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Abstract: Satellite precipitation products can help improve precipitation estimates where ground-
based observations are lacking; however, their relative accuracy and applicability in data-scarce areas
remain unclear. Here, we evaluated the accuracy of different satellite precipitation datasets for the
Lancang River Basin, Western China, including the Tropical Rainfall Measuring Mission (TRMM)
3B42RT, the Global Precipitation Measurement Integrated Multi-satellitE Retrievals (GPM IMERG),
and Fengyun 2G (FY-2G) datasets. The results showed that GPM IMERG and FY-2G are superior to
TRMM 3B42RT for meeting local research needs. A subsequent bias correction on these two datasets
significantly increased the correlation coefficient and probability of detection of the products and
reduced error indices such as the root mean square error and mean absolute error. To further improve
data quality, we proposed a novel correction–fusion method based on window sliding data correction
and Bayesian data fusion. Specifically, the corrected FY-2G dataset was merged with GPM IMERG
Early, Late, and Final Runs. The resulting FY-Early, FY-Late, and FY-Final fusion datasets showed
high correlation coefficients, strong detection performances, and few observation errors, thereby
effectively extending local precipitation data sources. The results of this study provide a scientific
basis for the rational use of satellite precipitation products in data-scarce areas, as well as reliable data
support for precipitation forecasting and water resource management in the Lancang River Basin.

Keywords: Fengyun 2G; TRMM 3B42RT; GPM IMERG; suitability assessment; deviation correction;
data fusion

1. Introduction

Precipitation is the most important driving factor of the terrestrial hydrological cycle
and a primary contributor to uncertainties in the prediction of hydrological fluxes and
states [1]. Accurate precipitation observations and estimates are therefore crucial for hy-
drograph prediction, flood forecasting, drought monitoring, and water resource allocation
and management. Areas such as the Lancang River Basin in Western China, however, lack
the ability to measure and predict precipitation and therefore struggle to understand local
hydrological characteristics. Moreover, advances in hydropower development in the basin
and the worsening impact of climate change have increased the demand for high-quality
precipitation data [2].

Precipitation is one of the most difficult atmospheric variables to measure due to its
large spatiotemporal variability and non-normal distribution. Conventionally, ground
gauges are the primary means of obtaining precipitation data. However, owing to financial
or topographical limitations, ground-based precipitation observations can be infrequent
or nonexistent, particularly in developing countries and remote regions. Following recent
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rapid developments, satellite precipitation products (SPPs) have exhibited an unprece-
dented ability to provide spatiotemporally continuous estimates of precipitation, with
advantages such as a broad coverage, high temporal and spatial resolution, and no terrain
or climatic limitations [3]. As a result, recent research has focused on the applicability of
mainstream SPPs, including the Tropical Rainfall Measuring Mission (TRMM) and Global
Precipitation Measurement (GPM). Previous evaluations of the TRMM have been diverse
in scope, from near-global [4] to smaller-scale analyses of river basins or regions, including
the Philippines [5], Far East Asia [6], East Sichuan [7], Hanjiang River Basin [8], and Poyang
Lake Basin [9] in China. These studies have the following findings in common: (1) The
TRMM performs much better on a monthly than on a daily scale; (2) the accuracy of TRMM
satellite precipitation data is poor in winter but high in spring, summer, and autumn;
(3) and near-real-time products (e.g., TRMM 3B42V6 and 3B42V7) have a lower accuracy
than post-processing products (e.g., TRMM 3B42RT) [10,11]. Launched in 2014, the GPM
Integrated Multi-satellitE Retrievals (IMERG) product is the next generation of global SPPs
after the TRMM. Previous research on GPM IMERG has focused on performance compar-
isons with the previous generation of TRMM series products. While several studies [12,13]
have demonstrated a substantial improvement in accuracy when transitioning from the
TRMM to GPM, others [14] have found no improvement or even a decline in accuracy
compared to the TRMM. Moreover, no previous studies have compared the accuracy of
the Early Run, Late Run, and Final Run estimates in GPM IMERG or determined their
applicability to data-poor areas in Western China, such as the Lancang River Basin.

Satellite precipitation inversion is an indirect estimation method limited by several
inherent errors [15]. Further data correction based on the spatiotemporal distribution
characteristics and error structure of satellite precipitation data is required to not only
improve data accuracy, but also to optimize next-generation product data sources, update
and iterate algorithms, and provide strong data support for precipitation prediction in
data-poor areas such as the Lancang River Basin. Common bias correction methods include
the stepwise regression, geographically weighted regression [16], error decomposition [17],
the statistical bias correction method [18], the bidirectional long short-term memory cycle
correction model [19], the scale method [20], the combined linear scaling and quantile-
mapping cumulative distribution function [21], the empirical cumulative distribution [22],
the linear regression [23], and multi-technology coupling [24,25]. These correction methods
can be classified as either local corrections or machine learning methods. A local correction
is simple to perform; however, it does not consider the spatial heterogeneity of the data,
resulting in large errors. Conversely, machine learning methods require extensive ground
observation data, are highly dependent on data quality, and are limited by several difficul-
ties and in areas lacking data [26]. Furthermore, although the above correction methods
improve the data quality, the potential for further data fusion requires further investigation.

Lancang River Basin has a steep and complex topography, so the number of rainfall
and meteorological stations in this region is very limited, and their spatial distribution is
extremely uneven. At the same time, the precipitation observation period is limited, and it
is difficult to reproduce the spatial and temporal distribution of precipitation completely.
Remote sensing precipitation data cover a large range, are basically not limited by terrain
or meteorological and climatic conditions, and can fully describe the spatiotemporal dis-
tribution of precipitation. Therefore, remote sensing technology, including the evaluation
of satellite precipitation products, correction, and fusion, has a high research value in
Lancang River Basin. It can be used to make up for the shortage of meteorological rainfall
stations and obtain relatively complete remote sensing precipitation data with long-term
series and a large spatial coverage. It is of great practical significance and social value to
water resource planning and management, drought and flood forecasting, hydrological
simulations, and hydropower development and utilization in Lancang River Basin.

Therefore, in this study, we propose a correction–fusion method for SPP data that
considers the unique geographical environment and data conditions of the Lancang River
Basin. This method involves a novel window sliding correction method that considers the
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spatial distribution of data. After evaluating the original datasets derived from three SPPs,
we perform local to global corrections based on ground measurements of precipitation.
Data fusion is then again performed to further improve the precision and reliability of the
SPP datasets. This research has high practical significance for precipitation forecasting and
water resource management in data-poor areas.

2. Study Area and Data
2.1. Study Area

The Lancang River Basin (Figure 1) is located in Southwest China (longitude 93◦48′–101◦51′

east and latitude 21◦06′–33◦48′ north). The upper and lower reaches are wide, whereas
the middle reaches are narrow and slender, with a ribbon distribution from the north to
south. The terrain is high in the northwest and low in the southeast, with a high level
of variability. The upper reaches lie in Qamdo, Tibet, in the Tanggula fold belt of the
Qinghai–Tibet Plateau, at an elevation of more than 4500 m, which is characterized by a
relatively preserved plateau landform. The middle reaches from Qamdu to Sijia village in
Yunnan Province belongs to the high mountain valley area, with a valley floor elevation
between 1230 m and 2200 m and a typical relative elevation difference of approximately
2000 m. Sijia village lies in the lower reaches of the basin, with the lowest riverbed elevation
being 486 m [27].
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Figure 1. Topographic map of the study area.

The Lancang River Basin has a plateau mountain climate and a subtropical monsoon
climate, with a rainy season from May to October and a dry season from November to April.
The upper reaches of the Qinghai–Tibet Plateau are characterized by low temperatures
and minimal rain. The middle reaches represent a transitional climate zone from cold to
subtropical, where the vertical climate characteristics are significantly altered by high levels
of precipitation. The lower reaches have high temperatures and abundant precipitation
owing to a subtropical climate [28].

2.2. Data
2.2.1. Satellite Datasets

GPM IMERG is the next-generation product of the TRMM, and its performance relative
to that of the TRMM has been widely studied. According to previous studies, we also
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analyze the performance of a Chinese domestic product, FY-2G SPP. Information on all
SPPs included in this study is shown in Table 1.

Table 1. Basic information of the five satellite precipitation products analyzed in this study.

Name Spatial Resolution Temporal Resolution Period

TRMM 3B42RT 0.25◦ × 0.25◦ daily 2016–2019
GPM IMERG Early Run 0.1◦ × 0.1◦ daily 2016–2020
GPM IMERG Late Run 0.1◦ × 0.1◦ daily 2016–2020
GPM IMERG Final Run 0.1◦ × 0.1◦ daily 2016–2020

FY 2G 0.1◦ × 0.1◦ daily 2016–2020

The TRMM satellite was jointly developed by the United States and Japan and
launched in 1997. Precipitation data retrieved by the TRMM satellite have the advan-
tages of a wide coverage, high spatial resolution, and favorable consistency; thus, this
dataset is widely used in scientific research. In this study, we used TRMM 3B42RT SPPs
from 2016 to 2019, which have a spatial resolution of 0.25◦ × 0.25◦ and a temporal resolution
of one day.

To produce more accurate satellite precipitation estimates at finer spatiotemporal
resolutions, the National Aeronautics and Space Administration and Japan Aerospace
Exploration Agency jointly launched the GPM mission on 27 February 2014, providing
a new generation of precipitation products based on the TRMM. Despite inheriting the
mature algorithm and detection technology of the TRMM, GPM exhibits an improved
monitoring performance, which not only improves the spatial and temporal resolution
but also generates precipitation data in a larger spatial range [29]. This study adopted the
daily-scale data of GPM IMERG V06 from 2016 to 2020, which have a spatial resolution of
0.1◦ × 0.1◦ and include Early, Late, and Final Runs. The GPM IMERG Early Run (Early)
uses only the forward morphing algorithm to invert precipitation and can provide fast
estimates 4 h after observation. Subsequently, with an increase in observed data, the GPM
IMERG Late Run (Late) is obtained by combining both forward and backward morphing
algorithms, with a minimum data latency of approximately 12 h. Finally, monthly-scale
ground observation data were used for calibration to obtain the GPM IMERG Final Run
(Final), with a data delay of approximately 3.5 months for the 30 min dataset. Both TRMM
3B42RT and GPM IMERG SPPs, derived from https://disc.gsfc.nasa.gov/ (accessed on
4 January 2021), are subject to strict quality control monitoring.

The FY-2G satellite was successfully launched from the Xichang Satellite Launch Center
in China on 31 December 2014 and was fixed over the equator at 99.5◦E on 6 January 2015.
On 1 June 2015, it drifted to 105◦E longitude, replacing the E satellite that had been in service
for an extended period, thus becoming the main operational satellite and strengthening
China’s meteorological monitoring capability during the flood season. FY-2G satellite
rainfall data from 2016 to 2020, which have a spatial resolution of 0.1◦ × 0.1◦, were obtained
from http://satellite.nsmc.org.cn/ (accessed on 8 March 2021) and subject to strict quality
control monitoring.

2.2.2. Rain Gauge Data

Daily rain gauge precipitation data from a total of 176 observation stations, which
underwent strict quality control, were provided by an automatic system built by the
Lancang River Group Company and the China Meteorological Data Network (http://data.
cma.cn/ (accessed on 7 September 2021)). To ensure abundant and complete data from
the ground stations and consider the time series of various SPPs, we selected a dataset of
almost five years from 1 January 2016 to 31 December 2020; each observation station had
a complete data time series during this period. To match the temporal characteristics of
the measured ground station data with those of the satellite precipitation data, the daily
observation period of the measured precipitation data was set to Beijing time (UTC+8), that
is, from 08:00 on the same day to 08:00 on the next day.

https://disc.gsfc.nasa.gov/
http://satellite.nsmc.org.cn/
http://data.cma.cn/
http://data.cma.cn/
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3. Methods
3.1. Evaluation Indexes

In this study, statistical and classification indices were used to evaluate the accuracy of
various SPPs relative to that of ground-measured data. For the statistical evaluation, the
correlation coefficient (CC), root mean square error (RMSE), and relative bias (RB) were
used to evaluate the ability of the SPP datasets to capture precipitation characteristics over
time. For the classification evaluation, the detection probability (POD), false alarm rate
(FAR), and critical success index (CSI) were used to evaluate the ability of the SPP datasets
to detect precipitation events. Previous studies considered 1 mm/day as the threshold
for distinguishing days with and without rain [30]. To reflect the ability of SPPs to detect
precipitation events in more detail, four precipitation thresholds in this study were used as
follows: 0.1, 10, 25, and 50 mm/d, which were used to delimit rain conditions into “rain/no
rain”, “light rain”, “moderate rain”, “heavy rain”, and “torrential rain” [31]. The formulas,
ranges, and optimal values of the evaluation indicators are listed in Table 2.

Table 2. Description of evaluation indexes used in this study.

Statistics Formula Range Optimal Value

CC [32] CC =
∑ (Xi−X)(Yi−Y)√
∑ (Xi−X)

2
(Yi−Y)

2 [−1, 1] 1

RMSE [33] RMSE =

√
1
n

n
∑

i=1
(Xi − Yi)

2 [0, + ∞] 0

RB [34] RB = ∑n
i=1(Yi−Xi)
∑n

i=1 Xi
× 100 (−∞,+∞) 0

POD [35] POD = H
H+M [0, 1] 1

FAR [36] FAR = F
H+F [0, 1] 0

CSI [37] CSI = H
H+M+F [0, 1] 1

ETS [38]
Hs =

(H+M)(H+F)
H+M+F+Z [− 1

3 , 1] 1
ETS = H−Hs

H+M+F−Hs

FBI [38] FBI = H+F
H+M [0, +∞] 1

Notation: n indicates the number of data pairs used in the accuracy evaluation. Xi represents the observed
precipitation value of ground station i; Yi represents the pixel value of the satellite precipitation data grid where
the ground station is located. H represents the number of precipitation events successfully captured by ground
observation stations and satellites at the same time under a specific threshold value. M represents the number
of precipitation events successfully captured by ground observation stations and unsuccessfully captured by
satellites under a specific threshold value. F represents the number of precipitation events captured by satellites
but not observed by ground stations at a specific threshold.

3.2. Merging Technique

The proposed correction–fusion method included two parts, window sliding data
correction and Bayesian data fusion, and was employed to improve data quality through
secondary correction, thereby providing more reliable data support for subsequent local
precipitation forecasts.

3.2.1. Window Sliding Data Correction

Current correction methods for satellite precipitation data mainly include local and
global corrections. The main global correction methods include linear regression and aver-
age deviation correction [39], and the main local correction methods include geographically
weighted regression, Bayesian correction, and ordinary cooperative kriging. Common
satellite precipitation data correction techniques usually do not consider the temporal and
spatial variability of precipitation, which leads to uncertainty in the results.

Based on the above techniques, we proposed a novel window sliding data correction
method that considers the spatial distribution of precipitation data and is based on the
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structural characteristics of the SPPs and ground-measured data. Ground scatter data were
included in the satellite grid in space for a certain time. Tesfagiorgis et al. [40] argued that a
simple way to reduce the error of one precipitation product relative to another reference
product is to multiply the rainfall of the first product by a “deviation factor” to optimize the
corresponding relationship whereby the two products overlap. Therefore, we considered
ground observation data as the reference value and used the relationship between the
two types of data for calibration [41]. The main steps were as follows: (1) pre-process the
satellite raster data and ground-measured precipitation data; (2) starting from the first grid
of satellite raster data, fix the vertices and set the window width; (3) correct the satellite
raster data in the initial window, then complete the error correction of all satellite raster
data by sliding the initial window; (4) and increase the window width by one grid unit step
by step, then repeat steps (2) and (3) for correction. The final correction effect corresponding
to each window width was evaluated until the best correction matrix was selected and
used as the correction dataset of SPPs. The main concepts and implementation process of
the correction method are illustrated in Figure 2.
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The proposed method calculated the arithmetic average of the raster data and ground-
measured data in the correction window. The calculation formula was as follows:

-
x =

1
n
× (x1 + x2 + . . . + xn) (1)

-
y =

1
n
× (y1 + y2 + . . . + yn) (2)

where x1, x2, . . . , xn are the measured data of ground stations in the window, and y1, y2, . . . , yn
are the raster data contained in the window. The relationship between raster data in the
window and ground-measured data was expressed by the ratio b according to the following
calculation formula:

b =

-
x
-
y

(3)

The correction result of the raster data in the window was obtained by multiplying
the original raster data by the ratio b according to the following calculation formula:

Bm×n= b × Am×n (4)

where the original raster data in the window are denoted by Am×n = [ ], the revised raster
data are denoted as Bm×n, m refers to the row, and n refers to the column.
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3.2.2. Bayesian Data Fusion

After performing SPP data correction, we performed data fusion via Bayesian model
averaging (BMA), a statistical processing method based on Bayesian theory [42,43]. Assum-
ing that B is the data fusion result, D is the measured rainfall data, and f = [ f1, f2, . . . , fk]
represents the different SPP datasets, we calculated the BMA as follows:

p(B|D) = ∑K
k=1 p( fk|D)·pk(B| fk, D) (5)

where p( fk|D) represents the posterior probability of the category K SPP dataset after
determining the measured data D, which reflects the matching degree between fk and
measured precipitation. In fact, p( fk|D) is the weight, ωk, of BMA. The higher the SPP
precision, the greater the optimal weight. In addition, the weights of all SPPs were positive,
with a sum of one. Here, “pk(B| fk, D)” refers to the posterior distribution of fusion results
under the given conditions of satellite precipitation data fk and measured precipitation
data D.

This study utilized the expectation maximization (EM) algorithm to solve the parame-
ters of the above Bayesian fusion model, which is an effective method for calculating the
BMA based on the assumption that K-class datasets obey a normal distribution. There-
fore, before using the EM algorithm, it is necessary to perform a normal conversion of
ground-measured and satellite precipitation data. The calculation principle is as follows.

The logarithmic likelihood function of θ (θ =
{

ωk, σ2
k , k = 1,2, . . . , K

})
can be ex-

pressed as follows:

l(θ) = log(p(B|D)) = log (∑k
k=1 ωk·g(B| fk, σ2

k )) (6)

where g(B
∣∣ fk, σ2

k
)

represents the mean of fk and the variance of σ2
k in the normal distribu-

tion. The above formula cannot easily obtain the analytical solution of “θ”, whereas the EM
algorithm can obtain the maximum likelihood value through the iterative process of expec-
tation and maximization until convergence, thus obtaining “θ =

{
ωk, σ2

k , k = 1, 2, . . . , K
}

”.
In the numerical solution of the EM algorithm, the hidden variable zt

k is used to assist in
the BMA weight calculation. The detailed steps of the EM algorithm used to solve the BMA
parameters are listed in Table 3.

Table 3. Description of expectation maximization algorithm steps used to solve the Bayesian model’s
averaging parameters.

Step Methods Formula

1 Initialize
(Iter = 0)

ω
(0)
k = 1/K, σ2(0)

k =
∑k

k=1 ∑NT
t=1(Yt− f t

k)
2

K·NT

2 Calculate the initial likelihood value l(θ)(0) =
NT
∑

t=1
log(

K
∑

k=1
(ω

(0)
k ·g(B| f t

k ·σ
2(0)
k )))

3 Calculate hidden variables
(Iter = Iter + 1)

Zt(Iter)

k =
g
(

B
∣∣∣ f t

k ,σ2(Iter−1)
k

)
∑K

k=1 g
(

B
∣∣∣ f t

k ,σ2(Iter−1)
k

)
4 Calculate the weight ω

(Iter)
k = 1

NT

(
NT
∑

t=1
Zt(Iter)

k

)
5 Calculate the error σ2(Iter)

k =
∑NT

t=1 Zt(Iter)
k ·(Yt− f t

k)
2

∑NT
t=1 Zt(Iter)

k

6 Calculate the likelihood value l (θ)(Iter) = ∑NT
t=1 log(∑K

k=1 (ω
(Iter)
k ·g(B| f t

k , σ2(Iter)

k )))

7 Test the convergence if l(θ)(Iter) − l(θ)(Iter−1)<ε

Notation: Iter is the number of iterations; NT is the rated data length; and Yt, f t
k are the ground-observed

precipitation and k-satellite precipitation datasets at time t, respectively.
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3.3. Kriging Method

The ordinary kriging interpolation method mainly involves performing interpolation
calculations by searching for the spatial distance between the sites to be interpolated and
known sites. This method not only quantifies the spatial autocorrelation between known
points but also shows the spatial distribution of the target values [44]. The calculation
equations are as follows:

Z(xp) = ∑n
i=1 λiz(xi) (7)

In order to achieve unbiased estimations in kriging, the following set of equations
should be solved simultaneously:

∑n
i=1 λiγ

(
xi, xj

)
− µ = γ

(
xi, xp

)
(8)

where j = 1, . . ., n with ∑n
i=1 λi = 1. Z(xp) is the estimated value of variable Z at location

xp; z(xi) is the known value at location xi; λi is the weight associated with the data; µ is
the Lagrange coefficient; γ

(
xi, xj

)
is the value of variogram corresponding to a vector with

origin in xi and extremity in xj; and n is the number of sampling points used in estimation.

4. Results and Discussion
4.1. Evaluation of Multi-Source Satellite Data

Based on the measured precipitation data obtained from the ground stations in the
Lancang River Basin from 2016 to 2020, we evaluated various SPPs at daily, monthly, and
annual scales (Figure 3). Considering that many “no rain” cases exist on a daily scale,
the relative deviation calculation results have little significance; therefore, the CC and
RMSE were used for the daily-scale evaluations, whereas the CC and RB were used for the
monthly- and annual-scale evaluations.

In terms of the daily scale, FY-2G shows the lowest correlation with the ground-
measured data and a high RMSE (Figure 3). Compared to that for the TRMM, the three
types of GPM IMERG show significant improvements in CCs and error indices [45]. Notably,
while the Early and Late Runs display similar performances, the Final Run demonstrates
the strongest correlation with the measured data, indicating an ability to better reflect the
observed precipitation characteristics. Nevertheless, the RMSE remains suboptimal. At the
monthly scale, the CC of all SPPs is significantly higher than that at the daily scale, and the
relative deviation is lower. FY-2G has the lowest CC, followed by TRMM 3B42RT. Both the
GPM IMERG Early and Late Runs show the same CC values, whereas the Final Run has
the highest CC of 0.87. Furthermore, the RB is greater than zero for all five SPPs, indicating
an overestimation of ground-measured precipitation.

On an annual scale, the CC and RB are both lower than those on the monthly scale. The
decline in CC can be attributed to the insufficient number of series used in the annual-scale
assessment. As our study focused on newly available SPP data, we limited our selection to
the past five years (since 2015), resulting in a relatively small dataset at the annual scale.
Consequently, the SPPs may not accurately reflect the measured annual precipitation char-
acteristics. For all SPPs, the RB value decreases gradually with an increase in temporal scale.
TRMM 3B42RT and FY-2G show negative and low RB values, indicating that the measured
precipitation is underestimated, whereas all three GPM types of IMERG have high positive
RB values, which indicates that GPM IMERG can easily overestimate precipitation.

To further evaluate the impact of different precipitation levels on SPP performance,
five indicators (POD, FAR, CSI, ETS, and FBI) were used to evaluate the threshold values
of 0.1, 10, 25, and 50 mm/d, which delimit “rain/no rain”, “light rain”, “moderate rain”,
“heavy rain”, and “torrential rain” conditions (Figure 4). All of the SPPs show the best
detection ability for “rain/no rain” conditions, and the detection ability decreases with
an increase in the rainfall level. The GPM Final Run shows the strongest detection ability,
with the POD of “rain/no rain” conditions reaching 0.82. However, it tends to overestimate
rainfall across different intensities based on the frequency deviation. The GPM Late and
Early Runs show the second highest detection abilities. In their case, the “rain/no rain”
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and “light rain” conditions are overestimated to a certain extent, whereas “moderate rain”,
“heavy rain”, and “torrential rain” are underestimated. This indicates greater uncertainty
in the detection of extreme precipitation and micro-precipitation using GPM products [46].
FY-2G shows the next-best detection capability. According to the FBI (FBI > 1: overestimate;
FBI < 1: underestimate), in contrast to GPM IMERG, FY-2G tends to underestimate low-
precipitation events in the form of drizzle, moderate rain, and heavy rain, but overestimates
light rain and torrential rain. In addition, FY-2G commonly produces underreporting of
precipitation events because the satellites typically use the bright temperature data of the
infrared channel to invert precipitation while ignoring the influence of albedo information
in the visible channel on precipitation, which results in a certain degree of detection error.
Our results indicate that TRMM 3B42RT has low applicability at a high altitude and for
complex terrains in the Lancang River Basin and can easily overestimate rainfall of a larger
magnitude while underestimating rainfall of a smaller magnitude.
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Figure 3. Box charts showing the evaluation results for five satellite precipitation products: (a) the
results of CC at daily scale; (b) the results of RMSE at daily scale; (c) the results of CC at monthly
scale; (d) the results of RB at monthly scale; (e) the results of CC at annual scale; (f) the results of RB
at annual scale. The different boxes in the figure represent different satellite precipitation products.
CC: correlation coefficient; RMSE: root mean square error; RB: relative bias.
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4.2. Evaluation of the Bias Correction Scheme

After comprehensively considering the applicability of various SPPS to the Lancang
River Basin, we selected the three types of GPM IMERG products and FY-2G for subsequent
correction. We selected a period from 1 January 2020 to 31 December 2020 and a daily time
scale. First, 176 ground observation stations in the Lancang River Basin were divided into
a “correction group” and “verification group”, with 88 stations in each group (Figure 5).
Precipitation observations from the ground stations in the “correction group” were used to
revise the satellite precipitation data, whereas the “verification group” was used to evaluate
the correction effect of the window sliding method.
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Second, we proposed a novel window sliding correction method that considers the
spatial distribution of precipitation data. To improve the data correction effect, we deter-
mined the optimal window widths for the GPM and FY-2G products. The selection process
is illustrated in Figure 6. For GPM IMERG, the optimal performance is achieved when
the window side length is three grid units, yielding the highest CC and low error indexes.
Conversely, for FY-2G, the best correction effect is attained when the side length of the
correction window is 10 grid units, resulting in the highest CC and reduced RMSE and
mean absolute error (MAE) values. Therefore, we selected three and ten grid units as the
corrected window side lengths for GPM IMERG and FY-2G.

In this study, the CC, RMSE, POD, and MAE were used to evaluate the correction
effects in various SPPs (Figure 7). In the Lancang River Basin, the proposed window sliding
correction method improves the CC and precipitation detection ability (POD) and reduces
the errors (RMSE and MAE) of the SPPs. It is worth mentioning that the correction method
leads to the greatest CC improvement for FY-2G. GPM IMERG shows a large reduction in
both error indicators, most obviously in the Final Run product. However, the four SPPs
showed a low distinction in detection performance (POD) after the correction.
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4.3. Evaluation of the Precipitation Fusion Method

To address different research needs, we adopted the Bayesian weighted average
method to fuse the above deviation-corrected FY-2G and GPM products in different com-
binations. The optimal weight calculation results of the various fusion combinations are
listed in Table 4. After fusing the daily-scale FY-Early, FY-Late, and FY-Final datasets based
on the optimal weights, we calculated the CC, RMSE, MAE, and POD values to evaluate the
effect of data fusion (note: the quality assessment of all kinds of datasets used 176 sites on
the ground at one time without grouping) (Table 5). According to the results, the Bayesian
fusion method further improves the precipitation data quality by increasing the CC and
improving the detection performance of SPPs while also reducing the error between the SPP
data and ground-measured data. However, the data quality is not significantly different
between the fused products and the near real-time products of the GPM. Considering that
the GPM IMERG Early Run is a near-real-time product with the lowest data delay, the
FY-Early fusion dataset has more advantages in actual production if the timeliness of data
acquisition is required.

Table 4. Optimal weight calculation results for fusion datasets.

Datasets FY 2G GPM IMERG (Early/Late/Final)

FY-Early 0.13 0.87
FY-Late 0.13 0.87
FY-Final 0.14 0.86

Table 5. Evaluation of the fusion effect for different satellite precipitation products.

Datasets CC RMSE (mm) MAE (mm) POD

FY 2G corrected set 0.40 9.49 3.36 0.37
Early Run corrected set 0.51 18.76 5.39 0.81
Late Run corrected set 0.53 20.77 5.63 0.82
Final Run corrected set 0.54 25.92 7.43 0.84

FY-Early 0.53 16.36 4.87 0.86
FY-Late 0.54 18.06 5.07 0.87
FY-Final 0.55 22.41 6.58 0.88

4.4. Spatial Effect of the Correction–Fusion Method

To further explore the effect of the correction–fusion method at the catchment scale, we
analyzed spatial changes in the GPM IMERG Early Run, Late Run, Final Run, and FY-2G
datasets before and after correction using ordinary kriging interpolation. The results are
shown in Figure 8. Early, Late, and Final represent the evaluation results of the original
SPPs, and C-Early, C-Late, and C-Final represent the evaluation results of the revised SPPs.
The correction effects of GPM and FY-2G are spatially consistent and more obvious in the
middle and lower reaches of the Lancang River Basin than in the upper reaches. This is
related to the landforms and distribution of ground stations in the Lancang River Basin.
First, the upper reaches are high altitudes with a complex topography, and the quality of
ground-measured data and SPPs in this region is low; therefore, it is difficult to obtain an
efficient correction. In contrast, the terrain of the middle and lower reaches is less complex;
thus, the accuracy of the ground and satellite data is higher, which is conducive to the
correction of local SPPs. Second, the essence of the window sliding correction method is to
perform reasonable corrections of SPPs based on measured precipitation data obtained from
ground stations. However, few ground observation stations exist in the upper reaches of the
Lancang River Basin, which causes significant difficulties in satellite data correction. Thus,
the advantages of the window sliding correction method are not reflected in this region.
In contrast, the middle and lower reaches of the Lancang River Basin have more ground
observation stations with a denser distribution. This provides richer ground reference
information for data correction, reducing the difficulty of data correction and improving
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the effect of data correction. Thus, although the proposed method can significantly improve
data quality, the degree of improvement depends on the number of ground sites [47].
However, the correction method used by Lu et al. is applicable to monthly or longer time
scales, whereas the method proposed in this study is more applicable to daily-scale dataset
correction, which represents an improvement from previous studies.

To further improve the data quality, we performed fusion based on the previous
correction procedure. Figure 9 depicts the spatial distribution characteristics of the CC
for the datasets before and after fusion (in which, for example, C-FY-2G represents the
evaluation result of FY-2G after the correction, C-Early represents the evaluation result
of the Early Run after the correction, and FY-Early represents the evaluation results of
the revised FY-2G and Early Run fusion dataset). The Bayesian fusion method improves
data quality and generates a more precise dataset. Similar to the conclusions of Wanders
et al. [48], data fusion can reduce precipitation uncertainty. In addition, the fusion datasets
obtained in this study exhibit high CC values in the middle and lower reaches of the
Lancang River, indicating a better ability to reflect the precipitation characteristics of the
region, but with less ideal CC values in the upper reaches. This is attributed to the relatively
complex precipitation, influenced by climate, terrain, and other factors, the low accuracy
of the original data in areas with few ground observation stations, and the relative lack of
ground-measured reference data. Thus, the applicability of the Bayesian fusion method in
this region requires further study.
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In summary, the correction–fusion method proposed in this study can reduce the
systematic errors of SPPS and provide alternative data sources for ground observation
stations, which is an optimization of the findings of Zhang et al. [49]. However, like the
method used by Xiao et al. [50], the proposed correction–fusion method also depends on
the density of ground stations; hence, it is not suitable for use in areas lacking ground
observation stations. Additionally, the validity of the correction method depends on the
spatial consistency of the deviation [51].

5. Future Research Directions

In recent years, satellite remote sensing technology has been improving in terms of its
spatiotemporal resolution, high levels of precision, and dynamic capabilities, which have
greatly improved our capability to observe Earth. SPPs are widely used for precipitation
forecasting, water resource management, and flood disaster monitoring. In this study, we
evaluated the accuracy and applicability of multi-source satellite precipitation data to the
Lancang River Basin, then performed correction and fusion procedures on the optimal
satellite data based on ground observation precipitation data, thereby expanding the local
data sources. However, this study has the following limitations, which suggest the need
for further studies:

(1) Spatial scale: the spatial scale of the satellite precipitation data used in this study was
0.1◦ (approximately 10 km); therefore, its application on a smaller spatial scale (such
as 5 km) requires further verification and analysis.

(2) Time scale: satellite precipitation data with a time scale of 1 day were selected for
the comparative evaluation and applicability analysis in this study, which cannot
easily meet the needs of flood monitoring and forecasting. In addition, the effect of
the deviation correction is closely related to the time scale [52]. The next step is to
research on an hourly time scale to better meet the demands of flood monitoring,
forecasting, and management.

(3) Precipitation level: Deng et al. [53] found that some precipitation events were lost
due to systematic errors in the revised model. Therefore, follow-up research should
determine whether the proposed correction–fusion processing improves the ability of
SPPs to detect precipitation events.

(4) Combining multiple factors: In this study, we aimed to preliminarily verify the
improvement effect of the proposed correction–fusion method on SPPs. Therefore,
according to actual data from the Lancang River Basin, a correction was performed
only through the relationship between ground station data and multi-source satellite
precipitation data. However, satellites can only detect local precipitation conditions
over a period; that is, they reflect a transient situation [54]. Therefore, the use of
the relationship between satellite precipitation data and ground-measured data for
corrections is limited. Future research should refer to the work of Zhang et al. [55]
and other studies and attempt to add multiple factors to further improve data quality,
such as latitude and longitude, digital elevation model topographic factors, seasonal
factors, and the normalized difference vegetation index.

(5) Change study area: The method of this study will be further improved and applied
to other remote areas with insufficient data to verify the universality and reliability
of the method on the one hand and to provide precipitation data sources for other
similar areas on the other hand.

6. Conclusions

To ensure the complementary performance of domestic (FY-2G) and foreign SPPs in
China, we evaluated the accuracy and applicability of precipitation data from the TRMM
3B42RT, GPM IMERG Early Run, GPM IMERG Late Run, GPM IMERG Final Run, and
FY-2G satellites, then developed a novel correction–fusion method to improve the data
quality. The main conclusions are as follows:
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(1) The correlation between the SPP data and ground-measured data in the Lancang
River Basin was higher for the GPM IMERG products than for the TRMM and FY-
2G, indicating a better ability to reflect actual long-term precipitation characteristics.
Among the GPM products, the Final Run showed a better performance than the Early
and Late Runs, which exhibited similar performances. However, FY-2G exhibited a
lower RB among the SPPs on monthly and annual scales, which indicates that FY-2G
products can better describe total precipitation.

(2) We proposed a novel window sliding data correction method that significantly im-
proved the quality of SPP data by not only improving their correlation and detection
ability but also reducing their deviation. This method showed some applicability to
the Lancang River Basin, although the correction effect was better in the middle and
lower reaches of the basin than in the upper reaches due to the higher number of
ground observation stations and higher quality of the ground reference information.

(3) The Bayesian fusion method further improved the data quality and provided more
reliable data sources for the Lancang River Basin. In this study, the corrected FY-2G
data were fused with selected GPM-revised products for the first time to obtain near-
and non-real-time fusion datasets. The former datasets are suitable for scenarios
requiring more timely acquisition, such as practical applications, whereas the latter
are more useful for scenarios prioritizing accuracy over data timeliness, such as
scientific research.
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