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Abstract: The convolutional neural networks (CNNs) functioning on geometric learning for the
urban large-scale 3D meshes are indispensable because of their substantial, complex, and deformed
shape constitutions. To address this issue, we proposed a novel Geometry-Aware Multi-Source
Sparse-Attention CNN (GeoSparseNet) for the urban large-scale triangular mesh classification task.
GeoSparseNet leverages the non-uniformity of 3D meshes to depict both broad flat areas and finely
detailed features by adopting the multi-scale convolutional kernels. By operating on the mesh edges
to prepare for subsequent convolutions, our method exploits the inherent geodesic connections
by utilizing the Large Kernel Attention (LKA) based Pooling and Unpooling layers to maintain
the shape topology for accurate classification predictions. Learning which edges in a mesh face
to collapse, GeoSparseNet establishes a task-oriented process where the network highlights and
enhances crucial features while eliminating unnecessary ones. Compared to previous methods, our
innovative approach outperforms them significantly by directly processing extensive 3D mesh data,
resulting in more discerning feature maps. We achieved an accuracy rate of 87.5% when testing on an
urban large-scale model dataset of the Australian city of Adelaide.

Keywords: deep learning; 3D meshes; urban-scale; remote sensing; Geometry-Aware; attention

1. Introduction

The 3D scene or shape analysis of a concoction of dense, complex, curved surfaces,
or irregular geometries of meshes in large urban environments including buildings, trees,
cars, and other elements has been made possible by recent developments in 3D computer vi-
sion and photogrammetry [1]. To enable the use of these meshes in a variety of applications,
such as smart urban planning, navigation systems, virtual reality, radiation estimation,
noise modeling, and photovoltaic perspective, it is essential to extract semantic information
from the mesh models [2,3].

For semantic classification of 3D mesh data, a trivial number of machine learning-
based algorithms are available; and their primary focus is to process 3D point clouds [4,5].
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A few recent studies, such as [6,7], also deal with deep learning for surface meshes, but they
are only able to analyze single items or small inside scenes (such as a living room or
kitchen). The Multi-View Stereo (MVS) modeling pipeline has limitations, making it
difficult to recreate or classify these glass facades without causing geometric distortion and
deformation. Classifying models seem extremely absurd and cluttered due to the deformed
glass facades [8].

Textured urban meshes offer distinct advantages compared to point clouds and MVS
modeling pipelines in classification. They excel in providing detailed surface representation,
incorporating rich visual information through applied textures on geometric structures. Un-
like point clouds, which comprise individual data points, textured meshes merge geometric
data with surface textures. This fusion enables precise and robust classification in urban
environments, capturing intricate details and enhancing feature recognition across various
objects and structures within the scene [3]. This comprehensive representation arises from
textured urban meshes’ capability to integrate both geometric data and high-resolution
textures. Unlike point clouds that solely capture spatial coordinates, meshes combine this
information with surface textures, delivering a more realistic portrayal of buildings, streets,
and urban landscapes. This amalgamation of geometry and texture elevates visualization,
analysis, and simulation capabilities, thereby enhancing experiences in urban planning,
navigation systems, and virtual reality applications. Notably, only a few studies, such as [1],
have delved into the semantic classification of urban meshes.

Motivation

In accordance with Wang et al. [9], mesh models often suffer from topological and
geometric errors due to incomplete or misclassified geometric shapes, especially in complex
scenarios involving adhesions between distinct objects. To address this challenge, we
have introduced GeoSparseNet, a neural network tailored to enhance the classification of
3D shapes within large-scale urban meshes, accommodating both planar and non-planar
shapes. Our method adeptly extracts objects and shapes, enabling a more comprehensive
understanding of the intricate geometric characteristics prevalent in urban environments.
GeoSparseNet integrates a novel Large Kernel Attention (LKA) mechanism by employing
edge collapse techniques. This innovative approach empowers the network to focus on
crucial data features and relationships, potentially resulting in enhanced model accuracy
and performance.

In this study, we use deep learning to provide a novel Geometry-Aware Multi-Source
Sparse-Attention CNN (GeoSparseNet) for the classification of urban textured meshes. Our
framework aims to improve three specific aspects of classification, which include:

• Quality of Classification: Urban environments pose challenges for semantic classifica-
tion due to the complex interplay between man-made and natural elements. While
typical algorithms excel in categorizing large continuous surfaces, they struggle with
precise object delineation, especially in areas with subtle visual differences. Our
method addresses this by employing a geometry-aware approach that effectively dis-
tinguishes between planar and non-planar surfaces using the Large Kernel Attention
(LKA) edge collapse technique, thereby enhancing classification accuracy in such
challenging spaces.

• Distinctive Geometric Features: Semantically classifying 3D data involves assigning
single labels to individual points or objects in 3D space, focusing on labeling elements
rather than coherent scene segmentation. However, utilizing attributes at the local
component level, like groups of triangles (nodes, edges), limits the derived features to a
confined area, lacking broader contextual relationships. Distinctive feature abstraction
is crucial for effective classification predictions in mesh-based geometric learning. Our
approach achieves both local and global geometric feature acquisition by employing
LKA-based edge collapse, removing redundant edges while preserving vital ones
through task-oriented pooling and unpooling operations.
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• Efficiency: Current deep learning techniques encounter challenges in handling large-
scale 3D data, especially concerning extensive urban environments. This limitation has
been identified previously by Landrieu et al. [10] and further acknowledged in subse-
quent work like Hui et al. [11]. Following the principles established in prior research
focused on improving efficiency, our method introduces distinctive local and non-local
characteristics tailored for enhanced classification, leveraging Afzal et al. [12]’s Scaled
Cosine Similarity Loss (SCSL). GeoSparseNet aims to advance semantic classification
and improve object delineation within large-scale urban meshes.

The paper’s structure can be outlined as follows: In Section 2, an in-depth literature
review is presented, offering an extensive examination of the existing research and knowl-
edge on the topic. Moving forward, Sections 3–6 are dedicated to different aspects of our
study. Section 3 details our approach, Section 4 outlines the experiments we conducted,
Section 5 provides a thorough discussion of our findings, and finally, in Section 6, we
present our conclusions. This organization allows for a systematic and comprehensive
exploration of the research process and outcomes.

2. Related Work

While there exists an extensive amount of research on semantic segmentation of urban
large-scale data, Ulku et al. and Adam et al. [3,13] surveys proposed that in the realm of 3D
meshes, semantic segmentation pertains to the classification of individual elements into
specific categories. Rook et al. [14] propose an extension to the existing class definitions
of Roof Surface and Wall Surface in CityGML to demonstrate that by expanding these
definitions, automatic semantic labeling of a CityGML file with Level of Detail 1 and 2
becomes achievable. This section focuses solely on approaches tailored for the processing
of urban large-scale 3D data, such as point clouds and meshes.

2.1. Semantic Classification of Urban Models

An essential stage in semantic classification involves feature extraction. Deep learning
methods tend to perform more effectively when ample training data is available, as ob-
served in studies [3,15,16]. These techniques often rely on contextual information for
feature computation or learning. However, capturing effective global contextual features
can be challenging [17–19].

For instance, addressing this obstacle and dealing with 3D urban scenes, they can be
transformed into a 4-way rotationally symmetric (4-RoSy) area, employing methods such
as Huang et al. [20] QuadriFlow as demonstrated in their TextureNet [21]. This approach
yields a uniformly distributed orientation field of sampled points. The use of frame fields,
as exemplified by Yang et al. [22] in the PFCNN project, enables the linking and alignment
of tangent planes with the geometric characteristics of the mesh surface through the parallel
transport technique. Furthermore, this allows for the consolidation of acquired features in
multiple orientations.

Another revised deep learning model called LO-Net was presented by Li et al. [23]
and significantly improved categorization accuracy for common road scene elements. This
model created the necessary datasets for the study by extracting distinctive objects from
preprocessed point clouds obtained from a mobile LiDAR system. Similarly, Wilk et al. [24]
presented sub-algorithms employing CNNs as their fundamental feature for precise clas-
sification of oblique aerial scenes. However, the implementation in this instance is based
on proprietary architecture. Zhang et al. [25] also introduced a mesh-based Dynamic
Graph Convolutional Neural Network (DGCNN) tailored for the semantic segmentation of
textured 3D meshes.

The studies by Geng et al. [26] and Peng et al. [27] provides a new viewpoint on
creating and optimizing urban ecological networks in light of the tension between ex-
panding ecological networks in densely populated metropolitan areas and the increasing
demand on land resources. Their methods include source site selection and resistant
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surface development. It also looks at changes in landscape connectivity across different
development scenarios.

2.2. Attention Mechanism

The attention mechanism can be seen as an adaptable selection process based on
input features, and it was introduced by Mnih et al. [28] into computer vision through the
concept of recurrent models of visual attention. This mechanism has proven advantageous
in numerous visual tasks, including image classification [29,30], object detection [31,32],
and semantic segmentation [33,34]. Guo et al. [35] notified that within the realm of computer
vision, attention can be categorized into four fundamental types: temporal attention, spatial
attention, channel attention, and branch attention, with hybrid forms like spatial and
channel attention. Each of these attention types exerts a distinct influence on various
visual tasks.

Derived from NLP [36,37], self-attention stands as a distinct attention mechanism. Its
efficacy in apprehending extensive dependencies and flexibility has led to an increasingly
pivotal role in computer vision [38–40]. A variety of deep self-attention networks, often
referred to as vision transformers, [41–43], have consistently outperformed CNNs in various
visual tasks, underscoring the substantial potential of attention-based models.

Henceforth, Basu et al. [44] introduce an attention-driven structure for mesh data,
which demonstrates proven equivariance to the described transformations. Their approach
utilizes relative tangential features, offering a straightforward, efficient, and equivariance-
oriented substitute for utilizing raw node positions as inputs. Han et al. [45] introduce
a novel method designed to capture extended dependencies using a temporal attention
model inspired by the transformer architecture. Whereas, Milano et al. [46] propose a
method that harnesses the strengths of both types of approaches while overcoming their
constraints. They expanded a primal-dual framework rooted in the graph-neural-network
domain to triangle meshes. This involves defining convolutions on two distinct graphs
derived from an input mesh. Their approach incorporates features from both edges and
faces of a 3D mesh as input, dynamically aggregating them via an attention mechanism.

While these approaches typically necessitate contextual information for feature compu-
tation or learning, capturing truly effective global contextual features can be a challenging
endeavor. Our GeoSparseNet takes advantage of enhanced spatial relationships within
the geometry-aware CNN by exploiting the large-attention-based edge collapse technique,
at both local and global levels. This strategic approach significantly enhances the model’s
ability to grasp contextual information and acquire unique features specifically tailored for
urban large-scale 3D mesh classification.

3. Materials and Methods

In this section, we provide notations and the architectural details required for the
implementation of our proposed GeoSparseNet method during the training of Convo-
lutional Neural Networks (CNN) on urban large-scale mesh dataset, utilizing a known
modified loss function SCSL [12], specifically designed for 3D mesh models. We propose
that maintaining geometric integrity in urban mesh data is essential for enhancing the
accuracy of shape classification and segmentation tasks. Given that mesh edges bear a
resemblance to pixels in a 2D image, we employed them as the fundamental units for
executing all processes in GeoSparseNet. As illustrated in Figure 1, a mesh edge, denoted
as e, represents the shared boundary of two neighboring triangles, leading to an optimized
convolutional neighborhood of a constant size characterized by precisely four adjacent
edges, namely a, b, c, and d.

A mesh can also be stated as (V, L, E), where V is a collection of vertex positions, such
as, V = {v1, v2, . . . vn} ∈ R3. For triangular meshes, the linkage is defined as L (triplets
of vertices) that represents three edges (E = e1, e2, e3). Features like colors or normals are
related to the mesh elements V, L and E. Feature edges E offer improved perception at the
network layer and can preserve a geometric feature that is similarity-invariant, such as
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RGB in photos. The initial geometric input features and convolutional adjacent instance
connectivity parameters within the network are comparable to those in [12].

Figure 1. Feature aggregation using LKA-based edge collapse, during mesh pooling and unpooling.

3.1. GeoSparseNet Architecture
3.1.1. Convolution

Figure 1 illustrates how four consecutive neighbors are used to provide spatial support
in order to get the convolution operation for mesh edges. The convolution operation, dot
product between the consecutive neighbors (four edges e1, e2, e3, e4) and kernel k for any
edge e may be expressed as follows:

k · E +
4

∑
j=1

ej · k j (1)

In this case, E corresponds to the jth neighbor’s edge feature of the convolution
operation. Every filter is capable of activating on two possible edges, for instance, k0 on
a or c. Consequently, the four neighboring edges of edge e depicted in Figure 1, namely
e1, e2, e3, and e4, could correspond to a, b, c, d, or c, d, a, b. The application of symmetric
functions to the input data pairs has the potential to generate a new set of convolution
neighbors while ensuring order invariance. The following equation represents the edges E:

E = (e1, e2, e3, e4) = (|a − c|, a + c, |b − d|, b + d) (2)

Efficiently optimized batched operators, like conv2D, can be employed in the implemen-
tation by consolidating all edge features into a feature tensor of dimensions CN × EN × 5,
where EN represents the number of edges, CN signifies the feature channels, and 5 accounts
for the edge and convolution neighborhood, as described in Equation (2). Following this,
the tensor is subjected to multiplication with a matrix containing convolution weights using
the conventional General Matrix Multiply (GEMM) operation.

Like in image processing, after the process of convolution, a new group feature tensor is
formed that contains an equal number of new features as the number of convolution kernels.
For edge collapse, the procedure then uses a Large Kernel Attention (LKA) technique. It
is noteworthy to emphasize that the updated connectivity dictates the new collection of
convolution neighborhoods for the next convolution operation after each pooling phase.

3.1.2. Large Kernel Attention (LKA)

According to the input characteristics, the attention mechanism could be thought of
as an adaptive decision-making system that can choose the discriminative features and
automatically disregard noisy details. The creation of an attention map, which highlights
the significance of various components, is a crucial stage in the attention mechanism. We
must understand how various aspects relate to one another in different features relations.

There are two commonly used methods for establishing connections between various
components. The first technique involves employing the self-attention mechanism [40,47]
to capture long-range dependencies. Initially developed for NLP applications, self-attention
encounters three key limitations when applied to computer vision tasks. Firstly, it disre-
gards the inherent 2D/3D structures, treating them as 1D sequences. Secondly, its quadratic
complexity makes it impractical to handle high-resolution images due to computational
costs. Lastly, while it effectively achieves spatial adaptability, it overlooks adaptability
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within the channel dimension, thereby limiting its overall effectiveness in computer vi-
sion contexts.

The second method involves creating an attention map and constructing salience
using large kernel convolution [30,48]. This method still has several glaring drawbacks.
Considerable computational cost and parameterization are introduced by large-kernel
convolution. Our LKA consists of four stages with decreasing output spatial resolution,
H
4 × W

4 , H
8 × W

8 , H
16 ×

W
16 , H

32 ×
W
32 , respectively, forming a simple hierarchical structure. Here,

H and W stand for the input mesh’s height and width, respectively. In the context of large
kernel attention in 3D meshes with decreasing output spatial resolution, the H and W
parameters refer to the spatial dimensions of the attention maps at different stages of the
network. When dealing with 3D meshes, the concepts of height, width, and depth can be
interpreted differently compared to traditional 2D images. Exploiting large kernel attention
and decreasing spatial resolution, the network operates in a hierarchical manner where
attention is applied across different levels of detail. The attention mechanisms applied to
these dimensions using LKA would involve over larger regions or receptive fields within
the mesh, covering multiple vertices or nodes in both the height and width dimensions.
As the network progresses through different stages, the output spatial resolution decrease,
implying that the attention mechanism gradually reduces the detailed representation of the
mesh while capturing more abstract and higher-level features.

The number of output channels C is growing as resolution decreases. We suggest
breaking down the large-kernel convolution process to capture long-range relationships in
order to get around the aforementioned drawbacks and use the benefits of self-attention and
large-kernel convolution. A large-kernel convolution may be broken down into three parts,
as mentioned by Guo et al. [48], channel convolution (1× 1), spatial long-range convolution
(depth-wise dilation), and a spatial local convolution (depth-wise coupling). To be more
precise, we may break down a K × K convolution; standard convolution: conv2D = 1 × 1,
depth-wise convolution: Dc = (2dc − 1)× (2dc − 1), and depth-wise dilation convolution:
Dd =

(
K

Dd
× K

Dd

)
. We are able to capture long-range relationships with little processing

effort and parameters by using the aforesaid decomposition. We can evaluate an edge’s
relevance and create an attention map after we have the long-range link. Figure 2 illustrates
the LKA module and can be expressed as:

A = conv2D1×1(Dd(Dc( f ))) (3)

Fout = A⊗ f (4)

f ∈ RH×W×C is the input feature in this case. A ∈ RH×W×C stands for attention map.
Each feature’s relevance is indicated by its value in the attention map. ⊗ indicates element-
wise product. Unlike sigmoid and softmax, which are typical attention strategies, LKA
does not need an extra normalizing function [48]. Additionally, we think that adaptively
modifying output depending on input feature—rather than the normalized attention
map—is one of the primary attributes of attention approaches. The LKA that Guo et al. [48]
suggested combines the benefits of self-attention and convolution. It considers the broad
receptive field, linear complexity, dynamic process, and local contextual information. LKA
further accomplishes flexibility in the channel dimension along with the spatial dimension.
It is noteworthy that in deep neural networks, distinct channels often represent distinct
objects as explained by Guo et al. [35], and that flexibility in the channel dimension is
crucial for tasks involving 3D meshes (refer to Figure 2).
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Figure 2. An end-to-end illustration of our novel GeoSparseNet architecture.

3.1.3. Pooling

By defining three fundamental procedures that together broaden the concept of pool-
ing, we expand the use of traditional pooling to irregular data: First, determine the pooling
area based on proximity. Second, Aggregate features in every pooling area using LKA-
based edge collapse. Lastly, For the cumulative features, restructure the adjacency of newly
merged regions.

Adjacency is implicit when pooling on regular imagery data, therefore the kernel size
selection immediately determines the pooling area. The new adjacency is again intrinsically
specified since characteristics in each area are combined, such as max or average, to produce
an equally distributed grid space. The traditional pooling in images already has unfolded its
generalization ability in many 2D computer vision tasks. Another unique use of generalized
pooling is mesh pooling, in which adjacency depends on the underlying mesh topology.
In contrast to images, where 2 × 2 pooling often has a natural reduction factor of 4, several
edge collapse dispositions are needed for standard mesh pooling. In our settings, each of
these edge collapse operations among five targeted edges will transform into two edges
with the assistance of LKA. Every pooling process enables to direct the network to acquire
the required mesh depth by adding an LKA-based hyperparameter that indicates the
array of objective edges in the final mesh. According to [49], to obtain mesh adjacency
information during runtime, certain data structures that are recurrent must be accessed
and updated.

To enable the network to choose which areas of the mesh are important for solving
the job, we rank the edge-collapse order according to the edge characteristics’ magnitude
(using a priority queue). Because of this, the network might collapse in certain locations
that are less significant to the loss in an uneven manner.

By using a priority queue, we rank the edge-collapse order according to the magnitude
of the edge characteristics determined by the LKA, enabling the network to determine
which areas of the mesh are necessary to complete the job. As a result, the network
can collapse in certain locations that are less significant to the loss in an uneven manner.
Remember that while collapsing an edge that is next to two faces, the network eliminates
three edges (Figure 1) since both faces are combined into one edge. Three edges create
each face in a mesh: the minimal edge, its two adjoining peers, and the essential edge that
needed to collapse using red color along with the neighboring peers in black (Figure 1).
Each facet’s three edges’ features are combined into a single edge feature by averaging the
overall feature channels.

The l2 − norm of an edge, or its feature magnitude obtained by LKA, establishes the
edge collapse precedence. The features are then merged by blending operations for every
single one of the incidence triangles of the most minimal edge feature e in an urban mesh
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to create two new feature vectors LKA-based edge collapse, α and β. The following lists for
both triangles, the edge attributes in channel indices j are given below:

αj = avg(aj, bj, ej), and, β j = avg(cj, dj, ej) (5)

Subsequent edge collapses are taken into account while updating the half-edge data
structure. Lastly, it is noteworthy that not all edges are collapsible. The network prevents
edge collapses that produce non-manifold faces since they go against the notion of four
convolution neighborhoods. Therefore, an edge is not considered capable of collapsing if it
has two border points or three nodes on its 1-ring junction.

3.1.4. Unpooling

The process of pooling has a partial inverse called unpooling. Pooling layers decrease
feature activation resolution by encoding or compressing information while unpooling
layers enhance feature activation resolution by decoding or uncompressing information.
In order to increase feature activation, the pooling operation keeps track of the merging
operations’ history (such as max locations). Because unpooling lacks learnable parameters,
to recover the initial resolution which had been eliminated during the pooling process,
it is often employed in conjunction through convolutions. When paired alongside the
convolution operations, the unpooling effectively becomes a learnable process.

To enhance the quality of the mesh topology and edge features, every unpooling
layer has a corresponding layer of pooling. By recording the connection before pooling,
the unpooling layer restores the upsampled topology (prior to mesh pooling). Keep in mind
that, similar to images, upsampling the connection is a reversible process. We keep a graph
that records the adjacencies between the original edges (before pooling) and the new edges
(after pooling) for the sake of computing unpooled edge features. A weighted mixture of
the pooled edge features renders for each unpooled edge feature. Figure 1 illustrates the
usual unpooling scenario.

3.1.5. Loss Function

According to Afzal et al. [12], a loss function for meshes has to employ a bigger value
η for feature vectors and weights rather than 1 for softmax to properly converge on a
training dataset. Just adding a scaling layer ℓ and a cosine layer thereafter will immediately
do this. A single learnable parameter ℓ = η2 is included in this scale layer. This could
have a set value based on the various class numbers. Nevertheless, they preferred that
the network learn the parameter by back-propagation in their study rather than adding
another hyperparameter. Since their loss defines the modified softmax loss function as
follows, we may thus benefit from it:

L′
SCSL = − 1

K

K

∑
p=1

log
e
(
ℓ W̃T

yp f̃ (x̃p)+ byp

)
∑J

q=1 e(ℓ W̃T
q f̃ (x̃p)+ bq)

(6)

Here, in the above Equation (6), f (x̃) denotes the normalized f (x), and W̃ denotes the
weights. ℓ represents the scale layer of the learnable parameter.

4. Results

This section documents the extensive tests we conducted to substantiate our proposal
for the novel GeoSparseNet for city models. Firstly, the network settings and database
that we utilized in our tests to apply the new GeoSparseNet are included in this section.
Subsequently, detailed reports on assessments of the suggested GeoSparseNet in an urban
mesh classification job are provided. Lastly, we provide a succinct analysis of the benefits
and drawbacks of the suggested GeoSparseNet.
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4.1. Network Configurations

System settings: The experiments were conducted using NVIDIA GeForce RTX 2080Ti
GPUs on an Ubuntu operating system.

Network settings: Kernel size k = 5, Adam optimizer with learning rate lr = 0.0002,
λ = 0.01, stride = 1, and padding = 1.

Parameters settings: Pooling resolution pool_res = [800, 650, 400, 320] , number of convo-
lution filters nc f = [128, 256, 512, 1024], and iterations niter = 500.

4.2. Adelaide Dataset

In this study we have included a 3D city model dataset of a full scan of City Adelaide
Australia [50] to demonstrate the substantial power of GeoSparseNet to handle all types
of triangular mesh data in a classification task. The dataset comprises on large number
of sub-folders and files containing mesh models and metadata portraying block maps of
buildings in the whole of Adelaide City. The urban model utilizes coordinate System-MGA
Zone 54, with origins direct approximately for,

City Blocks: Origin(X) 278,434.0000, Origin(Y) 6,130,514.0000, Altitude(AHD) 125.0000

Balls: Origin(X) 281,063.3990, Origin(Y) 6,132,895.2440, Altitude(AHD) 44.9000

Rotunda: Origin(X) 278,434.0000, Origin(Y) 6,130,514.0000, Altitude(AHD) 125.0000

Vic_Pk_Fountain: Origin(X) 280,771.9397, Origin(Y) 6,132,324.6420, Altitude(AHD) 45.0633

4.3. Evaluation of GeoSparseNet

We first discussed the parameter for attention sparsity.

µj = Sλ

(
WT

j f (x)
)

(7)

where, µj is the jth element of the sparsely fully connected S layer with weights j and S is

Sλ(w) =

{
w ∵ λ ≤ w
0 ∵ w < λ

(8)

here, λ is a parameter for sparse connections. The achieved edge collapse features are
finally weighted by LKA scores Equation (4).

A thorough ablation study was performed on GeoSparseNet by varying the attributes
and parameters of the network. This analysis allowed us to determine the best settings for
the network to improve robustness and accuracy in the classification of urban large-scale
triangular meshes. The parameters affecting the overall performance and accuracy of the
network are listed in Table 1 below:

Table 1. Ablation study of hyper-parameters.

pool_res ncf Accuracy (%)

600, 450, 300, 180 128, 256, 512, 512 83.7
600, 450, 300, 180 128, 256, 512, 1024 84.5
700, 550, 400, 280 128, 256, 512, 512 86.1
700, 550, 400, 280 128, 256, 512, 1024 87.2
800, 650, 400, 320 128, 256, 512, 512 86.7

800, 650, 400, 320 128, 256, 512, 1024 87.5

Please note that the pooling resolution and number of convolution filters are the
main hyper-parameters that show significant changes in terms of accuracy when using
GeoSparseNet for classification tasks in urban large-scale triangular meshes.

Figure 3 shows the distributions of evaluation scores on the 5 classes from the 3D city
model of the Adelaide dataset for λ ∈ [0, 1]. Compared with no sparsity (λ = 0), Accuracy
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is higher for λ belongs to (0, 0.05), while is lower for λ belongs to (0.07, 1). From these
observations, GeoSparseNet benefits from the sparsity, resulting in improved prediction
performance. In our experiment, we adopted the sparsity λ = 0.01 for simplicity.

Figure 3. Distributions of evaluation scores on the five classes (black lines: Quartiles, while
points: Medians).

For the network parameters in GeoSparseNet, we here investigated the best perfor-
mance by varying the pooling resolution pool_res and number of convolution filters nc f
on the 3D city model dataset. In Figure 4, GeoSparseNet has higher accuracies when
pool_res = [800, 650, 400, 320] with nc f = [128, 256, 512, 1024]. While GeoSparseNet deliv-
ers comparable accuracies for pool_res = [800, 650, 400, 320] with nc f = [128, 256, 512, 512]
and pool_res = [700, 550, 400, 280] with nc f = [128, 256, 512, 1024] with slightly less com-
putational cost.

Figure 4. The effects of the λ parameter, pool_res and nc f on overall accuracies.

Among various structures and classes in the Adelaide Dataset, five classes are shown
below for comparisons. The green curve in Figure 5 and the last column in the Table 2, repre-
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sent average values. GeoSparseNet highlights its enhanced performance by demonstrating
a discernible rise in accuracy across all classes.

Table 2. Classification comparisons result on five classes.

Method
Class (%) Average

School Block Bridge WineCenter Police (%)

PointNet [51] 84.6 85.7 81.2 82.9 84.1 83.7
PointNet++ [52] 85.8 86.8 83.7 85.3 85.9 85.5
DIFD-Net [53] 86.7 86.6 83.8 85.6 85.3 85.6
PointCNN [54] 87.5 87.7 84.8 86.6 86.9 86.7
Y-Net [55] 87.8 87.6 85.1 85.7 87.3 86.7
MeshNet [56] 87.7 87.9 86.3 86.8 86.8 87.1

GeoSparseNet (ours) 87.8 88.2 87.1 86.8 87.6 87.5

Figure 5. Accuracy comparisons of predictions on five classes.

For further analysis, we present a comparative assessment of prediction classification
labels between MeshNet [56] and GeoSparseNet using confusion matrices. Figure 6 visually
demonstrates the distinct predictive performances of both models when incorporating
geometric and photometric features (as shown in (a) and (b) respectively). Notably, when
both types of features are utilized together, we observe significant differences in how the
models classify certain labels. Particularly in the case of MeshNet (a), there is a noticeable
confusion between the school and police classes. This confusion might stem from two
probable reasons: Firstly, there could be instances where distinguishing between these
classes during the annotation process proves challenging. Secondly, within this configu-
ration, the dominance of photometric features over geometric ones might contribute to
this confusion. Upon evaluating GeoSparseNet (b), our findings corroborate the argument
that our method generates more discriminant features, significantly impacting all five
classes. Notably, GeoSparseNet demonstrates a reduced tendency for confusion between
classes, suggesting its ability to maintain clearer distinctions without an over-reliance on
specific features.

The suggested technique showcased significant improvements over original pho-
togrammetry mesh models, generating lightweight polygonal meshes with more con-
cise descriptions and labels through the utilization of LKA-based edge collapse pooling
and unpooling processes. Notably, elements like baseboards, window ledges, roof tiles,
and chimneys may be perceived as insignificant details based on the data’s intended use.
For instance, previous methods often overlooked these details, which could be crucial for
simulation, quantitative surveying, or accurate classification of building types.
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Figure 6. Comparison of Confusion Matrices incorporating geometric and photometric features
between MeshNet (a) and GeoSparseNet (b).

In essence, our classification approach addresses these limitations by effectively ad-
dressing flaws present in smooth areas, resulting in highly precise labeled meshes. This
advancement is noteworthy, particularly when considering real-world models generated
from aerial photogrammetry methods that tend to include numerous cumbersome surfaces.
Groger et al. [57], mitigated representations achieved through similar to our approach meet
the standards outlined in CityGML LOD2 models. This indicates that our methodology
successfully produces meshes meeting the quality benchmarks set for 3D city models,
signifying a significant advancement in generating accurate, detailed, and purpose-driven
mesh representations.

4.4. Computational Complexity

The complexity of a deep neural network model depends on several factors, including
the number of layers, the number of neurons per layer, the type of activation functions
used, and the size of the training dataset. In general, the complexity of a deep neural
network increases as the number of layers and neurons per layer increases. This can result
in overfitting when the model becomes too specialized to the training data and performs
poorly on new and unseen data. On the other hand, if the model is too simple, it may
not capture the underlying patterns in the data and result in underfitting. The choice of
activation functions and the optimization algorithm used to train the model also affect the
complexity. In addition, the size of the training dataset can impact the complexity, as larger
datasets typically require more complex models to effectively learn the underlying patterns
in the data.

For feedforward neural networks, the time complexity is typically O(n × m × l), where
n is the number of inputs; m is the number of neurons in the largest layer; and l is the
number of layers, as in the case expressed in Equation (11). This assumes that each neuron
has a constant time complexity for processing inputs and computing the output. The time
complexity for training a deep neural network can be much higher, as it involves computing
the gradients of the loss function with respect to the model parameters and updating the
parameters based on the gradients. This process is typically repeated multiple times for
different batches of the training data until convergence.

Figure 7 (we took fifty epochs) shows the time complexity of GeoSparseNet compared
to various pool_res and nc f . Hereunder’s Big-O notation was employed to calculate the
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GeoSparseNet run-time complexity by simply omitting T∆ϑ as a directive of 1, where T
denotes time.

Tgradient decent = kgradient iterations · Tweights (9)

Let us assume that k gradient iterations occur:

O
(
Tgradient decent

)
= k · k4 = k5 (10)

Here, we consider k layers, each with k neurons. The gradient descent is performed
for k iterations, and the total run-time of back-propagation can be calculated as:

O
(

k5
)
∵ ∀k ≥ 1 (11)

Figure 7. Computational complexity of our method.

4.5. Results Visualization

To evaluate the robustness, efficacy, and adaptability of our novel GeoSparseNet, we
conducted an evaluation using polygonal mesh models derived from an urban large-scale
3D model dataset of the city of Adelaide, Australia [50]. We conducted a comparison
using a single building from the city model, specifically focusing on various buildings in a
classification task. This comparison experiment highlighted the sensitivity of geometric
feature-preserving using GeoSparseNet. Our approach, benefiting from a smoothing
classification, yielded shipshape and more precise building detection results. The geometric
features demonstrated efficient retrieval of sharp, polished features, even if there are small
roof patches. In contrast, the method listed in Table 2, lacking feature-based constraints,
tended to flatten adjacent non-coplanar regions, resulting in a smaller number of geometric
areas compared to our method.

Figure 8 shows the zoomed mesh object of block-1 from the city model and Figure 9
illustrates our pooled mesh and classification results of a single building in block-1 from
the Adelaide City dataset. Whereas, Figure 10 provide our predictions on various building
structures from the full scan of Adelaide City, and the red arrow in Figure 11 indicates
block-1 among numerous blocks in this urban large-scale city mesh model. In summary,
our proposed GeoSparseNet is capable of transformation invariance exhibiting overall
superior accuracy over these urban large-scale meshes in a classification task.
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Figure 8. Zoomed mesh object of block-1 of city Adelaide (Figure 11) [50], Australia.

Figure 9. Note that illustration of the last column, our proposed trained model has an improved
ability to remove redundant edges while preserving important ones with precise detection results of
a single building in block-1 among various classes in a mesh classification task of the city model. (F:
face number; V: vertex number).

Figure 10. The classification predictions of 5 classes from the Large-scale 3D City Model Adelaide.
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Figure 11. Full city scan of Adelaide [50], Australia.

We used the Large-scale 3D City Model Adelaide dataset’s building mesh models,
each having irregular planar area connectivity and attributes from different building
architectures, to assess the effectiveness of the suggested strategy. Our method can certainly
involve identifying and distinguishing different types of regions or elements within a three-
dimensional space, regardless of whether they are coplanar or non-coplanar. The whole
city block with its varied building structures is seen in Figure 11. Figure 8 provides an
illustration of block-1 among various buildings, which is shown by the red arrow in
Figure 11.
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The evolution of the result on a block-1 building model produced by aerial photogram-
metry methods is shown in Figure 9. The suggested technique is successful in recognizing
contour and geometric features, structured areas, and flattening surfaces. There could
be some overly smoothed or very curved areas in the original mesh models. Since our
classification technique does not divide these curved regions, it uses LKA-based edge
collapse operators to simplify unstructured sections, such as air conditioners on rooftops.
A significantly reduced number of faces characterizes the structural elements, such as the
building’s major facade, which are much simplified using GeoSparseNet. By comparing,
we can see that the model’s triangle number has drastically decreased after the mesh
pooling operation. The outcome demonstrates the ability of our approach to produce and
categorize well-decimated meshes with respect to geometric precision (Figure 9), visual
coherence, and classification (Figure 10).

Additionally, a comparison of classifications employing a single building from the
city model (Figure 9) showed that our method’s smoothing procedure produces cleaner
and more accurate results for the classification prediction. The GeoSparseNet’s ability
of geometric features to capture crisp, clear features from minor details. Because the
GeoSparseNet exploits LKA-based edge collapses pooling and unpooling constraints,
resulting in better overall accuracy Table 2.

5. Discussion

A perfect classification for simplified mesh would have the same visual coherence as
the original model and just the bare minimum of intricacies needed to accurately portray
the object without sacrificing any of its features. The definition of minimum complexity is
still somewhat unclear, however. It is challenging to come up with a standard by which
to end the simplification process. We provide a set of data in Figure 9 to illustrate how
the desired number of nodes affects the visual appearance. It is evident that the general
structures of the models do not significantly alter when the vertex counts of the models
exceed during LKA-based edge collapse operation. Upon further reduction of the objective
edges, the model’s structure may eventually get lost, signifying an ineffective simplification
attempt. When the overall number of nodes is high, we see that changing one or two of them
has minimal impact on the model. In the simplified approach, every edge modification will
provide surprising outcomes when the number of nodes is lowered to a minimal amount.
This is a decent negotiation, even if it may not be the ideal number of nodes.

Since polygonal forms predominate in these structures, piecewise planar buildings and
segmentation are our future primary target objects. Large free-form features in structures
will make our technique more computationally demanding, and the method’s benefits
could disappear. Additionally, as quadratic optimization-based classification of mesh
simplification techniques often have problems with polished nodes that are not precisely
positioned with the decoupled surfaces, the suggested solution is unable to ensure this and
will be our future task. additionally, to enable users to effectively change and evaluate the
models, we want to parse the simplified building models into a few semantic components
for future work.

6. Conclusions

This work introduced a novel method ‘GeoSparseNet’ for the classification of dense
urban triangular meshes. The approach updates the node locations after filtering the face
normals using the multi-source geometry-aware CNN technique. Filtering may improve
sharp edge features when denoising meshes on planar or non-planar areas. We have shown
that our mesh classification procedure, which most prior techniques just disregarded, may
considerably increase the performance of the classification algorithm for urban 3D meshes.
To lower the number of mesh faces, an enhanced LKA-based edge collapse approach for
pooling and unpooling is suggested for better classification predictions. For both planar
and non-planar locations, the technique effectively preserves the architectural structures
via the use of a multi-source geometry-aware CNN strategy. The experimental findings
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demonstrate the great generality and wide applicability of the suggested technique in
urban 3D model classification tasks. The streamlined models have broad applicability in
several graphics and mapping fields.
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