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Abstract: The risk of developing pulmonary hypertension (PH) in people living with HIV is at least
300-fold higher than in the general population, and illicit drug use further potentiates the development
of HIV-associated PH. The relevance of extracellular vesicles (EVs) containing both coding as well
as non-coding RNAs in PH secondary to HIV infection and drug abuse is yet to be explored. We
here compared the miRNA cargo of plasma-derived EVs from HIV-infected stimulant users with
(HIV + Stimulants + PH) and without PH (HIV + Stimulants) using small RNA sequencing. The data
were compared with 12 PH datasets available in the GEO database to identify potential candidate
gene targets for differentially altered miRNAs using the following functional analysis tools: ingenuity
pathway analysis (IPA), over-representation analysis (ORA), and gene set enrichment analysis (GSEA).
MiRNAs involved in promoting cell proliferation and inhibition of intrinsic apoptotic signaling
pathways were among the top upregulated miRNAs identified in EVs from the HIV + Stimulants + PH
group compared to the HIV + Stimulants group. Alternatively, the downregulated miRNAs in the
HIV + Stimulants + PH group suggested an association with the negative regulation of smooth
muscle cell proliferation, IL-2 mediated signaling, and transmembrane receptor protein tyrosine
kinase signaling pathways. The validation of significantly differentially expressed miRNAs in an
independent set of HIV-infected (cocaine users and nondrug users) with and without PH confirmed
the upregulation of miR-32-5p, 92-b-3p, and 301a-3p positively regulating cellular proliferation and
downregulation of miR-5571, -4670 negatively regulating smooth muscle proliferation in EVs from
HIV-PH patients. This increase in miR-301a-3p and decrease in miR-4670 were negatively correlated
with the CD4 count and FEV1/FVC ratio, and positively correlated with viral load. Collectively, this
data suggest the association of alterations in the miRNA cargo of circulating EVs with HIV-PH.

Keywords: extracellular RNA; pulmonary vascular disease; substance abuse; cocaine

1. Introduction

The use of antiretroviral medication has become increasingly important in recent years
as a means of efficiently suppressing HIV replication and extending the survival of people
living with HIV (PLWH). However, longer lifespans of PLWH on highly active antiretro-
viral therapy (HAART) have led to an increased incidence of co-morbidities including
pulmonary hypertension (PH). Pulmonary hypertension, which is defined by elevated
pressure in the peripheral pulmonary arteries and failure of the right ventricle, is caused by
vasoconstriction and progressive blockage of the distal pulmonary arteries [1]. The risk of
developing pulmonary hypertension in PLWH is 300–6000-fold more than in individuals
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without HIV infection [2]. The reports on the impact of antiretroviral therapy on HIV-PH
continue to be contradictory, and individuals who have HIV-PH often die from the ill-
ness [3,4], thereby making HIV-PH one of the most serious non-infectious consequences of
HIV infection [5]. Further, illicit drug use increases HIV transmission, disease progression,
and non-compliance with ART, particularly in older people with pulmonary hypertension
This “double hit” increases the risk of HIV-associated pulmonary hypertension (HIV-PH)
and right heart failure [2].

The possible association of HIV-associated PH and the use of illicit drugs has been
extensively studied in our lab. Research has indicated that the pulmonary vascular remod-
eling linked to the development of PH is enhanced in HIV-infected individuals, Simian
Immunodeficiency Virus-infected macaques, and HIV transgenic rats by a second hit of
drugs of abuse [6,7]. One of the main causes of PH pathophysiology, which leads to
endothelial apoptosis and smooth muscle proliferation is loss of or reduction in bone mor-
phogenetic protein receptor (BMPR)-2 expression [8]. We reported previously that cocaine
increases the HIV-Tat, Nef, and gp120-driven decrease in the expression of BMPRs in pul-
monary arterial smooth muscle cells (PASMCs) [7,9], and this increase corresponded with
the activation of pro-proliferative TGF-β signaling, promoting hyper-proliferation of these
cells [10,11]. Our previous reports further suggest translational repression of BMPR-2 by
miRNAs in cocaine and/or HIV-1 protein(s)-mediated smooth muscle hyperplasia [9]. We
did not observe a decrease in BMPR-2 at the mRNA levels in these cells or in HIV-transgenic
rats and PLWH exposed to cocaine unlike other forms of PH [12,13].

Non-coding microRNAs have gained increasing attention as major regulators of gene
expression in health and disease. These are protected from degradation by incorporation
into extracellular vesicles (EVs). EVs carry various types of non-coding RNAs including
pre- and mature-miRNAs, tRNAs, long non-coding RNAs, and circular RNAs; and changes
in the levels of these in EVs have been associated with the pathologic processes of vari-
ous diseases, including PH [5,14–17]. These EVs are actively excreted into the systemic
circulation during disease conditions allowing for investigation of their role as mediators
and markers of disease pathogenesis. Previous studies from our lab have shown that
EVs released by HIV-infected monocyte-derived macrophages can potentiate pulmonary
vascular endothelial injury and smooth muscle proliferation [5], leading to the develop-
ment of cardio-pulmonary dysfunction [18]. We particularly reported that miRNA cargo
in the EVs derived from HIV-infected macrophages in the presence of cocaine treatment
can activate the proliferative PI3K/AKT signaling in pulmonary arterial smooth muscle
cells [5]. In continuation of these initial cell-culture findings, we here now investigated
the miRNA cargo of circulating EVs from PLWH with and without PH to identify unique
EV-linked miRNAs associated with pulmonary hypertension in stimulant users living with
HIV infection.

2. Material and Methods
2.1. Human Samples and Data Collection

The de-identified human plasma samples from PLWH abusing stimulants with (PLWH
+ Stimulants + PH) and without (PLWH + Stimulants) PH from the National Neuro-AIDS
Tissue Consortium (NNTC) were used for small RNA seq analysis on plasma-derived EVs
(n = 8). The stimulant users consisted of poly-drug users such as opioids, amphetamines,
and/or cocaine users. For validation of selected miRNAs, plasma samples collected at
the University of Pittsburgh HIV Cohort approved by the institutional review board were
also used. Details on the inclusion/exclusion criteria have been published in previous
reports [18–20]. A total of 36 samples [HIV-Uninfected non-drug users (n = 6), HIV-
Uninfected cocaine users (Coc) (n = 6), people living with HIV non-drug users (PLWH)
(n = 6), PLWH cocaine users (PLWH + Coc) (n = 6), PLWH with pulmonary hypertension
(PLWH + PH) (n = 12, n = 6 non-drug users and n = 6 cocaine users)] were used for
validation. The individuals included in the cocaine group were those who self-reported the
use of cocaine (inhaled, crack, or intravenously) during the six months before their visit and
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had not previously used any other stimulants, opioids, or sedatives. Those who did not use
drugs stated that they had never used illegal drugs of any kind. Among PLWH without
PH (cocaine and non-drug users), n = 7 of 12 were hepatitis C positive, while the PLWH +
PH group had n = 4 of 11 positives with the status of one unknown. Further uninfected
cocaine users were mostly positive for Hepatitis C (4/5 and 1 unknown). About 80% of
HIV-infected individuals were smokers with only 1–2 patients being diabetic across all the
groups. The details on their demographics, use of antiretroviral therapy, viral load, plasma
CD4+ T cell count, pulmonary function test, echocardiography, and other co-morbidities
were collected previously [18–20]. PH was identified as pulmonary artery systolic pressure
(PASP) greater than 40 mmHg, and it was not limited to the existence of Group I PH.

2.2. Isolation of Extracellular Vesicles

Extracellular vesicles were isolated from 500 µL of human EDTA plasma using the
exoEasy kit (QIAGEN Inc., Germantown, MD, USA) as in our published findings [18].
In short, samples of plasma were thawed on ice and then centrifuged at 300× g for ten
minutes at 4 ◦C. After discarding the pellet, the supernatant was centrifuged for 20 min at
4 ◦C at 3000× g. The larger vesicles were removed from the supernatant by centrifuging it
again for 30 min at 4 ◦C at 10,000× g. Following the filtration of the resultant supernatant
using a 0.45 µm filter, the filtrate was processed to isolate small EVs using an exoEasy
kit (Qiagen, Germantown, MD, USA) according to the manufacturer’s instructions. The
quantity and size of the EVs was determined with the Nanosight LM10 system (Malvern
Panalytical, Malvern, UK). In addition, EVs were characterized using a Transmission
Electron Microscope (TEM), and Western blotting using CD9, CD81, flotillin-1, and Alix
antibodies as detailed in our previous study [18] and shown in Supplementary Figure S1.

2.3. RNA Isolation from EVs

Before RNA separation from EVs, 1 µL (5 nM) of Cel-miR-39-3p miRNA [21] of
Caenorhabditis elegans, which lacks homology with human miRNA (MSY0000010; (QIAGEN
Inc., Germantown, MD, USA)), was spiked into 32 µg of EVs. Total RNA was then extracted
from spiked EVs using the Qiagen miRNeasy Kit followed by measurement of RNA purity
and concentration using a UV–vis spectrophotometer.

2.4. Small RNA Sequencing Analysis

To obtain an unbiased global profile of small RNA present in EVs, small RNA sequencing
on RNA isolated from EVs was performed by Quick Biology (Monrovia, CA, USA). The
analysis was performed in biological quadruplicates. After 3′ adapter removal and low-quality
bases filtering using the Cutadapt software-version 1.18 (https://cutadapt.readthedocs.io/
en/stable/, accessed on 26 April 2024) [22], the small RNA reads were mapped to the
miRBase database (version 21) using the Bowtie alignment software (Bowtie version 1.2.2,
https://bowtie-bio.sourceforge.net/index.shtml, accessed on 26 April 2024) [23]. Reads
that were too short (<16 bp) were removed before alignment.

MiRNA abundance estimates were obtained using the QIASeq miRNA tools (QIAGEN
Inc., Germantown, MD, USA). Between 3.7 and 5.4 million reads were obtained for each
sample. Expression normalization and differential expression calculations were performed
in DESeq2 software (DESeq2 version 1.38.3, https://bioconductor.org/packages/release/
bioc/html/DESeq2.html, accessed on 26 April 2024) [24] to identify statistically significant
differentially expressed miRNAs. DESeq2 employs a negative binomial generalized linear
model (NB-GLM) for statistical calculations and works with minimal levels of biological
replication. The significance p-values were adjusted for multiple hypotheses testing using
the Benjamini and Hochberg method [25] establishing a false discovery rate (FDR) for each
miRNA. MiRNAs with an absolute fold difference ≥ 1.5 and FDR ≤ 0.1 were considered
significant for downstream analysis.

https://cutadapt.readthedocs.io/en/stable/
https://cutadapt.readthedocs.io/en/stable/
https://bowtie-bio.sourceforge.net/index.shtml
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
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2.5. MiRNA Gene Interaction Networks

We used the Ingenuity Pathway Analysis software (IPA; Ingenuity Systems, www.
ingenuity.com (last accessed on 15 June 2021)) to construct interaction networks between
the perturbed miRNAs and their target genes. IPA is an online software tool that provides
a comprehensive data repository of information on genes, and miRNAs together with
their experimentally validated and predicted interactions and biological functions. Gene
targets were identified as either experimentally observed, predicted with high confidence,
or predicted with moderate confidence. We analyzed 12 datasets, publicly available in
the GEO database (GSM3819897, GSE48149, GSE15197, GSE79786, GSE53408, GSE126262,
GSE126262, GSE15197, GSE48149, GSE69416-1, GSE69416-2, GSE69416-3), associated with
pulmonary hypertension, to identify potential candidate genes for our miRNAs. To be se-
lected, genes had to be significantly differentially expressed (absolute fold-change ≥ 1.5 and
p-value ≤ 0.05) concordantly in at least two of the datasets and not discordantly expressed
in any of the other datasets. Proceeding from the understanding that miRNAs generally act
as post-transcriptional gene suppressors, only those miRNA-mRNA targets with opposing
differential expression patterns were reported. We used IPA’s Molecule Activity Predictor
(MAP) tool to predict the activated state of PH explained by the differential expression
pattern of miRNAs in our data and the expression pattern of their associated target genes.

2.6. MiRNA Enrichment Analysis

We used the miRNA enrichment analysis and Annotation Tool (MiEAA) software
(miEAA 2.1, https://ccb-compute2.cs.uni-saarland.de/mieaa/, accessed on 26 April
2024) [26] for miRNA enrichment analysis and annotation. MiEAA was used to identify sig-
nificantly over-represented functional categories and pathways (p-value ≤ 0.05) associated
with the differentially expressed miRNAs. It was also used for gene (miRNA) set enrich-
ment analysis (GSEA) [27]. MiEAA queries a multitude of databases in its analysis includ-
ing, miRTarBase [28] for miRNA gene target information, gene ontology [29] for annotations
derived over miRTarBase, KEGG [30] for pathways, MNDR [31] for miRNA-associated dis-
eases, and miRWalk [32] to provide a plethora of information on the perturbed miRNAs. Up-
regulated and downregulated miRNAs were analyzed separately in the over-representation
analysis. We used QuickGO (https://www.ebi.ac.uk/QuickGO/annotations, accessed on
26 April 2024) [33] to identify genes associated with significantly enriched gene ontology
terms specifically relevant to our study (GO2001243, GO0042127, GO0048662, GO0007169,
GO0038110) and IPA to establish putative interactions between the perturbed miRNAs and
those genes with potential regulatory effects.

2.7. Validation of miRNAs Using Quantitative RT-PCR

The RNA isolated from EVs was used to prepare cDNAs specific to miRNAs using
miScript II RT Kit (QIAGEN Inc., Germantown, MD, USA), according to the manufacturer’s
instructions followed by qRT-PCR by using QuantiTect SYBR Green PCR Kit (QIAGEN
Inc., Germantown, MD, USA).

2.8. Statistical Analysis

One-way ANOVA was used for statistical analysis, and for multiple comparisons, a
post hoc Bonferroni correction was applied (Prism; GraphPad, La Jolla, CA, USA). After
applying Bonferroni correction, the data were considered statistically significant when
p-values were ≤0.05.

3. Results
3.1. Enrichment of miRNAs Positively Regulating Smooth Muscle Proliferation and Negatively
Regulating Apoptosis in the Plasma-Derived EVs from HIV-Infected Individuals with
Pulmonary Hypertension

The RNA-seq analysis of RNA from plasma-derived EVs of HIV-infected stimulant
users (HIV + Stimulants) and HIV-infected stimulant users with PH (HIV + Stimulants +

www.ingenuity.com
www.ingenuity.com
https://ccb-compute2.cs.uni-saarland.de/mieaa/
https://www.ebi.ac.uk/QuickGO/annotations
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PH) revealed differential expression patterns of miRNAs in EVs between individuals with
and without PH as shown in the heatmap of Figure 1A and Table 1. Seven clusters of gene
sets were identified by unsupervised hierarchical clustering (UHC). Notably, miRNAs in
clusters 1–3 were downregulated in the HIV + Stimulants + PH group in comparison to
HIV + Stimulants and were found to be enriched in pathways bearing gene ontology (GO)
functional terms (Table 1). These changes were related to interleukin-2-mediated signaling,
negative regulation of smooth muscle cell proliferation, transmembrane receptor protein
tyrosine kinase signaling pathway, and small ubiquitin-like protein (SUMO) polymer
binding. In contrast, miRNAs in clusters 4–7 were upregulated in HIV + Stimulants +
PH samples in comparison to HIV + Stimulants and were enriched in pathways such as
regulation of cell proliferation, negative regulation of intrinsic apoptotic signaling pathway,
and positive regulation of interleukin-12 secretion. Importantly, 13 EV-derived miRNAs
from the GO functional pathways listed above were found at higher levels while 14 were
observed at lower levels (FC > 2 and FDR < 0.05) when patients within the HIV + Stimulants
+ PH grouping were compared to the HIV Stimulants only group (Figure 1B).
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Figure 1. (A) Heatmap of the standardized expression of miRNAs that are significantly differentially
expressed between HIV + STIM + PAH and HIV + STIM samples. MiRNAs are represented in rows
and samples in columns. The normalized expression data were row standardized (zero mean and unit
variance) with negative values in green representing relatively low expression and positive red values
representing relatively high expression. The data were hierarchically clustered both row and column
wise using the Euclidean distance measure and Ward’s linkage function. (B) Volcano plot of the
differential expression profile of miRNAs between HIV + STIM + PAH and HIV + STIM samples. The
x-axis represents the log of the differential expression ratio, and the y-axis represents the negative log
of the false discovery rate. The vertical red perforated lines represent the +/− 1.5-fold-change values.
The horizontal red perforated line represents the 0.05 FDR value. MiRNAs that are significantly
downregulated in HIV + STIM + PAH relative to HIV + STIM are shown in green and those that are
significantly upregulated are shown in red.
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Table 1. Selected miRNAs in the seven sub-clusters of the dendrogram in Figure 1A formed by hierarchically clustering the miRNA and their associated biological
functions.

HIV + STIM + PH
Downregulated

Interleukin-2-Mediated Signaling
Pathway GO0038110

Negative Regulation of Smooth
Muscle Cell Proliferation

GO0048662

Transmembrane Receptor Protein Tyrosine
Kinase Signaling Pathway GO0007169

SUMO Polymer Binding
GO0032184

Cluster 1 hsa-miR-19a-3p, hsa-miR-484,
hsa-miR-6130, hsa-miR-642a-5p

hsa-miR-19a-3p, hsa-miR-26b-5p,
hsa-miR-484, hsa-miR-642a-5p

hsa-miR-19a-3p, hsa-miR-26b-5p, hsa-miR-484,
hsa-miR-6130, hsa-miR-642a-5p

hsa-miR-19a-3p, hsa-miR-26b-5p,
hsa-miR-484, hsa-miR-6130

Cluster 2 hsa-miR-615-3p, hsa-miR-6754-3p,
hsa-miR-6778-3p

hsa-miR-1260b, hsa-miR-4659a-3p,
hsa-miR-525-5p, hsa-miR-548e-3p,
hsa-miR-6754-3p, hsa-miR-6859-5p

hsa-miR-1260b, hsa-miR-4520-3p, hsa-miR-4530,
hsa-miR-4659a-3p, hsa-miR-525-5p,

hsa-miR-548e-3p, hsa-miR-548v, hsa-miR-615-3p,
hsa-miR-6778-3p, hsa-miR-6785-5p,
hsa-miR-6794-3p, hsa-miR-6809-5p,

hsa-miR-6859-5p

hsa-miR-4659a-3p, hsa-miR-548v,
hsa-miR-6785-5p

Cluster 3
hsa-miR-1294, hsa-miR-4279,

hsa-miR-4763-5p, hsa-miR-6129,
hsa-miR-6855-3p, hsa-miR-93-3p

hsa-miR-1207-5p, hsa-miR-1294, hsa-miR-1911-3p,
hsa-miR-4279, hsa-miR-4763-5p, hsa-miR-567,

hsa-miR-6129, hsa-miR-6796-5p, hsa-miR-6855-3p,
hsa-miR-93-3p

hsa-miR-1911-3p, hsa-miR-6129,
hsa-miR-6796-5p, hsa-miR-93-3p

HIV + STIM + PH
Up Regulated Regulation of Cell Proliferation GO0042127 Negative Regulation of Intrinsic Apoptotic

Signaling Pathway GO2001243

Positive Regulation of
Interleukin-12 Secretion

GO2001184

Cluster 4 hsa-miR-1-3p, hsa-miR-126-3p, hsa-miR-342-3p, hsa-miR-9-5p hsa-miR-1-3p, hsa-miR-126-3p, hsa-miR-342-3p,
hsa-miR-9-5p

Cluster 5
hsa-miR-1224-5p, hsa-miR-1292-3p, hsa-miR-186-3p, hsa-miR-22-3p,

hsa-miR-335-3p, hsa-miR-3652, hsa-miR-373-3p, hsa-miR-4282,
hsa-miR-5787, hsa-miR-660-3p, hsa-miR-92b-3p

hsa-miR-1224-5p, hsa-miR-1292-3p,
hsa-miR-186-3p, hsa-miR-3652, hsa-miR-373-3p,
hsa-miR-4282, hsa-miR-5787, hsa-miR-629-3p,

hsa-miR-660-3p, hsa-miR-92b-3p

hsa-miR-186-3p, hsa-miR-22-3p,
hsa-miR-335-3p, hsa-miR-5787,

hsa-miR-629-3p, hsa-miR-92b-3p

Cluster 6

hsa-miR-144-3p, hsa-miR-148a-3p, hsa-miR-149-3p, hsa-miR-192-5p,
hsa-miR-302a-5p, hsa-miR-31-5p, hsa-miR-3672, hsa-miR-4505,

hsa-miR-4733-5p, hsa-miR-548f-3p, hsa-miR-5688, hsa-miR-579-3p,
hsa-miR-6501-5p, hsa-miR-6797-5p, hsa-miR-7844-5p

hsa-miR-144-3p, hsa-miR-148a-3p, hsa-miR-149-3p,
hsa-miR-192-5p, hsa-miR-302a-5p, hsa-miR-31-5p,

hsa-miR-4429, hsa-miR-4505, hsa-miR-4733-5p,
hsa-miR-548f-3p, hsa-miR-5688, hsa-miR-6797-5p,

hsa-miR-7844-5p

hsa-miR-3672, hsa-miR-4429,
hsa-miR-4505, hsa-miR-579-3p,

hsa-miR-6501-5p

Cluster 7 hsa-miR-138-5p, hsa-miR-203b-3p, hsa-miR-320d, hsa-miR-338-5p,
hsa-miR-3690, hsa-miR-4458

hsa-miR-203b-3p, hsa-miR-320d, hsa-miR-338-5p,
hsa-miR-3690, hsa-miR-4458
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We next performed functional over-representation analysis (ORA) of the identified
differentially expressed miRNAs using the web-based application miEAA as described
in the Section 2. We selected some of the PH-relevant pathways (enriched) from the an-
notations derived over miRTarBase (gene ontology). As shown in Figure 2A, the ORA of
upregulated miRNAs in HIV-infected stimulators with PH compared to non-PH subjects
showed notable enrichment of miRNA targets mapping to pathways such as positive
regulation of cell proliferation and negative regulation of intrinsic apoptosis signaling
among the top 19 most significant pathways. Some of the highly significant upregulated
miRNAs were common to the positive regulation of cell proliferation [34] and negative
regulation of intrinsic apoptosis signaling pathways. They included miR-373-3p, miR-9-
5p, miR-192-5p, miR-148a-3p, miR-92b-3p, miR-301a-3p, and miR-203b-3p (Figure 2A).
Additional miRNAs involved in the regulation of cell proliferation including miR-4458,
miR-92b-3p, miR-301a-3p, miR-373-3p, and miR-148a-3p were either experimentally ob-
served or predicted to target TGFβR2 and/or TNF molecules (Supplementary Figure S2A).
MiRNA-92b-3p in addition to TNF has been experimentally validated to target Krüppel-like
factor 4 (KLF4), BMPR2, CCAAT enhancer-binding protein alpha (CEBPA) [35–37], while
miR-4458 is known to target cyclin-dependent kinase 6 (CDK6), Neurofibromin 2 (NF2),
CEBPA, PR domain zinc finger protein 1 (PRDM1), and Signal transducer and activator
of transcription 3 (STAT 3) in addition to TGFBR2 and TNF. All these molecules belong to
the pathways significantly involved in PH pathogenesis [38–41]. The significantly higher
levels of miRNAs in EVs from the HIV + Stimulants + PH group over-representing nega-
tive regulation of intrinsic apoptosis signaling based on experimental validation included
miR-133a-3p targeting BCL2, BCL2L1/L2, MCL1, and AKT1, miR-4458 targeting MMP9 and
BCL2L1, and miR-451a and miR-1-3p targeting BCL2 (Supplementary Figure S2B).
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Figure 2. Over-representation analysis using miEAA. (A) Significantly upregulated and (B) signif-
icantly downregulated miRNAs depicted as a heatmap representing the effected pathways. The
diagrams only represent pathways that contain at least four miRNAs and miRNAs that are in at least
four pathways. The cells corresponding to an miRNA that is associated with regulated pathways are
colored red for upregulated and green for downregulated pathways whereas the not significantly
altered pathways are in black. The expression fold difference of the miRNAs is given on top of the
heatmap along the column of the corresponding miRNA. The color-bar along the right margin of
the heatmap indicates the over (orange)- or under (green)-representation status of the miRNAs in
the pathway.

The ORA analysis of downregulated miRNAs in EVs from the HIV + Stimulants + PH
group had significant enrichment of interleukin-2 mediated signaling, transmembrane re-
ceptor protein kinase signaling, and negative regulation of smooth muscle cell proliferation
among the top 25 most significant pathways (enrichment p-value < 0.05) (Figure 2B). Some
of the common miRNAs in these pathways included miR-107, miR-3194-3p, miR-6778-3p,
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miR-19b-3p, miR-4670-3p, miR-5571-5p, and miR-6859-5p. Target genes of miRNAs in the
interleukin-2-mediated signaling pathway included IL2RG, IL2RB, and IL2RA, whereas
in transmembrane receptor protein tyrosine kinase signaling pathway Erb-B2 Receptor
Tyrosine Kinase 4 (ERRB4), ERBB3, and cluster of differentiation 4 (CD4), CD7, SH2B Adap-
tor Protein 1 (SH2B1) were a few of the important targets (Supplementary Figure S3A,B).
Targets associated with negative regulation of smooth muscle cell proliferation included
Heme Oxygenase 1 (HMOX1), Insulin-like growth factor-binding protein 3 (IGFBP3), TNF
Alpha Induced Protein 3 (TNFAIP3), and BMPR2 (Supplementary Figure S3C). Overall,
sequence analysis of miRNA cargo of EVs from the HIV + Stimulants + PH group suggests
enrichment of miRNAs associated with factors related to pulmonary hypertension.

3.2. Interactions of Significantly Altered miRNA in EVs with Pulmonary Hypertension Associated
Gene Profiles

To construct interaction networks between the perturbed miRNAs and their target
genes, IPA analysis was performed on significantly altered miRNAs (absolute fold differ-
ence ≥ 1.5 and FDR ≤ 0.1) and their target genes involved in pulmonary hypertension. As
shown in Figure 3A, we analyzed 12 datasets, available in the GEO database associated
with PH, to identify potential candidate PH-associated gene targets for altered miRNAs.
Known interactions of the miRNAs from EVs with these PH-associated genes revealed that
a majority of these target genes were associated with more than one miRNA (Figure 3A).
For example, 6phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKBP3) involved
in glycolysis is a target of six significantly altered miRNAs in EVs whereas Membrane
Spanning 4-Domains A4A (MS4A4A) which belongs to tumor-associated macrophages is a
target of four EV-linked miRNAs.
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Figure 3. (A) Hierarchically clustered heatmap of differential gene expression between PAH and
Control samples in 12 GEO datasets. The log ratio of genes that showed consistent differential
expression changes across the 12 samples are shown in the heatmap with red indicating up-regulation
and green indicating down-regulation. These genes were selected for their direct association with
pulmonary hypertension based on the literature evidence. (B,C) Shown are molecular interaction
networks between the significantly differentially expressed miRNAs (HIV + STIM + PAH vs. HIV
+ STIM) and genes associated with pulmonary hypertension leading to a predicted activation state
of the function as deduced by IPA’s causal analysis tools. Solid lines indicate direct molecular
interactions and perforated lines indicate indirect interactions.
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We observed more association of genes with the miRNAs that were downregulated
(Figure 3A) which includes the miR-216a-3p/miR-128 cluster predicted to activate Adenosine
A2b Receptor (ADORA2B) [42], miR-185-3p leading to activation of PFKFB3, and miR-4520-3p
involved in the activation of Solute Carrier Family 9 Member A1 (SLC9A1). The observed
downregulated miR-19a-3p is predicted to activate the antiangiogenic thrombospondin 1 [43]
and the PH-associated Membrane Spanning 4-Domains A4A (MS4A4A) Also, our data demon-
strated upregulated microRNA, namely the miR-6764-5p/1915 cluster, which was predicted
to inhibit Interleukin 18 Receptor Accessory Protein (IL-18RAP). This alters IL-18 mediated
pro-inflammatory signaling involved in pulmonary vascular remodeling [44].

We also used IPA’s Molecule Activity Predictor (MAP) to predict the activated state of
pulmonary hypertension explained by the differential expression pattern of miRNAs in our
data and the expression pattern of their associated target genes. As illustrated in Figure 3B,
the IPA-MAP tool predicted the inhibition of BMPR2 by mature miR-32-5p and by another
miRNA from the same family: miR-92b-3p [45], both of which were upregulated in EVs from
the HIV + Stimulants + PH group. Along with this, indirect activation of TNF Superfamily
Member 10 (TNFSF10) was predicted by the interaction of upregulated miR133b with miR-151-
5p [46]. Further, the indirect interaction of upregulated mature miR192-5p with miR-203 [47]
predicted activation of the promoter of the surviving BIRC5. We also identified multiple
upregulated miRNAs (miR-148a-3p, miR-133a-3p, miR-342-3p, and miR-373-3p/302) known
to target TNF expression and associated adipogenesis, cell proliferation, and apoptosis [48–50].
In addition, this MAP analysis also showed an association of downregulated miR-216a-3p/128
cluster [42] with the activation of ADORA2B (Figure 3B,C).

3.3. Validation of Selected Differentially Expressed miRNAs in EVs Using Quantitative RT-PCR

Next, we validated the alterations in the levels of miRNAs in EVs from HIV-infected
stimulant users with and without PH as identified by small RNA sequencing. For this, we
selected 13 upregulated and 14 downregulated miRNAs based on criteria of absolute fold-
change ≥ 1.5 and FDR ≤ 0.05 as seen in the volcano plot, common in analysis of miRNA
gene interaction networks by IPA and gene enrichment analysis and significant relevance
to disease pathology known in the literature and/or previously shown to be associated
with HIV infection [51–53] or inflammation and oxidative stress. As shown in Figure 4A,
significantly higher levels of miR6501, miR-203b, miR-32-5p, miR-373-3p, miR-133a-5p,
miR-192-5p, miR-335-3p, and miR-133A-3p were observed in the plasma-derived EVs from
the HIV + Stimulants + PH group compared to EVs from the HIV + Stimulants group while
miR-4670-3p, miR-6778-3p, miR-5571-5p, miR-185-3p, miR-19a-3p (p < 0.05), miR-564, and
miR-216 (Figure 4B) were found to be significantly low in HIV + Stimulants + PH group.
Due to the limitation of EV-derived RNA samples, we were not able to validate additional
upregulated miRNAs (miR-92b-3p, miR-301a-3p, miR-4458, and miR-5688). Nevertheless,
they were investigated in the validation cohort as mentioned below.

3.4. Comparison of EV-miRNA Cargo in an Independent Group of HIV-Infected Cocaine Users
with and without PH

The above mentioned findings using small RNA sequencing were on EVs isolated from
HIV-infected poly-drug users, so we next validated the alterations in EV-linked miRNAs
in a separate cohort with samples from HIV-infected cocaine users with and without
PH. We first compared levels of selected miRNAs between uninfected (UI), uninfected
individuals with cocaine use (Coc), HIV-infected individuals (HIV), and HIV-infected
individuals with cocaine use (HIV + Coc) (n = 6/group) to see the effect of cocaine abuse
in HIV-infected individuals. The levels of miRNA 32-5p, miR-192-5p, miR-335-3p, and
miR-6501 were significantly higher in HIV-positive cocaine users compared to UI controls
while no significant differences were observed in EVs from Coc or HIV groups (Figure 5A).
However, a comparison of these significantly upregulated miRNAs in EVs from HIV-
infected individuals with HIV-PH individuals (n = 12/group; n = 6 cocaine users, n = 6
non-drug users) revealed only miRNA 32-5p to further significantly increase in HIV-PH
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patients (Figure 5B), regardless of cocaine use. Notably, miR-92b-3p and miR-301a-3p
were also significantly high in EVs from HIV + PH patients compared to HIV patients
without PH, but this increase was associated with cocaine abuse (Figure 5C). This analysis
confirmed sequencing analysis findings on HIV-infected poly-stimulant users showing
higher levels of EV-linked miR-32-5p, miR-92-b-3p, miR-203-b, and miR-301-3p targeting
cellular proliferation in HIV-PH patients.
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Figure 4. Quantitative RT-PCR analysis of some of the significantly upregulated (A) and downregu-
lated miRNAs (B) in the plasma-derived EVs from HIV + Stim + PH group compared to EVs from
HIV + Stim group. The miRNAs were selected based on criteria of absolute fold-change ≥ 1.5 and
p-value ≤ 0.05 as seen in volcano plot, common in the analysis of miRNA gene interaction networks
by IPA and gene enrichment analysis; and significant relevance to disease pathology known in the
literature and/or previously shown to be associated with HIV infection. * p < 0.05, ** p < 0.01 vs.
HIV + STIM.
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Figure 5. RT-PCR validation of significantly upregulated miRNAs in plasma-derived EVs from an
independent cohort from the University of Pittsburgh. (A) The comparison between plasma-derived
EVs from uninfected (UI), uninfected individuals with cocaine use (Coc), HIV-infected individuals
(HIV), and HIV-infected individuals with cocaine use (HIV + Coc) (n = 6/group) * p < 0.05, ** p < 0.01
vs. UI and (B) compares EVs from HIV-infected individuals with and without PH individuals
(n = 6/group) based on cocaine use * p < 0.05, ** p < 0.01, *** p < 0.001 vs. HIV while (C) shows overall
comparison between the two groups (n = 12/group) * p < 0.05, ** p < 0.01 vs. HIV.
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Similarly, significantly downregulated miRNAs in EVs from HIV-infected stimulant
users were also validated in an independent cohort of HIV-infected cocaine users with or
without PH. The levels of miR-6859, miR-6778, and miR-5571 were found to be significantly
downregulated in HIV-infected cocaine users or non-drug users when compared with
uninfected non-drug users (Figure 6A). Comparison of these miRNAs between HIV-infected
individuals with and without PH revealed significantly lower levels of miR-5571 along
with miR-46708, miR-564, and miR-216a in HIV-PH patients (Figure 6B); however, this
difference was not significantly associated with cocaine abuse (Figure 6C). Downward
trends of miR-564 levels were observed in HIV-PH cocaine users compared to HIV-PH
nondrug users.
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Figure 6. RT-PCR validation of selected significantly downregulated miRNAs in EVs from the
University of Pittsburgh cohort. (A) Comparison of plasma-derived EVs from uninfected (UI),
uninfected individuals with cocaine use (Coc), HIV-infected individuals (HIV), and HIV-infected
individuals with cocaine use (HIV + Coc) (n = 6/group) * p < 0.05, ** p < 0.01, *** p < 0.001 vs. UI. (B,C)
The levels of downregulated miRNA in EVs from HIV-infected individuals with and without PH
individuals showing drug usage (n = 6/group) (C) and overall comparison (n = 12/group). * p < 0.05
vs. HIV.

Correlation analysis of significantly altered EV-linked miRNAs in HIV-PH patients
with clinical parameters found a significant correlation of EV-linked miR-92b-3p (R2 0.839,
p < 0.001) and miR-301a-3p with CD4 (Figure 7A). In addition, higher levels of miR-301a-3p
were also found to be correlated with viral load, DLCO, and FEV1/FVC ratio. Among the
downregulated miRNAs, miR-4670 and miR-5571 were significantly correlated with CD4
and viral load (Figure 7B); however, miR-4670 was also co-related with FEV1/FVC (R2

0.582, p = 0.004). Decreased levels of miR-564 in EVs only showed a significant correlation
with DLCO (R2 0.455, p = 0.023).
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Figure 7. (A) Correlation analysis of significantly upregulated EV-linked miR-301a-3p in HIV-PH
patients with clinical parameters CD4, viral load, DLCO, and FEV1/FVC ratio. (B) Correlation
analysis of HIV-PH associated downregulated miR-4670 and miR-5571 with CD4 and viral load in
HIV-infected individuals.

4. Discussion

In this study, we first compared the miRNA cargo of plasma-derived EVs from HIV-
infected poly-drug users with and without PH using small RNA sequencing. Among
the most elevated miRNAs found in EVs from PWH with PH were those implicated in
stimulating cell proliferation and inhibiting intrinsic apoptotic signaling pathways. On the
other hand, the downregulated miRNAs in the individuals with PH indicated a possible
correlation with the signaling pathways mediated by transmembrane receptor protein
tyrosine kinase, IL-2, and the negative regulation of smooth muscle cell proliferation. The
limitation of this analysis was the small sample size used for RNA sequencing. Therefore,
we next validated the identified significantly altered miRNAs in EVs from an independent
set of 36 HIV-infected individuals with and without PH using quantitative RT-PCR. We
confirmed increased levels of miR-32-5p, 92-b-3p, and 301a-3p positively regulating cellular
proliferation and decreased levels of miR-5571, -4670, negatively regulating smooth muscle
proliferation in EVs from HIV-PH patients. The FEV1/FVC ratio and CD4 count showed a
negative correlation with the higher levels of miR-301a-3p and lower levels of miR-4670
in EVs from PWH, whereas the viral load showed a positive correlation. All of these
findings suggest a possible link between HIV-PH and changes in the miRNA cargo of
circulating EVs.

EVs are released into the peripheral circulatory system directly from the cell surface
plasma membrane or from the fusion of intracellular multivesicular bodies with the cell
surface membrane [54]. EVs’ ability to merge with and release their contents into cells
that are different from their source cells, as well as their potential to affect processes in the
recipient cells by transferring their protein or coding and non-coding RNA cargo including
miRNAs, have been the subject of extensive research by many researchers [14,55–57]. In a
study of cancer patients, Yuan T et al. found miRNAs as one of the most abundant plasma
extracellular RNA species [58]. Although the sorting of miRNA into EVs is not completely
understood, the mechanism could be dependent or independent of the miRNA sequence
and involves binding with either RNA-binding proteins or EV biogenesis proteins [59,60].
Cocaine on binding to sigma-1 receptor (Sig-1R) has been shown to stimulate EV secretion
from neuroblastoma cells by dissociating the Sig-1R from ARF6 (ADP-ribosylation factor 6)
protein involved in EV trafficking [61]. Further, HIV proteins and cocaine are known to



Cells 2024, 13, 886 13 of 20

cause oxidative stress [62,63] that can alter the expression of miRNA in cells [9,64]. This
may then alter the sorting of miRNAs into EVs.

The analysis using 12 PH datasets available in the GEO database showed significant
enrichment of miRNAs related to the positive regulation of cell proliferation and nega-
tive regulation of intrinsic apoptosis signaling in EVs from HIV-infected stimulant users
with pulmonary hypertension (HIV + Stimulants + PH). Interestingly, previous studies
investigating the EV proteome identified increased levels of cell proliferative and anti-
apoptotic-associated proteins in plasma-derived EVs from HIV-positive individuals that
correlated with immune activation markers [65]. In the upregulated pathway enrichment
analysis, the vast majority of miRNAs were related to TGFBR2, TNF, BMPR2, NF2, HIF1A,
and KLF4 genes in the regulation of cell proliferative pathways (miR-373-3p, miR-9-5p,
miR-148a-3p, miR-92b-3p, and miR-301a-3p) and BCL2, MMP9, BCL2L1, BCL2L2 in the
negative regulation of intrinsic apoptotic signaling pathway (miR-133a-3p, miR-451a, miR-
373-3p, miR-9-5p, miR-192-5p, miR-148a-3p, and miR-203b-3p). Previous studies have
suggested that miR-203b-3p suppresses Bcl-xL protein expression via direct binding to the
gene’s mRNA 3’UTR and correlates negatively with BCL2L1 mRNA expression in breast
tumors [66]. Alternatively, the downregulated miRNAs in the HIV + Stimulants + PH group
were associated with IL-2RA and IL-2RB in interleukin-2-mediated signaling (miR-6778),
with ERBB3 and DDR1 in the transmembrane receptor protein tyrosine kinase signaling
(miR-6778 and 185-3p) and HMOX1, PPARG, IGFBP3, and BMPR2 targets involved in
the negative regulation of smooth muscle cell proliferation (miR216a-3p, miR-19b-3p).
Additional IPA analysis predicted the inhibition of BMPR2 by upregulated miR-32-5p/miR-
92b-3p in EVs from the HIV + Stimulants + PH group. In addition, it predicted activation
of the TNFSF10 (TRAIL) by upregulated miR133b, activation of survivin oncogene (BIRC5)
by upregulated miR192-5p, and activation of adenosine receptor, ADORA2B by the down-
regulated miR-216a-3p/128 cluster. Together, these changes are consistent with a signature
of hyperproliferative SMC, which is believed to be involved in PH development.

Aliotta et al. studied the pathological role of EVs in the mice model of monocrotaline-
induced PAH [67,68]. They found that small-sized EVs from the lung and plasma of
monocrotaline PH mice can develop PAH in healthy mice. This was associated with
higher levels of pro-proliferative miRNAs in small EVs such as miR-19b, miR-20a, miR-
20b, and -145 targeting BMPR 2 signaling. Further, they also reported increased levels of
these miRNAs in EVs from idiopathic PAH patients in addition to other unique miRNAs
including miR-148a [67] which we also observed to be high in EVs from HIV-PH patients.

Our previous studies identified higher numbers of plasma-derived EVs carrying higher
levels of TGF-β1 in HIV-infected individuals (cocaine users and non-drug abusers) with
PH compared to those without PH and this was found to be associated with pulmonary
endothelial injury and smooth muscle hyperplasia, again two key components of PH devel-
opment [18,69,70]. Validation studies using this same set of EVs from HIV-infected cocaine
users confirmed the upregulation of miR-32-5p, -92-b-3p, and -301a-3p known to positively
regulate cellular proliferation and downregulation of miR-5571, -4670 negatively regulating
smooth muscle proliferation in EVs from HIV-PH patients. Interestingly, an increase in the
levels of EV-linked miR-301a-3p and a decrease in miR-4670 in HIV-PH patients positively
correlated with viral load and negatively with CD4 count, and FEV1/FVC ratio. Whether
this could be related to (a) adherence to HAART and (b) stimulant consumption-associated
development of COPD with PH could be a potential follow-up study.

In addition to the above-discussed miRNA changes with features of PH development,
multiple further lines of evidence support the identified miRNA changes in EVs as func-
tional markers of PH. For instance, it has been demonstrated that the miR-130/301 family
of miRNAs is produced by a variety of factors that cause pulmonary hypertension, and
inhibiting the action of these miRNAs reversed the disease in pre-clinical animal models
of PH [5,71]. In our previous study, we reported increased levels of miR-301a in cocaine
and HIV-Tat-treated human pulmonary arterial smooth muscle cells (HPASMC) and its
involvement in the post-translational regulation of BMPR2 expression leading to enhanced
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smooth muscle cell proliferation. While mutations in the BMPR-2 have been linked to famil-
ial pulmonary arterial hypertension, multiple studies indicate decreased BMPR expression
irrespective of mutations in the gene [72,73] contributing to the pathogenesis of PH. In
another study, we observed that higher levels of miR-130a in the EVs derived from HIV-
infected cocaine-treated macrophages were associated with the decrease in the expression
of PTEN (phosphatase and tensin homolog and tuberous sclerosis 1 and 2) and activation of
proliferative PI3K/AKT signaling in pulmonary arterial smooth muscles cells on treatment
with these macrophage-derived EVs [5]. The same mechanisms could be associated with
EVs loaded with miR 301a in HIV-PH subjects, as found in the current study, which has
the potential to be used as an effective diagnostic biomarker. Additionally, we previously
identified miR-216 to be upregulated in hyperproliferative cocaine and HIV-Tat-treated
HPASMCs and associated negative regulation of BMPR2 translation [9]. However, miR-216
was found to be downregulated in plasma-derived EVs possibly due to the differential
sorting mechanism of miRNAs in EVs [59] and/or given the fact that EVs in peripheral
blood are expected to be derived from many cell types.

Multiple research studies demonstrate that the proliferative TGFβ1 arm of the TGFβ
superfamily signaling can be stimulated by the failing anti-proliferative BMPR-axis, which
can result in excessive smooth muscle cell proliferation and PH [10,11,74]. The EV-linked
miR-192-5p found to be increased in HIV-PH patients mediates TGF-β/Smad 3-induced
renal fibrosis [75]. In addition, miR-564 was consistently found to be downregulated in EVs
from HIV-PH patients targeting TGF-β1 and associated with the reduced proliferation and
invasion of glioblastoma cells [76]. miR-564 has been identified as a dual inhibitor of PI3K
and MAPK pathways and reducing cell proliferation in breast cancer through G1 arrest [77].
The miR-185 which can negatively modulate TGF-β1 expression [78] was also observed
to be at low levels in the EVs from HIV-PH patients compared to non-PH HIV-infected
individuals which could potentially lead to increases in the TGF-β1-dependent pulmonary
endothelial injury and smooth muscle hyperplasia [18].

Although aberrant TGF-β/BMPR2 signaling is most commonly associated with the
development of PH, other factors can also cause endothelial smooth muscle cell dysfunction.
These factors may include mitochondrial damage and oxidative stress [79,80]. In the early
phases of pulmonary artery hypertension, oxidative stress-mediated vasoconstriction is
likely one of the most important contributors [81,82]. Past research on HIV patients found
alterations in plasma EV cargo, including RNA linked to oxidative stress, inflammation,
and persistent immune activation [83,84]. EV-associated miRNAs, miR-6501, miR-373, miR-
133, miR-192, and miR-335 were increased in HIV-Stim-PAH subjects which previously
have been shown to correlate with oxidative stress. miR-373 has been previously shown
to be elevated upon infection with HIV-1 [52], whereas miR-133 is known to play a role
in vascular stress, remodeling, and cell survival [34] and previous study from our lab has
also shown that lncRNA known to target miRNA-133 was elevated in HPASMC on the
treatment of cocaine and HIV-Tat [85]. Also, the literature suggests that miR-133 and other
miRNAs including miR-373 are increased in vascular tissues during inflammation and
oxidative stress [86–89].

In summary, our findings indicate alterations in the levels of miRNAs associated with
promoting cell proliferation and suppressing intrinsic apoptotic signaling pathways in
small EVs from the plasma of HIV-drug users with PH (Figure 8). To our knowledge, this
is the first report on the analysis of non-coding RNA cargo in circulating EVs from HIV-
infected individuals with PH. The independent validation of circulating EVs isolated from
HIV-infected cocaine users and nondrug users with and without PH shows the association
of higher levels of EV-linked miR-32-5p, 92-b-3p, and 301a-3p in HIV-PH patients with the
positive regulation of cellular proliferation and lower levels of miR-5571, -4670 in EVs with
the negative regulation of smooth muscle proliferation. Collectively, these data suggest
that alterations in the levels of these miRNAs in circulating EVs are associated with the
development of PH in HIV-drug users. Further studies in larger cohorts are needed to
confirm the identified EV-linked miRNA markers associated with PH in PLWH, to find
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the cellular origin of the significantly altered miRNA-linked EVs, and to assess whether
target genes of identified altered miRNAs are up- or downregulated in vascular cells of
remodeled vessels by in situ hybridization of lung sections or total RNA analysis of lungs
from HIV-PH patients. Such work would provide a better understanding of the role of
EV miRNAs in HIV-PH pathogenesis and identify a potential circulating prognostic and
diagnostic biomarker of PH in PLWH.
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