HRY % SunRice N

Soil data Clay content Clay % NSW DSM Average 0–30 cm, Average 30–100 cm N
Maximum temperature CEC cmolc/kg NSW DSM Average 0–30 cm, Average 30–100 cm N
Electrical conductivity EC dS/m NSW DSM Average 0–30 cm, Average 30–100 cm N

Climate data Daily rainfall mm mm SILO Total, Days > 1 mm Y

Maximum temperature maxt ◦C SILO
Average, 3-day rolling average, maximum,

minimum, Y
7-day rolling average, maximum, minimum

Minimum temperature mint ◦C SILO
Average, 3-day rolling average, maximum,

minimum, Y
7-day rolling average, maximum, minimum

Diurnal temperature range dtr ◦C SILO
Average, 3-day rolling average, maximum,

minimum, Y
7-day rolling average, maximum, minimum

Growing degree days gdd ◦C SILO
Average, 3-day rolling average, maximum,

minimum, Y
7-day rolling average, maximum, minimum

Vapour pressure vpd hPa SILO
Average, 3-day rolling average, maximum,

minimum, Y
7-day rolling average, maximum, minimum

Evaporation-Class A pan evap mm SILO
Average, 3-day rolling average, maximum,

minimum, Y
7-day rolling average, maximum, minimum

Water Deficit Index wdi : SILO
Average, 3-day rolling average, maximum,

minimum, Y
7-day rolling average, maximum, minimum

Solar radiation rdn MJ/m2 SILO
Average, 3-day rolling average, maximum,

minimum, Y
7-day rolling average, maximum, minimum

Relative humidity at the time
of maximum temperature rhmaxt % SILO

Average, 3-day rolling average, maximum,
minimum, Y

7-day rolling average, maximum, minimum

Relative humidity at the time
of minimum temperature rhmint % SILO

Average, 3-day rolling average, maximum,
minimum, Y

7-day rolling average, maximum, minimum

Diurnal Humidity Range drh % SILO
Average, 3-day rolling average, maximum,

minimum, Y
7-day rolling average, maximum, minimum

Evapotranspiration-FAO56
short crop

evtp mm SILO
Average, 3-day rolling average, maximum,

minimum, Y
7-day rolling average, maximum, minimum

Satellite data Normalized Difference
Vegetation Index NDVI : Landsat First, last, average, maximum, minimum,

slope Y

Enhanced Vegetation Index EVI : Landsat First, last, average, maximum, minimum,
slope Y

https://www.longpaddock.qld.gov.au/silo/
https://www.longpaddock.qld.gov.au/silo/
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2.2.4. Plant Measurements

In-season vegetative indices (VI) were calculated through images captured by the
Landsat satellite missions. Landsat was selected for its availability in the 2017/18 season
when field boundaries were first made available to SunRice. The two Landsat sensors
provide a 16-day repeat cycle, meaning passes occur on an 8-day repetition when combined
due to the offset passes [30]. Landsat bands were used to calculate the normalized difference
vegetation index (NDVI) and the enhanced vegetation index (EVI). The selection of NDVI
and EVI variables considered their complementary nature, with NDVI being sensitive to
chlorophyll level variation and EVI being linked to canopy structure [24]. While irrigation
water is known to affect the value of the selected VIs, previous studies indicate that this
impact occurs primarily during the early vegetative stage of the crop, i.e., before the rice
canopy achieves complete closure [31–33]. In this study, aggregated features extend to
16 weeks before harvest, meaning that the crop canopy cover minimises the impact of
ponded water on optical Vis; this trend persists throughout the season, even as VI levels
decrease leading up to harvest. The selected VIs were aggregated to field-scale values from
the Google Earth Engine (GEE) platform.

2.3. Crop Records Feature Engineering

The methodology for aggregation of environmental data in this research was adapted
from the approach outlined by Clarke et al. [17], which involved condensing daily envi-
ronmental data into discrete intervals extending back 16 weeks before harvest. While the
climate-only dataset achieved the highest accuracy using a two-week segmentation, the
Landsat revisit cycle constrained the training dataset’s size due to the necessity for at least
one cloud-free image per two-week segment. To address this limitation, a four-week aggre-
gation approach, which demonstrated comparable accuracy within the climate-only dataset,
was employed for comparative analysis alongside the two-week framework. Adopting
this four-week aggregation significantly increased the number of crop records containing a
cloud-free image for each interval.

The two-week (2 W) interval method produced eight in-season aggregation stages,
whereas the four-week (4 W) method produced four (Figure 3). To each of these methods,
an extra stage was incorporated by differentiating predictions at the harvest date from
those at the delivery stand, the latter including grain moisture measurements. Recognising
the significant impact of grain moisture at harvest on HRY [34–36], this separation was
designed to clarify the influence of late-season factors on HRY, independent of the dominant
effect of harvest moisture.

2.3.1. Environmental Feature Engineering

Meteorological data obtained from the SILO database were compiled for each growth
stage within the predefined two-week (2 W) and four-week (4 W) intervals. For each
weather variable, the mean value, alongside the three-day and seven-day rolling average
mean, maximum and minimum, were calculated. Precipitation data were analysed to
determine both the frequency of rain days (precipitation ≥ 1 mm) and the cumulative
precipitation (Table 1). The aggregation of Landsat-derived EVI and NDVI included the
calculation of first and last values, the maximum, mean, minimum, and slope within the
specified interval (Table 1).

2.3.2. Erroneous Record Filter

Erroneous records were removed based on a filter of the average NDVI in the 8–12 weeks
pre-harvest stage (4 W dataset), and the 10–12 weeks pre-harvest stage (2 W dataset).
Outliers were defined using the interquartile range, where average NDVI was 1.5 times
the interquartile range more than the third quartile (Q3) or 1.5 times the interquartile
range less than the first quartile (Q1). This procedure was implemented to eliminate crop
records where growers supplied an incorrect field shapefile to SunRice. Previous work



Remote Sens. 2024, 16, 1815 7 of 20

has indicated that at 12 weeks pre-harvest, rice crops should be nearing peak NDVI, while
fallow areas with bare soil will show lower NDVI values [37].

Figure 3. Methods workflow diagram illustrating the replicated data processing and model develop-
ment steps for the two-week (2 WK) and four-week (4 WK) dataset construction methods.

2.4. Model Development

Model development for each dataset aggregation was conducted using the XGBoost
algorithm. The subsequent sections detail model construction, performance evaluation,
and insight extraction processes (Figure 3).

2.4.1. Feature Selection

Feature selection was executed in two phases, following the methodology outlined
by Ruan et al. [38]. The initial phase involved a collinearity filter using Pearson’s correla-
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tion coefficient to mitigate multi-collinearity issues among independent variables, which
can diminish their statistical relevance and affect the performance of machine learning
algorithms [39]. This is particularly relevant in agricultural datasets encompassing soil, cli-
matic, and management variables [40]. Based on results from Clarke et al. [17], a correlation
threshold of 0.95 was used for the filter.

The subsequent step involved recursive feature elimination (RFE) to refine the model
by isolating the most influential variables. This technique iteratively discarded the least
impactful variables during model training [41], utilising the XGBoost algorithm set with
conservative hyperparameters (tree depth limit of three and a minimum child weight
threshold of 50). The RFE procedure trained models on progressively larger feature subsets,
ranging from 5 to 50 features in increments of 5. It also evaluated the top 100 features
and the entire feature set for a comprehensive comparison. The selection of the optimal
feature subset was based on achieving the lowest RMSE within a 5% margin of the best-
performing model, thereby ensuring a balance between the relevance of variables and
model complexity. Additionally, models constructed with the twenty, fifteen, and ten best
features identified through RFE were compared.

2.4.2. Machine Learning Algorithm—XGBoost

In this study, the XGBoost (eXtreme Gradient Boosting) algorithm was employed for
model training due to its prominence in recent crop yield prediction research [1,11,42,43].
XGBoost is renowned for its capacity to enhance model interpretability and identify key
influencing factors. It constructs models through the sequential development of decision
trees, each improving upon its predecessors, thereby creating a robust ensemble from
individually weak predictors [11]. This aggregation of simple decision trees enables the
model to delineate complex interactions within the data while minimising susceptibility to
outliers [42,44].

2.4.3. Experiment Design

The four feature subsets derived in feature selection for each aggregation interval,
data type, and forecast stage resulted in 20 and 32 distinct feature subsets for the 4 W
and 2 W aggregation methods. This study replicated the model training process across
all feature subset variations, following the methodology outlined by Vannoppen and
Gobin [2]. Each dataset and feature subset combination was trained and validated using
the XGBoost algorithm, with hyperparameter tuning conducted through leave-one-year-
out cross-validation (LOYO-CV), as per Filippi et al. [24]. Hyperparameter tuning was
performed manually, exploring tree depths of 2, 3, 4, and 5 in conjunction with minimum
child weights of 1, 10, 30, 50, and 100, leading to 20 distinct training scenarios for each of
the 52 feature subset configurations.

2.5. Model Performance

Model performance was quantified using Lin’s concordance correlation coefficient
(LCCC) [45] and root mean square Error (RMSE). To contextualise these accuracy metrics
within the industry framework, the RMSE values were benchmarked against the existing
forecasting method used by SunRice for predicting HRY. This standard industry forecast
employs a variety-specific, rolling 5-year average HRY calculated across the industry.

2.6. Knowledge Discovery

Shapley additive explanations (SHAP) were applied to identify key time intervals
and data types within the highest-performing predictive models at the key forecast stages.
Originating from game theory, SHAP analyses a model’s predictions to determine the
impact of individual features, offering insights at both the instance and dataset levels [46].
To visualise how changes in certain explanatory variables affect the model’s predicted
outcomes, SHAP partial dependence plots (PDP) were used, directly correlating with
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SHAP values. These plots expand the breadth of knowledge discovered using feature
importance by displaying the function between a feature and the predictor variable [47].

3. Results
3.1. Model Accuracy
3.1.1. Crop Level Forecast

In the 2 W interval models, HRY% prediction accuracy was poor at the 16–14 wPH
stage (Figure 4). The addition of data from the 14–12 wPH interval initially led to decreased
prediction accuracy across both datasets, as evidenced by increased RMSE and lowered
LCCC values. However, in both climate-only and climate and VI datasets, significant
improvement in model performance was observed with the inclusion of subsequent stages
towards harvest. Notably, the climate-only model outperformed the climate and VI datasets
until the 10–8 wPH interval. However, beyond this point, including VI features consistently
resulted in more accurate forecasts. However, the gap in prediction accuracy was reduced
at the date of harvest prediction. In the delivery stage prediction, the addition of the harvest
grain moisture resulted in comparable accuracy between data type models. The climate
model achieved an LCCC of 0.65 and an RMSE of 6.62, while the climate and VI model
achieved an LCCC of 0.64 and an RMSE of 6.63.

Figure 4. Comparison of predictive model accuracies for HRY over two-week intervals leading up to
harvest delivery. Model performance is evaluated using LCCC and RMSE, with intervals spanning
from 14 weeks before harvest to the point of delivery.

Compared with the industry benchmark HRY forecast, average RMSE of 8.6%, both
models surpassed their prediction accuracy from the 8 wPH stage onwards. The most
notable improvement was observed in the climate and VI model, particularly at the
2 wPH stage model accuracy at this prediction interval; an LCCC of 0.65 and an RMSE of
6.43 highlight a substantial benefit of incorporating VI-based features into the precision of
HRY forecasts.

The 4 W interval models for both climate and climate and VI datasets demonstrated
a similar trend in prediction accuracy, with poor results at earlier pre-harvest predictions
compared to those closer to the harvest date (Figure 5). For the climate and VI 4W models,
a steady enhancement in prediction accuracy was observed with the sequential inclusion
of data from the 12–8 wPH and 8–4 wPH intervals. The most significant leap in model
performance occurred with the addition of features from the final 4 wPH to the harvest
stage. However, the highest accuracy was achieved at the delivery stand, with an LCCC of
0.68 and an RMSE of 5.86.
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Figure 5. Comparison of predictive model accuracies for HRY over four-week intervals leading up to
harvest delivery. Model performance is evaluated using LCCC and RMSE, with intervals spanning
from 12 weeks before harvest to the point of delivery.

Consistent with the later stages of the 2 W models, the 4 W climate-only models were
outperformed by the climate and VI models. However, the climate-only model accuracy
increased considerably after incorporating data from the 4 wPH to harvest stage. This late-
season improvement continued to the delivery stand prediction, which achieved an LCCC
of 0.68 and an RMSE of 6.06. Despite the high early-season RMSE of the 4 W climate models
compared with the climate and VI models, its accuracy was superior to the early-season
climate and climate and VI models from the 2W dataset iterations.

However, despite the higher accuracy at the delivery stand, the 4W models exhibited a
notable limitation in their capacity to forecast HRY with sufficient lead time before harvest.
The 4 W climate and VI model did not significantly improve over the industry benchmark
(RMSE = 8.24) until just four weeks before harvest, indicating a four-week delay in its
practical application relative to the 2 W models. Similarly, the 4 W climate-only model did
not surpass the industry benchmark until the harvest date, underscoring a limitation for
in-season crop-level forecasting. This delayed applicability highlights a trade-off between
increased model accuracy at the delivery stand and the timely provision of actionable
forecasts in the critical pre-harvest period.

3.1.2. Season Level Forecast

The industry forecast system utilised by SunRice is designed for an industry-wide
application rather than a crop-level forecast. To facilitate a more relevant comparison,
model RMSEs were contrasted against the industry benchmark at the season-by-industry
level. The season-by-industry level provides a lower benchmark RMSE than at the crop-
level, with an RMSE of 4.86 in the 4 W aggregation and 5.35 for the 2 W aggregation
datasets. However, across both data types, the 2 W and 4 W interval models demonstrated
superior performance over the industry standard.

The 4 W interval models exhibited a consistently lower RMSE across all predictive
intervals compared with the industry benchmark (Figure 6). In contrast, the 2 W interval
models initially lagged behind the industry benchmark, failing to improve on the level until
the 10 wPH stage. However, a significant improvement in model accuracy was observed
following this stage, where both the climate and climate and VI models outperformed the
industry benchmark and the 4 W models at the eight and 4 wPH stages.
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Figure 6. Comparison of season-by-industry level prediction RMSE (HRY%) in the four-week and
two-week data aggregation methods.

The improvement in predictive accuracy demonstrated by the 2 W models during the
critical 8-, 6-, and 4-week intervals before harvest underscores the significant advantages
of the climate and VI dataset using this aggregation. This enhancement in early-season
prediction capability highlights the potential of the 2 W interval models, particularly those
incorporating VI data, in providing valuable pre-harvest foresight into HRY outcomes,
facilitating informed decision-making in the lead-up to harvest.

3.2. Feature Importance

The 2 W climate and VI model, found to be most appropriate for industry application,
was subjected to feature importance analysis. The study focused on prediction stages
from 8 wPH onwards, where models were shown to surpass the current industry forecast.
The mean SHAP value for each variable was calculated and categorised according to its
respective 2 W interval and data type to dissect the influence of specific time stages and
features. The SHAP values reflect the total contribution of all features included in the
selected models.

In the 8, 6, 4, and 2 wPH prediction stages, the time interval immediately preceding
the prediction emerged as the most influential, accounting for the highest aggregated SHAP
value. For example, in the 8 wPH model, the interval between 8 and 10 wPH registered the
largest contribution, with 59.2% to the total SHAP value (Figure 7). This pattern, where
the preceding stage contributed over 50% of the total SHAP value, was observed across
8, 6, 4, and 2 wPH prediction models. In contrast, the highest accumulated SHAP values
in the harvest date and delivery stand models came from the 2–4 wPH interval, at 43.8%
and 41.3%, respectively. While the harvest date model saw a comparable contribution from
the preceding 0–2 wPH stage (39%), the delivery stand model highlighted the importance
of the 2–4 wPH interval, with the closest contribution arising from the grain moisture at
harvest (31.8%).

A notable trend observed in the analysis was the progressive increase in the contri-
bution of VI-based features to the total SHAP as the prediction intervals approached the
harvest date. This trend was evident from the 6 wPH prediction, where VI-based SHAP
values constituted 20.2% of the total, gradually ascending to 40.1% by the harvest date
prediction. Consistent with the importance of the preceding stages, VI-based features were
most influential in the interval immediately before the prediction. However, during the
harvest date prediction, VI features in the 2–4 wPH interval contributed more (19.4%) to
the total SHAP value than those in the 0–2 wPH stage (14.4%). Additionally, the delivery
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stand prediction had the lowest accumulated SHAP derived from VI-based features (12.7),
coming solely from the 2–4 wPH stage. This change indicates that the grain moisture at har-
vest may account for much of the HRY variability previously explained by the late-season
VI-based features.

Figure 7. Nested donut charts categorise the total mean SHAP of each model at the first level by the
two-week time interval and delivery stand (categories shown in colour) and, secondly, by the type of
data the stage-dependent features were calculated from. MET = meteorological data; RS = remote
sensing; CROP = crop management.

Notably, the 8–10 wPH stage appeared across the final six prediction timings, primarily
through meteorological features. Despite a gradual decrease in its SHAP contribution over
time, its inclusion in the delivery stand model highlights the enduring impact of early
meteorological conditions on HRY.

Among the VI-based features included in the late-season models, the crop average
EVI during the 2–4 wPH interval was most frequently featured and recorded the highest
total SHAP value. It was also the sole VI feature considered in the delivery stand model.
Conversely, the average NDVI in the 0–2 wPH stage exhibited a higher mean SHAP value
than the 2–4 wPH EVI in the harvest date model. The exclusion of grain moisture in the
harvest date model implies a potential for late-season VI features to improve HRY forecasts
before the delivery stand measurement is taken. Pearson correlation (R) analysis revealed a
significant correlation between harvest grain moisture and average EVI in the 2–4 wPH
stage (R = 0.45) and average NDVI in the 0–2 wPH stage (R = 0.51) (p < 0.001) (Figure 8).
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Figure 8. Correlation between satellite-derived vegetation indices and harvest grain moisture per-
centage, stratified by HRY percentage. (a) Correlation between average EVI 2–4 weeks pre-harvest
and harvest grain moisture percentage, (b) Correlation between average NDVI 0–2 weeks pre-harvest
and harvest grain moisture percentage. Data points are colour-coded according to HRY ranging
from lower (green/yellow) to higher (purple/blue) yields. The linear fit lines indicate the trend
and strength of the relationship between these vegetation indices and the grain moisture content
at harvest.

SHAP PDPs were analysed to interpret the impact of average EVI and NDVI on HRY.
The average EVI during the 2–4 wPH stage positively correlated with HRY (Figure 9).
However, EVI values above 0.55 resulted in a slight negative SHAP. The optimal range for a
positive influence on HRY was identified between EVI levels of 0.4 and 0.55, corresponding
to a SHAP value increase of about 1.5, with the largest negative impact, approximately
−5% HRY, occurring at EVI levels below 0.3.

Figure 9. SHAP value partial dependence plots of 2–4 wPH average EVI and 0–2 wPH average NDVI
and HRY. The points represent each instance in the dataset, while the point colour indicates the
feature value from low (yellow) to high (purple). The red lines in the plots indicate the smoothed
LOESS relationship between the explanatory variables (on the x-axis) and their respective SHAP
values (on the y-axis) (print in colour).
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A similar pattern emerged for average NDVI in the 0–2 wPH stage, where lower NDVI
levels contributed negatively to HRY, albeit to a lesser extent (around −3.5 percentage
points HRY) (Figure 9). The peak positive SHAP impact occurred at NDVI levels ranging
from 0.53 to 0.65, potentially increasing HRY by more than two percentage points. Like EVI,
the higher range of NDVI levels did not increase HRY; however, unlike EVI, the reduced
effect on HRY remained at a slight positive SHAP contribution.

4. Discussion
4.1. Model Performance

The improvement of all HRY forecast models as the prediction timeline approaches
harvest aligns with existing research on crop yield forecasts in Australia [7], Canada [5] and
China [9], highlighting the importance of late-season data. Additional features introduced
at each stage were found to enhance model training, with predictions made closer to harvest
resulting in the highest prediction accuracy. However, on a forecast basis, the practical value
of harvest and delivery predictions is limited for rice storage and milling companies like
SunRice. Instead, earlier-season forecasts may provide operational planning and marketing
insights. The two-week aggregation method, offering comparable accuracy at harvest,
offers superior early-season performance, showing an advantage for in-season forecasting.
The effectiveness of this method agrees with previous work by Clarke et al. [48], identifying
that the two-week aggregation produces the highest model accuracy for HRY prediction
based on a climate-only dataset. However, the slightly enhanced harvest and delivery stand
performances of the 4W climate, and VI models suggest that the 4W aggregation interval
better suits Landsat-derived VI feature processing. The observed variation in prediction
accuracy across prediction intervals, data aggregation, and data type availability highlight
the need to design dataset construction based on the industry needs and data availability.

4.2. Feature Importance

The improved accuracy of the 2W climate and VI model at later prediction stages cor-
related with increased SHAP contribution from features in the stage immediately preceding
the prediction interval. This trend indicates that agroclimatic conditions occurring later
in the season better explain the HRY variation, consistent with the results of traditional
field-based trials in Australia [28] and the US [34,49,50]. While early-season climatic condi-
tions can influence HRY through the development of chalk [51–53], the effect of pre-harvest
conditions on the grain moisture drying rate and fissure development is more pronounced.
The impact of pre-harvest conditions on grain quality likely contributes to the higher error
rates in the HRY prediction made earlier in the season. While the early-season models
exhibit the potential to explain some of the observed variations, without knowledge of the
critical late-season conditions, the model error is detrimentally impacted.

In the 2 W climate and VI model, the EVI and NDVI-based features, associated with
crop vigour [10,54], were found to have greater impact later in the season. The mean
total SHAP attributed to VI-based features increased steadily in the final six prediction
stages, contributing 40.1% of total SHAP in the harvest date model. In contrast, many
crop yield forecast models report the decreasing importance of VI-based features closer
to harvest [55–57]. In these studies, features such as the peak NDVI, calculated near the
middle of the growing season, contribute the most value to crop yield prediction [10,24,53].

Like climate-based features, the importance of late-season VI-based features is likely
related to crop maturity and grain moisture. However, it is expected that the climate-based
features cause the variation, while the VI-based features signal the response of the crop
to the climatic conditions [58]. This discovery highlights the benefits of incorporating VI-
based features when available, particularly in the case of missing fertiliser information and
accurate soil characteristics data, known to affect the rate of crop maturation in rice [59].

The significant reduction in VI-based SHAP contribution in the delivery stand model
reinforced the association between late-season VI-based features and grain moisture. Given
the minimal difference in the model accuracy observed between the harvest and delivery
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stand models, this change underscores the ability of the grain moisture feature to effectively
explain the similar aspects of HRY variation previously defined by the late-season VI-based
features. This assumption is supported by the high levels of correlation observed between
the two most important VI-based features, 2–4 wPH average EVI and 0–2 wPH average
NDVI and grain moisture at harvest (Figure 8).

SHAP PDPs were constructed to build on the feature importance and correlation with
grain moisture and explore the relationships between HRY and the average EVI and NDVI
in the 2–4 wPH and 0–2 wPH stages. Average EVI in the 2–4 wPH stages suggested that
higher EVI, within the optimal range, improves HRY. Given that EVI relates to crop vigour
and grain moisture, crops within the optimal range may better withstand late-season
detrimental conditions. However, as with values lower than the optimal range, crops
above the optimal range also resulted in a negative SHAP value. These crops, displaying
higher moisture in the 2–4 wPH stage, have likely faced excessive grain drying rates for
the harvest to occur within two weeks. High rates of grain dry-down are related to fissure
development [28], increasing the likelihood of grain cracking and subsequent breakage
during milling.

The SHAP PDP for average NDVI in the 0–2 wPH stage also revealed a bell curve
relationship where HRY could be maximised between 0.53 and 0.65, with lower SHAP
values on either side. Given the strength in correlation and replacement by grain moisture
in the delivery stand model, the positive SHAP contribution of NDVI is likely related to
the crop being harvested at the correct grain moisture. In contrast, the negative impact of
values exceeding the optimal NDVI range is expected to be related to crops harvested too
early with an increased incidence of immature grains. These immature grains have reduced
structural integrity and increased susceptibility to breakage during milling [36,60,61].

The significant positive correlations observed between the EVI and NDVI during the
2–4 wPH and 0–2 weeks 0–2 wPH stages, respectively, present a notable advancement, with
implications for enhancing harvest decision-making among rice growers. This relationship
suggests that tracking the crop EVI and NDVI levels could be reliable indicators for optimal
harvest timing and crop drainage decisions. Furthermore, the use of NDVI field maps,
provided they are of sufficient resolution, could enable precise identification of field zones
ready for immediate harvest versus those where harvest could be postponed, thereby
optimising the timing and sequence of harvesting operations. Such strategic use of VI
data holds promise for improvement in the number of crops that experience optimal grain
drying and can be harvested at ideal moisture levels, thereby increasing HRY outcomes.

4.3. Industry Applications
4.3.1. Grower Management

Implementation of a harvest moisture decision support tool (DST), underpinned by
the HRY forecast models presented in this study, could enhance harvest timing decisions
for rice growers. This DST would be particularly beneficial for crops subjected to adverse
early-season conditions or undergoing rapid grain drying. While these conditions are
likely to reduce the potential HRY, guidance on the optimal harvest moisture levels may
mitigate the impact of these conditions. However, for real-time decision-making, this DST
would benefit from integrating available weather forecasts with long-term average climate
and VI conditions to fill the temporal gap between the prediction and the harvest date.
Furthermore, the incorporation of long-term climatic averages could facilitate scenario
analysis. The tool’s predictive accuracy and utility can be refined by enabling growers
and agronomists to tailor the DST inputs based on historical seasons that mirror current
conditions or specific weather patterns, such as El Niño or La Niña events.

4.3.2. Optimisation of Contracts of Milling Fractions

Optimisation of rice milling contracts via precise early-season HRY predictions could
markedly influence the sales strategies of milling companies. In the 2020/21 season,
SunRice’s contractual agreements for whole and broken grains were predicated on a
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five-season rolling average HRY of 58.9%. The actual season average, however, was 63.3%,
leading to a shortfall in the anticipated broken grains and necessitating the conversion of
whole grains to fulfil orders. Enhancing the HRY forecasting system could improve the
accuracy of contractual terms based on expected whole and broken grain ratios.

This study’s 2 W climate and VI model demonstrated superior accuracy relative to
the industry benchmark up to eight weeks before harvest. Employing such an in-season
predictive model could have potentially elevated SunRice’s milling revenue in the 20/2021
season. For instance, the 2020/21 model, trained on 2017/18 to 2019/20 data, provided
predictions markedly closer to the actual HRY from 6 wPH (Figure 10). Utilising this
approach at the 6 wPH stage could have minimised the need for re-milling and retained
more whole grains to be sold at premium prices. Despite overestimations at 4- and 2-wPH,
the model’s predictions remained closer to the actual HRY than the industry baseline,
suggesting a more efficient allocation of whole grains to meet contractual demands. Even
when accounting for potential purchases of whole grains to fulfil contracts, this approach
would likely result in minimised costs while maximising the sale of Australian-grown
whole grains at premium prices.

Figure 10. Temporal comparison of the two-week climate + GIS model prediction in the CY21
season compared with the observed industry benchmark provided by SunRice. Prediction time
points are shown on the x-axis, from 14 weeks before harvest to the grain elevator (delivery). The
vertical dashed black line indicates the period from which the model was more accurate than the
industry benchmark.

4.4. Limitations

A notable constraint in this study was the reliance on known harvest dates to determine
the preceding stages for model development. While this approach was expected to enhance
model accuracy, such specific harvest information would not be readily available in a
real-time forecasting scenario. Consequently, future research should explore methodologies
to predict the harvest date, potentially through surveys conducted with growers and
agronomists or by analysing crop vigour trends via satellite-derived VI. These methods
have demonstrated considerable success in estimating rice phenology and harvest timing in
Australia [62,63] and internationally [32,64]. Adoption of VI-based phenological estimates
could also refine the aggregation of environmental variables, improving the static time
intervals employed in this research [1,5]. Additionally, advancements in satellite imagery
technology, such as those provided by Sentinel and Planet Labs, marked by increased
capture frequency and improved resolution, offer promising avenues for improving crop
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prediction models. These technological enhancements facilitate a more granular and
frequent analysis of crop conditions, thereby enabling more accurate and timely evaluations
of crop development, health, and potential yield. Incorporating Sentinel 2 data in this study
would have enhanced the frequency of satellite imagery [30], potentially benefiting the
two-week clustering method. However, Sentinel data became available in Australia only in
December 2018 [65], precluding the utilisation of crop production data from the 2017/18
and 2018/19 seasons. The absence of these data years would have considerably diminished
the dataset available for model development.

While the forecast models achieved commendable accuracy, integration of a broader
array of grower management data could substantially enhance the predictions and their
practical utility for growers and agronomists. Specifically, the application of SHAP analysis
can reveal key relationships and inform growers about optimal management practices.
The inclusion of detailed information on practices such as fertilisation and irrigation
management is anticipated to be particularly beneficial, as has been demonstrated in recent
studies predicting wheat yield in Australia [7,10] and India [66]. Furthermore, identifying
management variables significantly impacting HRY could enhance the formulation of
additional decision support tools (DST) for rice farmers.

5. Conclusions

Construction of datasets with two- and four-week and monthly aggregations of mete-
orological and remotely sensed data facilitated the development of models to predict HRY.
Model accuracy improved progressively as the forecast period approached harvest, with
the two-week aggregation of climate and vegetative indices data demonstrating superior
accuracy, surpassing industry standards eight weeks before harvest. Shapley additive
explanations (SHAP) revealed that features proximal to the forecast date significantly influ-
enced HRY predictions. In the two-week climate and VI model, the importance of VI-based
features escalated near harvest but reduced sharply after incorporating grain moisture
data in the delivery stand prediction. This trend suggests the relevance of late-season
VI-based features in reflecting crop maturity and grain moisture, offering decision support
for optimal harvest commencement and prioritisation within fields. This model’s capability
to exceed current industry benchmarks suggests potential benefits for the Australian rice
industry in optimising rice storage and milling strategies to maximise HRY. Moreover,
these insights could inform marketing strategies based on anticipated whole and broken
grain ratios. Enhanced predictions of crop phenology and harvest timing are expected to
yield more precise data aggregations. Concurrent satellite imagery and farm management
data advancements will further refine HRY forecasting capabilities. This research provides
crucial insights for grain quality forecasting, with methodologies that can be adapted to
various regions, thereby improving decisions at both the crop and industry levels.
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