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Abstract: A new technique of additive prototyping filament volumetric nanostructuring based on
the high-speed mechanical mixing of acrylonitrile-butadiene-styrene (ABS) copolymer granules and
single-walled carbon nanotube (CNT) powder (without prior dispersion in solvents) is considered.
The morphological spectra of scanning electron microscopy (SEM) images of nanostructured filament
slice surfaces were obtained and characterized with the original mathematical simulation. The rela-
tions of structural changes in the “ingredient-matrix” polymer system with dielectric and mechanical
properties of the ABS-based filaments were established. The supplementation of 1.5 mass.% of CNT
powder to the ABS filament composition leads to the tensile strength increasing from 36 ± 2 to
42 ± 2 MPa. It is shown that the greater the average biharmonic amplitude and the morphological
spectrum localization radius of the slice surfaces’ SEM images, the lower the electrical resistance
of the corresponding nanostructured filaments. The possibility of carbon nanotube-modified fila-
ment functional layers forming using the extrusion additive prototyping technique (FFF) on the
surface of plasma-chemically modified PET substrates (for the creation of load cell elements) is
experimentally demonstrated.

Keywords: filament; additive manufacturing; carbon nanotubes; nanostructured mathematical
modeling; polymer substrate; surface modification

1. Introduction

The development of new technologies for the formation of microchannel systems and
sensors on solid and flexible polymer and polymer composite substrates is an important
area of modern materials science [1]. There is a need to develop wearable microelectron-
ics [2] (primarily for medical purposes) which form the prerequisites for creating sensors
and transducers based on flexible polymers [3–5] using 3D prototyping [6] or/and high-
performance printing technologies [7]. Fundamental and applied scientific achievements
in the field of additive (printing) technologies [8] provide an opportunity for the world’s
leading manufacturers to produce high-performance photonics and lighting products: solar
cells, LEDs, photosensitive arrays, etc. [9,10].

Among the set of additive technologies with a well-known range of advantages, the
most promising one is 3D prototyping using the extrusion FFF technique [11]. This is a
consequence of the low cost of the polymers (and some composites [12]) and the substrate
(filament) and the absence of material loss during product molding.

Polyethylene-terephthalate-glycol (PETG) [13], polylactide (PLA) [14], and the acrylonitrile-
butadiene-styrene copolymer (ABS) [15] seem to be useable for the creation of semicon-
ductors and conductive polymer-based elements with extrusion 3D printing. However,
the low interlayer adhesion of the filament and the peeling of the formed prototypes from
the heated 3D printer platform can lead to critical product defects [16]. Moreover, typical
filaments do not always and fully satisfy the technological requirements of the original
components when used in repair processes (for example, due to the differences between
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the physics-chemical characteristics of metals and polymers). Thus, it is necessary to reg-
ulate both the technological parameters of the extrusion additive prototyping [17] and
the properties of surface-textured polymer substrates for the high-quality and accurate
manufacturing of 3D-printed products.

The development of polymer composites with the improved properties set is an
urgent scientific and technical task [18]. It is known that the composite filaments have
the enhanced (compared to unfilled materials) mechanical [19,20], electrical [21,22] and
other properties [23–25]. The relevance of physics-chemical, functional and operational
properties’ direct regulation with volumetric [26] and the surface modification [27,28] is
due to the possibility of the significant changes in the polymers’ structure.

There is a demand for polymer composites with enhanced thermal and electrical
conductivity for robotic devices, unmanned transport systems, and high-tech medical and
printing equipment [29]. Carbon nanotubes (CNTs) have recently been actively used as
fillers [30,31] in creating conductive polymer-based compositions. The stability of CNT-
filled filament and corresponding product properties is provided by the homogeneity of
the filler spatial distribution over the polymer matrix volume [32]. Uneven distribution
leads to void formation (misprinting) and 3D-printed layer displacement (smearing). This
is a critical drawback that prevents the implementation of additive prototyping in flexible
electronic component manufacturing [33].

Free surface energy changes (caused by the transformations of the chemical composi-
tion, structure, and/or microtexture of the polymer materials) can provide both strengthen-
ing and an increase in electrical conductivity. The efficiency of polymer waste destruction
processes (for example, with bacteria and/or fungi [34]) is largely determined by the hy-
drophilicity and uniformity of water condensate distribution over the product’s surface.
Knowledge of the functional surface properties of polymers is of great importance for their
use in a wide range of technologies, including paints, coatings, and biocompatible materials
for transplantology, and for solving certain problems of microfluidics [35]. The surface
characteristics of the materials are taken into account when creating nanotechnologies
intended for the development of specialized devices on a flexible polymer base [36].

The most universal technique of polymer material free surface energy control is plasma-
chemical treatment [37,38]. The use of plasma-chemical treatment (especially in the presence
of the oxygen) leads to a decrease in the water contact angle by several times for polymers
such as polycarbonate, polyvinylidene fluoride, polystyrene, and polyimide [39]. However,
the achieved effect of wetting angle reduction is not always stable over time [40]. This
instability is apparently associated with the peculiarities of the plasma-chemical process.
Its primary actions are the breaking of chemical bonds and the formation of free radicals in
the polymer structure. Over time, these radicals undergo chemical (including oxidative)
and recombination transformations, leading to the cross-linking and the destruction of the
polymer, the formation of unsaturated bonds, etc. This should be taken into account when
forming 3D-printed and other structures on the polymer surface.

We propose a new technique for the volumetric nanostructuring of additive prototyp-
ing filaments with carbon nanotubes. It is based on the high-speed mechanical mixing of
ABS granules and CNT powder without the prior long-term dispersion of carbon nanotubes
in solvents. We also show that plasma-chemical treatment allows the reliable coating of
CNT-modified ABS filament functional layer on the surface of a polyethylene terephthalate
(PET) substrate.

2. Materials and Methods

We carried out the volumetric nanostructuring of a filament with various concentra-
tions (0.5, 1.5, 3.0, and 5.0 mass.%) of Tuball OCSiAl carbon nanotubes by mixing a melt
of acrylonitrile-butadiene-styrene copolymer (3D Systems, Rock Hill, SC, USA) with CNT
powder in a single-screw extruder (Filastruder, Atlanta, GA, USA) at a temperature of
240 ◦C, according to the procedure of Vasilyev [41]. The composition mixtures of ABS and
CNTs (weighing ~100 g) were prepared according to the scheme shown in Figure 1 by
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means of the mechanical grinding and mixing of ABS granules and CNT powder (Figure 1a)
in a grinder (Figure 1b) at a blade rotation speed of 38,000 rpm, with the addition of 100 mL
of liquid nitrogen to prevent the premature melting of the polymer material due to the
heating of the grinder’s metal walls (for 15 s). Next, 50 mL of methylene chloride (chemi-
cally pure) was added to the crushed ABS CNT composition (Figure 1c), and stirring was
carried out (for 5 min) in the overhead stirrer Heidolph Hei TORQUE Precision200 (Hei-
dolph Instruments GmbH&CO. KG, Schwabach, Germany) until a homogeneous substance
was obtained. This significantly reduced the duration of the preparation of ABS-CNT
compositions in comparison to the method of [42] due to the absence of the preliminary
stage of the ultrasonic dispersion of CNTs in various liquid media. The drying of the
ABS-CNT composition (necessary to remove the methylene chloride) was carried out for
6 h at a temperature of 100 ◦C in a ZEAMiL HORIZONT SPT-2000 vacuum oven (Poland)
(Figure 1d). Milling in the grinder (Figure 1e) was carried out to enable the extrusion
formation (Figure 1f) of the CNT-filled ABS filament thread (Figure 1g).
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Figure 1. The scheme of the CNT-volume-modified ABS filament thread fabrication. The letters a–g
indicate the technological operations described in the text. a—mixing composition (ABS pellets and
CNT) before grinding; b—grinding the composition; c—stirring the composition with methylene
chloride; d—dry composition after stirring; e—grinding dry composition; f—extrusion of filament;
g—ABS+CNT filament.

An empirical study of the volumetrically modified filaments’ morphological char-
acteristics was carried out using the scanning electron microscope JSM-7500 FA (JEOL,
Akishima-shi, Japan), operated in the secondary electron detection mode at an accelerating
voltage of 10 kV, and using an Oxford X- max 80 detector with a SATW-window at acceler-
ating voltages of 10 and 20 kV at an electron current of ~1 nA. When optimizing for the
spectral characteristics of silicon, the sensitivity of the device ranged from 0.2 (for oxygen)
to 1.0 (for carbon) atomic percent. Thus, the average depth of analysis calculated in the
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Win Casino v2.48 program using the Monte Carlo method was (for 10 kV) ~0.4 µm. The
average measurement error did not exceed 2%. A HoldPeak HP890CN digital multimeter
(HoldPeak, Zhuhai, China) was used to measure the electrical resistance of the experimen-
tal samples. The mechanical properties of the volume-modified filament were studied
using the ZwickRoell BZ1.0/TH1S Universal Tensile Testing Machine (178579/2007) (Zwick
GmbH & Co. KG, Ulm, Germany). The modification of PET substrates with a thickness
of 20, 140, and 300 microns was carried out in the specialized air-plasma system Diener
Plasma APC 500 (Diener electronic GmbH&Co. KG, Ebhausen, Germany). The surface
energy (γs) calculation (polar γs

P and dispersive γs
D components, mJ/m2) was carried out

using the Owens–Wendt–Rabel–Kaelble (OWRK) method based on the determination of
wetting edge angles (Θ◦) for distilled water (Θ◦water) and ethylene glycol (Θ◦eg) using
the installation KSVCAM 101 (KSV Instruments, Helsinki, Finland). The extrusion FFF
3D printing of microfluidic strain gauges, with electroconducting line lengths from 10 to
60 mm and thicknesses of 0.5, 1.0, and 1.5 mm (Figure 2), was carried out on an Anycubic
Mega S 3D printer (Shenzhen, China) with ABS filaments filled with carbon nanotubes, at a
temperature of 260 ◦C and a nozzle diameter of 400 microns.
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Figure 2. Installation for directed physicochemical design through the plasma-chemical treatment of
the surface of polymer substrates used in extrusion 3D prototyping (A); configuration of strain gauge
elements (B) and schematic diagram [43] of extrusion FFF 3D printing (C).

To determine the peel strength σ, test objects in the form of disks with an area of 1 cm2

were made from PLA filament on the surface of a PET substrate (Figure 3). Next, a metal
cylinder with the butt area of 1 cm2 was fixed to the test object using cyanoacrylate glue
“Moment” (“Henkel”), which was attached to the upper clamp of an Instron 3382 tensile
testing machine by means of a flexible rod. The values of the tensile strength were recorded
using the StretchTest program [16].
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3. Results and Discussion
3.1. Creation of CNT-Nanostructured Filaments for Additive Manufacturing

A cross-section of an unfilled ABS filament has a homogeneous surface structure
(Figure 4a,b), the elemental composition of which corresponds to an acrylonitrile-butadiene-
styrene copolymer (Figure 4c–e). The presence of oxygen (~2.5 wt.%) in the unfilled ABS
filament is due to the long-term storage of the granules in natural conditions and to thermal
oxidation under the extrusion process [44].

The dispersion of CNTs in various solvents is one of the main preparatory operations
for the manufacture of filaments filled with carbon nanotubes (the “wet method” [45–47]).
It is necessary to obtain a suspension with a high concentration of individual (non-
agglomerate) nanotubes. The filament (obtained with the “wet method”) is characterized
by a high degree of diameter instability [48]. This worsens the interlayer adhesion when
preparing products using 3D printing. The multistage and long-term process of obtaining
structurally homogeneous filaments filled with carbon nanotubes (implying the use of
expensive extrusion rheometers [49]) is described by Podsiadły [42] and Verma [50]. The
ultrasonic dispersion of CNTs in acetone was carried out for 20 min to destroy the agglom-
erates. The ABS granules were added to the suspension. The composition was mixed in a
magnetic stirrer for 5 h. The ABS/CNT composition was dried in vivo at room temperature
for 24 h to evaporate the solvent. The granulate from the ABS-CNT composition was
additionally dried at a temperature of 100 ◦C for 60 min for the final evaporation of the
acetone.

The specified drying time was still insufficient to remove the acetone from the composi-
tion [50]. The remaining solvent caused the formation of pores in the filament. It eventually
led to critical defects in the composite filament. The manufacturing process had to be
repeated four times according to the “extrusion–granulation–extrusion” scheme in order to
obtain a structurally homogeneous ABS-CNT thread with a diameter of 1.7 mm. Thus, it
took more than 30 h to obtain an ABS-CNT filament with a high degree of uniformity in the
concentration of components [50]. Other “wet methods” for obtaining composite materials
were developed [51–54]. The preparation of polystyrene-based composites with the pre-
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dispersion of CNTs (0.0025 wt.%) in 300 mL of CHCl3 in a 70 W ultrasonic homogenizer
for 30 min, followed by drying the suspension in a desiccator at 400 ◦C until the complete
evaporation of the solvent, was described in [51].
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surface of the CNT-volume-modified ABS filament thread cross-section.

A multistage technology for the production of polyvinylidene fluoride-based PTFE/CNT
composites (with a number of thread extrusion technological limitations) was proposed by
Almazrouei [52]. It consists of the pretreatment of composite powders with ultrasound in
deionized water and ethanol (under various technological conditions) and the production
of composite sheets (a 500 kg plate measuring 6 × 6 inches, at a temperature of 170 ◦C for
10 min) using a pressing machine.

The technique of obtaining polybutylene terephthalate-based PBT/CNT compos-
ites for electrically conductive surface structure additive prototyping was described by
Gnanasekaran [53]. CNT dispersions were pre-prepared in 100 mL of isopropanol and
treated with ultrasound for 2 h in an ice bath to prevent heating. PBT was added to the
mixture and it was additionally treated with ultrasound for 60 min. Isopropanol was
evaporated in a water bath at a temperature of 90 ◦C. The resulting PBT/CNT composition
was dried at room temperature for 24 h.

The technology for producing polylactide-based PLA/CNT composites was proposed
by Xu [54]. It consists in dissolving PLA granules in dichloromethane, mixing CNT powder
using a magnetic stirrer, and drying the resulting composition in a fume hood.

We have developed a technology for the volumetric nanostructuring of acrylonitrile
butadiene styrene with carbon nanotube powder. It consists of the high-speed mechanical
mixing of ABS granules and CNT powder without the prior long-term dispersion of carbon
nanotubes in solvents.

As a result, a macroscopically homogeneous ABS/CNT filament for additive proto-
typing (Figure 5a) was obtained. Its micro- and nanostructure were studied using the SEM
(Figure 5b–f) and EDS (Figure 6) techniques.
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The EDS images (Figure 6) of chemical element distributions in the cross-sectional
plane of the filament thread make it possible to observe the changes in the degree of
homogeneity for carbon (C), nitrogen (N), oxygen (O), iron (Fe), and silicon (Si), with
an increase in modifier content in the polymer matrix. The presence of Fe and Si in
the composition is explained by the fact that the CNT powder contains up to 15% of
metallic and other impurities. The Fe and Si content in the ABS-based composite increases
proportionally from 0.1 to 0.4 wt.% with an increase in CNTs from 0.5 to 5 mass.%; and the
amount of C decreases from 89.9 (Figure 4c) to 86.4 wt.%.

The changes in the carbon distribution over the polymer matrix (Figure 6) (caused
by the volumetric modification of ABS with the carbon nanotubes) significantly affect the
electrical and mechanical properties of the composite material (Figure 7b).
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The introduction of 1.5 mass.% of CNT powder to the ABS filament composition leads
to the tensile strength increasing from 36 ± 2 to 42 ± 2 MPa. The volumetric modification of
the ABS filament with 5 mass.% of CNTs decreases the electric resistance from 3.4 (commer-
cially available U3Print ABS Conductive 2M filament, containing 15 mass.% of CNTs) to
0.3 MOhm (~10 times). The original technique [55,56], based on the digital representation
of polymeric material surface SEM images in a two-dimensional trigonometric Fourier
series form, was used for the analytical characterization of the CNT-nanostructured ABS
filaments:

I(x, y) ∼= ∑
k,l

Ikl = ∑
k,l




akl
bkl
ckl
dkl


T

·
(

cos(2π·k·x/Lx)
sin(2π·k·x/Lx)

)
×

(
cos

(
2π·l·y/Ly

)
sin

(
2π·l·y/Ly

))
 (1)

where k, l are the biharmonic order indices; akl, bkl, ckl, and dkl are the partial amplitudes;
and ((2π·k·x)/Lx) are the partial phases of the biharmonic components.

Each mathematical expression Ikl can be associated with a regular pattern charac-
terized by two spatial periods (Lx and Ly). The additive set of such patterns forms the
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material structure 3D model. So the main textural–morphological matrix characteristic of
the experimental samples’ surfaces is the morphological spectrum in which components
(amplitudes) can be approximately calculated with the equation:

Akl
∼=

√
a2

kl + b2
kl + c2

kl + d2
kl (2)

The morphological spectra (obtained for the SEM images of the experimental samples’
surfaces) are shown in Figure 8.
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Figure 8. The morphological spectra Akl (A–C), their projections onto the spatial plane of the lattice
wave vectors k and l (A1,B1,C1), and their profilograms Akl (k) (A2,B2,C2) for the ABS filaments:
unfilled (A) and nanostructured with 3 mass.% (B) and 5 mass.% (C) of CNTs.

It can be seen (Figure 8) that an increase in the content of carbon nanotubes in the
filament leads to an increase in the average amplitude and an expansion of the morpho-
logical spectrum localization area. The morphological spectra were approximated by a
two-dimensional Gaussian function for a quantitative description of these changes in the
polymeric materials’ surface structure. The Gaussian function maximum value determines
the average amplitude, and the characteristic size of its flat section in 1/e level is the
localization area radius (Figure 9).
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Figure 9. The morphological spectrum Gaussian models (A1,B1,C1) and their projections onto the
spatial plane of the lattice wave vectors k and l (A2,B2,C2) with the electrical resistance values R
for the obtained ABS filaments: unfilled (A) and nanostructured with 3 mass.% (B) and 5 mass.%
(C) of CNTs.
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So we have established (Figure 9) that the larger the morphological spectrum localiza-
tion area radius and the average biharmonic amplitude, the lower the electrical resistance
of the ABS filament thread which is volumetrically modified with CNTs.

3.2. CNT-Nanostructured Filaments for Additive Manufacturing Elements of Load Cells on
Modified PET Substrates

It is obvious that the initial polymer substrates are of little use for the manufacture
of strain gauges using extrusion additive technologies, since the adhesion of the filament
to their surface is insufficient [38]. The adhesive and functional properties of 3D-printed
sensors are also affected by the configuration of the corresponding printed elements (see
Figure 10).
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Figure 10. Printing defects caused by filament exfoliation due to insufficient adhesion to the initial
(unmodified) PET substrate.

There are printing defects on the polymer substrates’ surface (Figure 10) caused by the
exfoliation of the filament layers due to low adhesion to PET as a result of the non-optimal
design and configuration of printed strain gauges.

Since the amount of adhesion and the uniformity of the application of filament layers
to polymer substrates directly depend on the structure (morphology) and chemical compo-
sition of their surface, as well as on the modification parameters (duration), we monitored
these parameters with high accuracy before and after modification [38].

It can be seen (Figure 11) that the change in the chemical composition of the near-
surface and surface layers of the PET substrates during plasma-chemical treatment is
associated with the oxidizing activity of the plasma, which correlates with the EDS data
(Figure 11B–D)—the increase in the duration of the modification contributes to an increase
in oxygen content from 18 to 21 at.%. and, accordingly, oxygen-containing functional
groups (the presence of nitrogen in the amount of 2 at.% is due to its presence in the air).

The plasma-chemical treatment of PET substrates (Figure 12) is most effective at a
distance of 3–6 cm from the plasma source, because at smaller distances, a significant
thermal effect on the polymers occurs, and at larger distances, the impact of the plasma arc
on the polymer surface is insufficient.

A significant (Figure 13) change in the surface energy of the PET substrates (on average
2 times) contributed to a proportional increase in the adhesion of the functional layers of
the ABS filament.

It was revealed that the strength of the adhesive interaction of electrically conductive
filaments based on ABS and PET substrates with a functional oxygen-containing layer in-
creased by more than 4.5 times compared to the original (unmodified) substrates (Figure 14).
This will ensure the reliable formation of bending sensor elements (gauge elements) using
extrusion additive prototyping.
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Figure 14. Strain gauge element on the surface of a modified PET substrate with reliable fixation of
ABS filament layers (no filament peeling; for comparison, see Figure 10).

4. Conclusions

We propose a new approach to the bulk modification of ABS filaments with CNTs to
eliminate the preliminary stage of individual ingredient dispersion when manufacturing
electrically conductive and semiconductor components of flexible electronics and planar
photonics using additive prototyping technologies.

The morphological transformations of the ABS copolymer matrix caused by CNT
nanotexturing contributed to a decrease in the electrical resistance and an increase in the
mechanical strength of the created composite materials.

The control of the technological parameters of the plasma-chemical treatment of PET
substrates contributed to the high-quality application of 3D-printed strain gauge elements
(bending sensors) on their surfaces using extrusion additive prototyping.

We revealed that the strength of the adhesive interaction of electrically conductive
filaments based on ABS and PET substrates with a functional oxygen-containing layer
increased by more than 4.5 times compared to the original (unmodified) substrates.

This provides an opportunity for the development and improvement of industrial
additive technologies (3D printing) when manufacturing different high-tech devices (elec-
trochemical sensors, microhydrodynamic contactors, glucose meters, and radio-absorbing
materials) on a flexible polymer basis.
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