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Abstract: In this study, we prove the existence and uniqueness of a best proximity point in the
setting of non-Archimedean modular metric spaces via the concept of simulation functions. A non-
Archimedean metric modular is shaped as a parameterized family of classical metrics; therefore, for
each value of the parameter, the positivity, the symmetry, the triangle inequality, or the continuity is
ensured. Also, we demonstrate how analogous theorems in modular metric spaces may be used to
generate the best proximity point results in triangular fuzzy metric spaces. The utility of our findings
is further demonstrated by certain examples, illustrated consequences, and an application to fuzzy
fractional differential equations.
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1. Introduction

In 2010, Chistyakov introduced a novel concept known as the modular metric space,
which fundamentally involves a metric function denoted as d : χ → χ operating on a
nonempty set χ to provide a finite non-negative measurement of distance between any two
elements p and q within χ. Modular metric spaces represent a compelling and intuitive
extension of traditional modulars defined over linear spaces, such as Lebesgue, Orlicz,
Musielak–Orlicz, Lorentz, Orlicz–Lorentz, and Calderon–Lozanovskii spaces, among oth-
ers. This broader conceptual framework offers a rich and diverse landscape for exploring
mathematical structures and phenomena beyond the confines of linear spaces. Specifi-
cally, this metric function delineates the spatial separation between points p and q. Fur-
thermore, within the framework of modular metric spaces, a modular metric function
ϖλ : χ × χ → [0, ∞] is introduced, wherein λ > 0 signifies a designated time interval. This
modular metric function characterizes the absolute value of an average velocity, poten-
tially accommodating infinite values, thereby quantifying the distance traversed between
points p and q over the specified time duration λ. A non-Archimedean modular metric
is shaped as a parameterized family of classical metrics; therefore, for each value of the
parameter, the positivity, the symmetry, the triangle inequality, or the continuity is en-
sured. Additionally, in 2010, Basha [1] initiated the concept of the best proximity point for
non-self mappings.

Simulation functions, as highlighted by Jleli et al. [2], serve as integral components
in fixed point theory, contributing additional tools to establish both the existence and
uniqueness of fixed points across various metrical settings. Simulation functions epitomize
a notable unifying capability, consolidating diverse established results within a coherent
framework. They streamline the proof process by introducing auxiliary functions, thereby
enhancing the manageability of analysis and facilitating more elegant and concise proofs.
This approach is exemplified in works such as those by [2–8] and references therein.

The exploration and resolution of intricate differential equations and variational prob-
lems that permeate various branches of applied sciences constitute formidable challenges
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that continually drive mathematicians and researchers to delve into the intricacies of fixed
point problems within modular metric spaces. Numerous studies, including [9–20], have
been dedicated to this pursuit. These endeavors predominantly aim to derive general theo-
rems, often leveraging the concept of simulation functions, as discussed in works: [2,21,22].

In this study, we introduce some new results for the existence and uniqueness of the
best proximity point in modular metric spaces via simulation functions, and we obtain some
results in fuzzy metric spaces as a consequence of those given for a modular metric [23–27].
Consequently, we get some fixed points as corollaries in both modular and fuzzy metrics
influenced by simulation functions.

2. Preliminaries

In this section, we endeavor to expound upon pivotal concepts to guarantee the
self-sufficiency of our study.

Definition 1 ([2,21]). A simulation function, denoted as ς : [0, ∞)× [0, ∞) → R, is characterized
by the following criteria:

(ς1) The function ς(r, j) < j − r holds true for all r, j > 0.
(ς2) For sequences rn and jn in (0, ∞) converging to τ as n → ∞, where τ > 0, the superior limit

as n → ∞ of ς(rn, jn) is less than 0.

We represent the collection of all simulation functions as Z.

Example 1. Let us introduce the following list of simulation functions; see also [2,21]:

(1) ς(r, j) = j − r+2
r+1 r for all r, j > 0.

(2) ς(r, j) = j − ϕ(j) − r, where ϕ : [0, ∞) → [0, ∞) is a continuous function such that
ϕ(r) = 0 ⇐⇒ r = 0 for all r, j > 0.

(3) ς(r, j) = j − ϕ(r), where ϕ : [0, ∞) → [0, ∞) is a continuous function such that ϕ(r) > r
for all r, j > 0.

(4) ς(r, j) = [ϕ(j)]k − ϕ(r), where ϕ : [0, ∞) → [1, ∞) is a continuous function such that
ϕ(j)− ϕ(t) < j − r for all r, j > 0 and k ∈ [0, 1).

Let χ be a nonempty set and ϖ : (0,+∞)× χ × χ → [0,+∞] be a function; for simplicity,
we will write

ϖλ(p, q) = ϖ(λ, p, q),

for all λ > 0 and p, q ∈ χ.

Definition 2 ([14,28]). A mapping ϖ : (0,+∞)× χ × χ → [0,+∞] is termed a modular metric
on χ if it satisfies the following conditions for all λ1, λ2 > 0, and p, q, c ∈ χ: (i) p = q if and only
if ϖλ1(p, q) = 0; (ii) ϖλ1(p, q) = ϖλ1(q, p); (iii) ϖλ1+λ2(p, q) ≤ ϖλ1(p, c) + ϖλ2(c, q).

Note that the pseudomodular metric ϖ satisfies the following condition instead of (i) in
Definition 2:

(i’) ϖλ1(p, p) = 0 for all λ1 > 0 and p ∈ χ.
Moreover, ϖ is referred to as regular if condition (i) is replaced with:
p = q if and only if ϖλ1(q, p) = 0 for some λ1 > 0.
Furthermore, if for λ1, λ2 > 0, and p, q, c ∈ χ, the inequality:

ϖλ1+λ2(p, q) ≤ λ1

λ1 + λ2
ϖλ1(p, c) +

λ2

λ1 + λ2
ϖλ2(c, q),

holds, then ϖ is called convex.

Remark 1. The function ϖλ is termed non-Archimedean if it satisfies conditions (i) and (ii) of
Definition 2 and replaces condition (iii) with: (iii′)ϖmax{λ1,λ2}(p, q) ≤ ϖλ1(p, c) + ϖλ2(c, q) for
all λ1, λ2 > 0; p, q, c ∈ χ.
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It is worth noting that condition (iii’) entails condition (iii), thus indicating that a non-
Archimedean modular metric satisfies the properties of a modular metric.

Remark 2. Indeed, if 0 < λ1 < λ2, then

ϖλ2(p, q) ≤ ϖλ2−λ1(p, p) + ϖλ1(p, q) = ϖλ1(p, q).

Definition 3 ([14,28]). Let ϖ denote a pseudomodular metric on χ, and let p0 ∈ χ be a fixed
element. Consider the two sets

χϖ = χω(p0) = {p ∈ χ : ϖλ(p, p0) → 0 as λ → +∞},

and
χ∗

ϖ = χ∗
ϖ(p0) = {p ∈ χ : ∃λ = λ(p) > 0 such that ϖλ(p, p0) < +∞}.

The sets χϖ and χ∗
ϖ are termed modular spaces (around p0).

It is evident that χϖ ⊂ χ∗
ϖ. It is noteworthy that the set χω can be equipped with a metric

defined as follows:

dϖ(p, q) = inf{λ > 0 : ϖλ(p, q) ≤ λ} for all p, q ∈ χϖ.

If ϖ is convex, then χϖ = χϖ, and we can introduce the metric dϖ defined as follows:

d∗ϖ(p, q) = inf{λ > 0 : ϖλ(p, q) ≤ 1} for all p, q ∈ χϖ.

See [14,28].

Definition 4. Let χϖ denote a modular metric space, and let M be a subset of χϖ. Then:

(1) A sequence pn ∈ χϖ is defined as ϖ-convergent to some p ∈ χϖ if ϖλ(pn, p) → 0 as
n → +∞. Here, p is termed the ϖ-limit of pn.

(2) pn is referred to as ϖ-Cauchy if ϖλ(pm, pn) → 0 as m, n → +∞.
(3) Regarding a ϖ-convergent pn ∈ M that converges to some p ∈ χϖ, if p ∈ M, then M is

termed ϖ-closed.
(4) For a ϖ-Cauchy sequence pn ∈ M, if pn converges to some p ∈ M, then M is termed

ϖ-complete.

3. Best Proximity Point Results

Consider two non-empty subsets P1 and P2 within a modular metric space χω. We
denote the sets (P1)0λ and (P2)λ

0 as follows:

(P1)
λ
0 = {p ∈ P1 : ϖλ(p, q) = ϖλ(P1, P2), for some q ∈ P2}

(P2)
λ
0 = {q ∈ P2 : ϖλ(p, q) = ϖλ(P1, P2), for some p ∈ P1},

where ϖλ(P1, P2) = inf{ϖλ(p, q) : a ∈ P1 and q ∈ P2}.

Definition 5 ([29]). A subset P2 is characterized as approximately compact with respect to P1
if, for every sequence qn in P2 and some p ∈ P1, the condition ϖλ(p, qn) → ϖλ(p, P2) implies
p ∈ (P1)

λ
0 .

In all subsequent results, please note that

• ϖ is assumed to be of regular nature.
• The symbol ϕ represents a lower semi-continuous function, defined as ϕ : χϖ → [0, ∞), while

ς denotes a simulation function belonging to Z.
• For a non-self mapping g : P1 → P2, a point p∗ ∈ P1 is termed the best proximity point of the

mapping g if

ϖ(p∗, gp∗) = ϖ(P1, P2).
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Theorem 1. Consider a complete non-Archimedean modular metric space denoted by χϖ. Let P1
and P2 be two non-empty subsets of χϖ, where P1 is assumed to be closed. Suppose there exists a
mapping g : P1 → P2 such that g

(
(P1)

λ
0

)
⊆ (P2)

λ
0 . Additionally, assume the existence of p0 and

p1 in (P1)
λ
0 such that ϖλ(p1, gp0) = ϖλ(P1, P2).

For p, q, u, v ∈ A1 with ϖλ(u, gp) = ϖλ(P1, P2) = ϖλ(v, gq), we have:

ς(ϖλ(u, v) + ϕ(u) + ϕ(v), ϖλ(p, q) + ϕ(p) + ϕ(q)) ≥ 0. (1)

Assuming g is ϖ-continuous, it possesses a unique best proximity point p ∈ P1 satisfying ϕ(p) = 0.

Proof. From the assumptions ϖλ(p1, gp0) = ϖλ(P1, P2) and g
(
(P1)

λ
0

)
⊆ (P2)

λ
0 , there exists

p2 ∈ (P1)
λ
0 such that ϖλ(p2, gp1) = ϖλ(P1, P2). Again, for p2 ∈ (P1)

λ
0 and g

(
(P1)

λ
0

)
⊆

(P2)
λ
0 , there exists p3 ∈ (P1)

λ
0 such that ϖλ(p3, gp2) = ϖλ(P1, P2).

Continuing this process we get,

ϖλ(pn+1, gpn) = ϖλ(P1, P2)

for all n ∈ N∪ {0}. Applying (1), we get

ς(ϖλ(pn+1, pn) + ϕ(pn+1) + ϕ(pn), ϖλ(pn, pn−1) + ϕ(pn−1) + ϕ(pn)) ≥ 0.

For every n ∈ N∪ 0, suppose there exists j ∈ N such that ϖλ

(
pj+1, pj

)
= 0. By virtue of the

regularity property of ϖλ, we deduce that pj serves as the best proximity point of g.
Consequently, let us consider the scenario where ϖλ(pn+1, pn) > 0 for all n ∈ N ∪ 0.

Therefore, according to (ς1), we obtain:

0 ≤ ς(ϖλ(pn+1, pn) + ϕ(pn+1) + ϕ(pn), ϖλ(pn, pn−1) + ϕ(pn−1) + ϕ(pn)

< ϖλ(pn, pn−1) + ϕ(pn−1) + ϕ(pn))− [ϖλ(pn+1, pn) + ϕ(pn+1) + ϕ(pn)].

This implies that

ϖλ(pn+1, pn) + ϕ(pn+1) + ϕ(pn) < ϖλ(pn, pn−1) + ϕ(pn−1) + ϕ(pn).

Consider the sequence τn = ϖλ(pn+1, pn) + ϕ(pn+1) + ϕ(pn), which forms a decreasing
sequence of positive real numbers. Consequently, there exists a non-negative τ ≥ 0 such
that lim n → ∞τn = τ.

Suppose τ > 0, then according to condition (ς2), we have:

0 ≤ lim sup
n→∞

ς(ϖλ(pn+1, pn) + ϕ(pn+1) + ϕ(pn), ϖλ(pn, pn−1) + ϕ(pn−1) + ϕ(pn))

< 0,

which is a contradiction. We conclude that τ = 0, that is,

lim
n→∞

ϖλ(pn+1, pn) + ϕ(an+1) + ϕ(pn) = 0.

Since ϕ takes only non-negative values, we get

lim
n→∞

ϕ(pn) → 0, and lim
n→∞

ϖλ(pn+1, pn) → 0. (2)

To establish the ϖ-Cauchy property of the sequence pn within P1, let us assume the con-
trary, i.e., we can suppose that lim sup m, n → ∞ϖλ(pm, pn) > 0. Consequently, there exist
ϵ > 0 along with two subsequences pnk and pmk of pn

for nk > mk ≥ k, ϖλ

(
pmk , pnk

)
≥ ϵ and ϖλ

(
pmk , pnk−1

)
< ϵ.
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Thus,
ϵ ≤ ϖλ

(
pmk , pnk

)
= ϖmax{λ,λ}

(
pmk , pnk

)
≤ ϖλ

(
pmk , pnk−1

)
+ ϖλ

(
pnk−1 , pnk

)
< ϵ + ϖλ

(
pnk−1 , pnk

)
.

Taking the limits as k → ∞, we get,

lim
k→∞

ϖλ

(
pmk , pnk

)
= ϵ. (3)

Similarly,
ϵ ≤ ϖλ

(
pmk , pnk

)
= ϖmax{λ,λ}

(
pmk , pnk

)
≤ ϖλ

(
pmk , pmk−1

)
+ ϖλ

(
pmk−1 , pnk−1

)
+ ϖλ

(
pnk−1 , pnk

)
.

and
ϖλ

(
pmk−1 , pnk−1

)
≤ ϖλ

(
pmk−1 , pmk

)
+ ϖλ

(
pmk , pnk−1

)
≤ ϖλ

(
pmk−1 , pmk

)
+ ϖλ

(
pmk , pnk

)
+ ϖλ

(
pnk , pnk−1

)
.

Taking the limits in the above inequalities as k → ∞, we get

lim
k→∞

ϖλ

(
pmk−1 , pnk−1

)
= ϵ. (4)

Combining the equations in (2), (3), and (4), we get

lim
k→∞

ϖλ

(
pmk , pnk

)
+ ϕ

(
pmk

)
+ ϕ

(
pnk

)
= ϵ

and
lim
k→∞

ϖλ

(
pmk−1 , pnk−1

)
+ ϕ

(
pmk−1

)
+ ϕ

(
pnk−1

)
= ϵ.

We get

0 ≤ lim sup
n→∞

ς
(
ϖλ

(
pmk , pnk

)
+ ϕ

(
pmk

)
+ ϕ

(
pnk

)
, ϖλ

(
pmk−1 , pnk−1

)
+ϕ

(
pmk−1

)
+ ϕ

(
pnk−1

))
< 0.

This assumption leads to a contradiction. Thus, pn forms a ϖ-Cauchy sequence in P1. Since
P1 is a closed subset of a complete modular metric space χϖ, it follows that P1 is also
complete. Consequently, there exists a point p ∈ P1 such that ϖλ(pn, p) = 0 as n → ∞.

Recalling the limit expression in (2) and utilizing the lower semi-continuity of the
function ϕ, we obtain:

0 ≤ ϕ(p∗) ≤ lim inf
n→∞

ϕ(pn) = 0 =⇒ ϕ(p∗) = 0.

Since g is ϖ-continuous, =⇒ ϖλ(gpn, gp∗) → 0 as n → ∞.
Now

ϖλ(p∗, gp∗) ≤ ϖλ(p∗, pn+1) + ϖλ(pn+1, gpn) + ϖλ(gpn, gp∗)
= ϖλ(p∗, pn+1) + ϖλ(P1, P2) + ϖλ(gpn, gp∗).

(5)

Taking the limit as n → ∞ in (5) , we get ϖλ(p∗, gp∗) = ϖλ(P1, P2), and hence, p∗ is the
best proximity point of g.

In order to establish the uniqueness of p as the best proximity point of g, suppose
otherwise. That is, assume the existence of another best proximity point p ∈ P1 such that
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ϖλ(p, p∗∗) > 0. That is, ϖλ(p∗, gp∗) = ϖλ(P1, P2) and ϖλ(p∗∗, gp∗∗) = ϖλ(P1, P2). So
from (2.1) together with (ς1),

0 ≤ ς(ϖλ(p∗, p∗∗) + ϕ(p∗) + ϕ(p∗∗), ϖλ(p∗, p∗∗) + ϕ(p∗) + ϕ(p∗∗)
< ϖλ(p∗, p∗∗) + ϕ(p∗) + ϕ(p∗∗)− [ϖλ(p∗, p∗∗) + ϕ(p∗) + ϕ(p∗∗)]
= 0.

This is a contradiction, and hence, g has a unique best proximity point.

Theorem 2. Instead of the continuity condition of g as stated in Theorem 1, let us consider the
assumption that P2 is approximately compact with respect to P1. Under this assumption, g possesses
a unique best proximity point p∗ ∈ P1.

Proof. Applying analogous steps as in Theorem 1, it can be concluded that pn constitutes a
ϖ-Cauchy sequence in P1 and converges to a certain p satisfying ϕ(p) = 0.

ω1(P1, P2) ≤ ϖλ(pn+1, gpn)

≤ ϖλ(pn+1, p∗) + ϖλ(p∗, gpn)

≤ ϖλ(pn+1, p∗) + ϖλ(p∗, pn+1) + ϖλ(pn+1, gpn)

= ϖλ(pn+1, p∗) + ϖλ(p∗, pn+1) + ω1(P1, P2).

Take the limit as n → ∞ =⇒ ϖλ(p∗, gpn) → ϖλ(P1, P2), and so by the approximate
compactness of P2, p∗ ∈ (P1)

λ
0 . But g

(
(P1)

λ
0

)
⊆ (P2)

λ
0 =⇒ gp∗ ∈ (P2)

λ
0 . Therefore, there

exists q∗ ∈ P1 such that

ϖλ(q∗, gp∗) = ϖλ(P1, P2).

So we have
ϖλ(q∗, gp∗) = ϖλ(P1, P2) = ϖλ(pn+1, gpn). (6)

Without loss of generality, we may assume that q∗ ̸= pn and p∗ ̸= pn for all n ∈ N.
Thus, by (1), (6) and (ς1), we have

0 ≤ ς(ϖλ(pn+1, q∗) + ϕ(pn+1) + ϕ(q∗), ϖλ(p∗, pn) + ϕ(p∗) + ϕ(pn))

< ϖλ(p∗, pn) + ϕ(p∗) + ϕ(pn)− [ϖλ(pn+1, q∗) + ϕ(pn+1) + ϕ(q∗)]
=⇒ ϖλ(pn+1, q∗) + ϕ(an+1) + ϕ(q∗) < ϖλ(p∗, pn) + ϕ(p∗) + ϕ(pn).

Now
0 ≤ ϖλ(p∗, q∗)
≤ ϖλ(p∗, pn+1) + ϖλ(pn+1, q∗)
≤ ϖλ(p∗, pn+1) + ϖλ(p∗n + 1, q∗) + ϕ(pn+1) + ϕ(q∗)
< ϖλ(p∗, pn+1) + ϖλ(p∗, pn) + ϕ(p∗) + ϕ(pn).

Taking the limit as n → ∞, we get

ϖλ(p∗, q∗) = 0 =⇒ p∗ = q∗.

By substituting in (6), we get,

ϖλ(p∗, gp∗) = ϖλ(P1, P2),

Thus, p∗ emerges as the best proximity point of g. The uniqueness aspect remains consistent
with Theorem 1.

In the subsequent corollaries, we derive various outcomes in best proximity point
theory using alternative simulation functions.
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Corollary 1. Consider χϖ to be a complete non-Archimedean modular metric space, where P1 and
P2 are two non-empty subsets of χϖ , with P1 being closed. Let g : P1 → P2 be a mapping such that
g
(
(P1)0λ

)
⊆ (P2)λ

0 . Suppose there exist p0, p1 ∈ (P1)
λ
0 such that ϖλ(p1, gP0) = ϖλ(P1, P2).

For p, q, u, v ∈ A1 with ϖλ(u, gp) = ϖλ(P1, P2) = ϖλ(v, gq), then

ϖλ(u, v) + ϕ(u) + ϕ(v) ≤ r(ϖλ(p, q) + ϕ(p) + ϕ(q)), (7)

where r ∈ [0, 1). If g is either ϖ-continuous or P2 is approximately compact with respect to P1, then
it has a unique best proximity point p∗ ∈ P1, with ϕ(p∗) = 0.

Proof. Define the simulation function ς ∈ Z by

ς(r, j) = rj − r for all r, j ∈ [0, ∞).

Corollary 2. Consider χϖ to be a complete non-Archimedean modular metric space. Let P1 and P2
be two non-empty subsets of χϖ , with P1 being closed. Suppose g : P1 → P2 is a mapping such that
g
(
(P1)0λ

)
⊆ (P2)λ

0 . Suppose there exist p0, p1 ∈ (P1)
λ
0 such that ϖλ(p1, gp0) = ϖλ(P1, P2).

For p, q, u, v ∈ P1 with ϖλ(u, gp) = ϖλ(P1, P2) = ϖλ(v, gq), then

ϖλ(u, v) + ϕ(u) + ϕ(v) ≤ (ϖλ(p, q) + ϕ(p) + ϕ(q)) · η(ϖλ(p, q) + ϕ(p) + ϕ(q)), (8)

where η : [0, ∞) → [0, 1) is a function such that lim supt→r η(t) < 1 for all r > 0. If g is either
ϖ-continuous or P2 is approximately compact with respect to p1, then it has a unique best proximity
point p∗ ∈ p1, with ϕ(p∗) = 0.

Proof. Define the simulation function ς ∈ Z by

ς(t, s) = sη(s)− t for all t, s ∈ [0, ∞).

Corollary 3. Consider χϖ as a complete non-Archimedean modular metric space. Suppose P1 and
P2 are non-empty subsets of χϖ, with P1 being closed. Let g : P1 → P2 be a mapping such that
g
(
(P1)0λ

)
⊆ (P2)λ

0 Suppose there exist p0, p1 ∈ (P1)
λ
0 such that ϖλ(p1, gp0) = ϖλ(P1, P2). For

p, q, u, v ∈ P1 with ϖλ(u, gp) = ϖλ(P1, P2) = ϖλ(v, gq), then

ψ(ϖλ(u, v) + ϕ(u) + ϕ(v)) ≤ ϖλ(p, q) + ϕ(p) + ϕ(q), (9)

where ψ : [0, ∞) → [0, ∞) is a continuous function such that ψ(t) > t for all t > 0. If g is
either ϖ-continuous or P2 is approximately compact with respect to P001, then it has a unique best
proximity point p∗ ∈ P1, with ϕ(p∗) = 0.

Proof. Define the simulation function ς ∈ Z by

ς(t, s) = s − ψ(t) for all t, s ∈ [0, ∞).

Example 2. Let R2 be a complete non-Archimedean modular metric space with modular ϖλ

given by ϖλ((p1, q1), (p2, q2)) = 1
λ (|p1 − p2|+ |q1 − q2|) for all λ > 0. Define the sets
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P1 =
{
(0, p) : 0 ≤ p ≤ 1

2

}
and P2 =

{(
1
2 , b

)
: 0 ≤ q ≤ 1

2

}
. Clearly, ϖλ(P1, P2) = 1

2λ , and

(P1)
λ
0 = P1 and (P2)

λ
0 = P2. Also, define g : P1 → P2 by

g(p, q) =
(

1
2

,
q2

2

)
.

Notice that g
(

Pλ
10
)
⊆ Pλ

2 . We claim that all conditions of Theorem 1 hold true with respect to the
simulation function ς ∈ Z defined by ς(t, s) = 1

2 s − t if t < s and ς(t, s) = 0 if t ≥ s. Define the
lower semi-continuous function ϕ : χϖ → [0, ∞) given by ϕ((p, q)) = 2b for all (p, q) ∈ χϖ . For
all (0, p), (0, q), (0, u) and (0, v) ∈ χϖ, with ϖλ(u, gp) = ϖλ(P1, P2) = ϖλ(v, gq), we have

u =
p2

2
; v =

q2

2
.

Now,

ϖλ((0, u), (0, v)) + ϕ((0, u)) + ϕ((0, v)) =
1
λ

∣∣p2 − q2
∣∣

2
+ p2 + q2. (10)

ϖλ((0, p), (0, q)) + ϕ((0, p)) + ϕ((0, q)) =
1
λ
|p − q|+ 2a + 2q. (11)

ς(t, s) = ς(ϖλ((0, u), (0, v)) + ϕ((0, u)) + ϕ((0, v)), ωλ((0, p), (0, q))

+ϕ((0, p)) + ϕ((0, q)))

which implies

ς(t, s) =
1
2
[|p − q|+ 2p + 2q]−

[ ∣∣p2 − q2
∣∣

2
+ p2 + q2

]
,

= (p + b)−
(

p2 + q2
)
+

|p − q|
2

−
∣∣p2 − q2

∣∣
2

.

It is clear that
(p + b)−

(
p2 + q2

)
≥ 0,

and so
|p − q|

2
−

∣∣p2 − q2
∣∣

2
≥ 0.

Therefore,
ς(ϖλ((0, u), (0, v)) + ϕ((0, u)) + ϕ((0, v)), ϖλ((0, x), (0, y))

+ϕ((0, p)) + ϕ((0, q))) ≥ 0,

so by Theorem 1, we deduce that g has a unique best proximity point (0, 0) ∈ P1.

If P1 = P2 = χϖ, then we get the fixed point theorem as a corollary as following.

Corollary 4 ([30]). Suppose χϖ is a complete non-Archimedean modular metric space and g
represents a self-mapping on χϖ . Given the existence of ς ∈ Z and a lower semi-continuous function
ϕ satisfying

ς(ϖλ(ga, gq) + ϕ(gp) + ϕ(gq), ϖλ(p, q) + ϕ(p) + ϕ(q)) ≥ 0

for all p, q ∈ χϖ. Then g has a unique fixed point p∗ ∈ P1 and ϕ(p∗) = 0.

The subsequent corollaries present various outcomes in fixed point theory using
alternative simulation functions.
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Corollary 5. Consider χϖ as a complete non-Archimedean modular metric space. Let g denote a
self-mapping on χϖ. Suppose that

ϖλ(gp, gq) + ϕ(gp) + ϕ(gq) ≤ rϖλ(p, q) + ϕ(p) + ϕ(q)

for all p, q ∈ χϖ. Then g has a unique fixed point p∗ ∈ P1 and ϕ(p∗) = 0.

Proof. Define the simulation function ς ∈ Z by

ς(t, s) = rs − t for all t, s ∈ [0, ∞).

Corollary 6. Consider χϖ as a complete non-Archimedean modular metric space. Let g denote a
self-mapping on χϖ. Suppose that

ψ(ϖλ(gp, gq) + ϕ(gp) + ϕ(gq)) ≤ [ψ(ϖλ(p, q) + ϕ(p) + ϕ(q))]k

for all p, q ∈ χϖ, where ψ : [0, ∞) → (1, ∞) is a continuous function such that ψ(s)− ψ(t) <
s − t for all s, t > 0 and k ∈ [0, 1). Then g has a unique fixed point p∗ ∈ P1 and ϕ(p∗) = 0.

Proof. Define the simulation function ς ∈ Z by

ς(r, j) = [ψ(j)]k − ψ(r) for all r, j ∈ [0, ∞).

4. Modular Metric Spaces to Fuzzy Metric Spaces

In this section, we illustrate how similar theorems established in modular metric spaces
can be employed to derive best proximity point results in triangular fuzzy metric spaces.

Definition 6. A continuous t-norm, denoted by ∗ : [0, 1]× [0, 1] → [0, 1], is characterized by the
following properties: (CTN1)∗ is commutative and associative;

(CTN1) * is continuous;
(CTN1) x ∗ 1 = x for all x ∈ [0, 1];
(CTN1) x1 ∗ y1 ≤ x′ ∗ y′ when x1 ≤ x′ and y1 ≤ y′ and x1, y1, x′, y′ ∈ [0, 1].
Examples of the t-norm are x ∗ y = min{x, y}, x ∗ y = xy and x ∗ y = max{0, x + y − 1}.

Definition 7 ([23]). For a nonempty set χ and a continuous t-norm ∗, along with a fuzzy set
µ : χ × χ × (0,+∞), the following conditions hold for all p, q, c ∈ χ and t1, t2 > 0:

(FM1)µ(p, q, t1) > 0;
(FM2) µ(p, q, t1) = 1 iff p = q;
(FM3)µ(p, q, t1) = µ(q, p, t1);
(FM4) µ(p, q, t1) ∗ µ(q, c, t2) ≤ µ(p, c, t1 + t2);
(FM5) µ(p, q, ·) : (0,+∞) → (0, 1] is left continuous.
Therefore, the triplet (χ, µ, ∗) defines a fuzzy metric space.
When condition (FM2) is substituted with:

µ(p, q, t1) = 1 if and only if p = q, for some t1 > 0,

then µ is said to be regular.

If µ(p, q, t1) ∗ µ(q, c, t2) ≤ µ(p, c, max{t1, t2}).

If condition (FM4) is replaced, µ is termed non-Archimedean fuzzy.
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It is worth noting that if µ is non-Archimedean, it also qualifies as a fuzzy metric
space.

Definition 8 ([31]). Let (χ, µ, ∗) be a fuzzy metric space. The fuzzy metric µ is called triangular
whenever

1
µ(p, q, t)

− 1 ≤ 1
µ(p, c, t)

− 1 +
1

µ(c, q, t)
− 1

for all p, q, c ∈ χ and all t > 0.

Definition 9. Suppose (χ, µ, ∗) constitutes a fuzzy metric space, and let g : χ → χ be a mapping.
Then:

(i) The sequence pn is considered a µ-Cauchy sequence if, for all 0 < ϵ < 1, lim m, n → ∞µ(pn,
pm, t) = 1 for all m > n and t > 0.

(ii) The sequence pn is considered to be µ-convergent to some p ∈ χ if

lim
n→∞

µ(pn, p, t) = 1 for all t > 0.

(iii) The fuzzy metric space (χ, µ, ∗) is deemed µ-complete if every µ-Cauchy sequence pn in χ
converges to some p ∈ χ.

(iv) g is called a µ-continuous mapping if limn→+∞ µ(pn, p, t) = 1 implies limn→+∞ µ(gpn, gp,
t) = 1.

Let P1 and P2 be two nonempty subsets of the fuzzy metric space (χ, µ, ∗). The follow-
ing definitions are introduced:

Definition 10.

(P1)0(t) = {a ∈ P1 : µ(p, q, t) = µ(P1, P2, t) for some q ∈ P2}
(P2)0(t) = {q ∈ P2 : µ(p, q, t) = µ(P1, P2, t) for some p ∈ P1},

where µ(P1, P2, t) = sup{µ(p, q, t) : p ∈ P1, q ∈ P2}. Let g : P1 → P2 be a mapping, then a point
a∗ ∈ A1 is called a best proximity point in (χ, µ, ∗) if

µ(p∗, gp∗, t) = µ(P1, P2, t), for all t > 0.

In a recent study by Hussain and Salimi [32], a valuable lemma was presented that highlights a
connection between fuzzy metrics and modular metrics.

Lemma 1 ([32]). Let (χ, µ, ∗) be a triangular fuzzy metric space. Define

ϖλ(p, q) =
1

µ(p, q, λ)
− 1,

for all p, q ∈ χ and all λ > 0. Then ϖλ is a modular metric on χ.

By combining Lemma 1 with our earlier theorems, we derive novel findings in trian-
gular non-Archimedean fuzzy metric spaces.

Note that in all subsequent results, the fuzzy metric µ is assumed to be both triangular
and regular.

Theorem 3. Consider (χ, µ, ∗) to be a complete non-Archimedean fuzzy metric space. Suppose
P1 and P2 are two nonempty subsets of χ, with P1 being closed. Let g : P1 → P2 be a mapping
satisfying the condition g((P1)0(t)) ⊆ (P2)0(t) for all t > 0. Suppose that there exist elements p0
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and p1 in (P1)0(t) such that µ(p1, gp0, t) = µ(P1, P2, t). For p, q, u, v ∈ P1 with µ(u, gp, t) =
µ(v, gq, t) = µ(P1, P2, t), then

ς

(
1

µ(u, v, t)
− 1 + ϕ(u) + ϕ(v),

1
µ(u, v, t)

− 1 + ϕ(u) + ϕ(v)
)
≥ 0.

If either g exhibits µ-continuity or P2 is a fuzzy approximately compact set with respect to P1,
then g possesses a sole optimal proximity point p ∈ P1, where ϕ(p) = 0.

Proof. Let χϖ denote the modular metric space centered at p0 and constructed from the
modular metric ϖλ as outlined in Lemma 1, that is,

χϖ =

{
p ∈ χ : lim

t→∞
ϖt(p, p0) = 0

}
,

or equivalently,

Xϖ =

{
p ∈ χ : lim

t→∞
µ(p, p0, t) = 1

}
.

Trivially, χϖ ̸= ∅ since p0 ∈ χϖ. Now, we demonstrate that χϖ is a closed subset of
(χ, µ, ∗). Suppose pn is a sequence in χϖ converging to some p ∈ χ. For any ϵ ∈ (0, 1) and
t0 > 0, there exists n0 ∈ N such that µ(pn0 , p, t0) > 1 − ϵ. According to condition (FM4) in
Definition 7, we have:

µ(p0, p, t) = µ(p0, p, (t − t0 + t0))

≥ µ(p0, pn0 , t − t0) ∗ µ(pn0 , p, t0),

> µ(p0, pn0 , t − t0) ∗ (1 − ϵ).

Taking the limits as t → ∞ in the above inequalities, we get

lim
n→∞

µ(p0, p, t) ≥ 1 − ϵ for all ϵ > 0,

and hence, a ∈ χϖ, that is, χϖ is closed in (χ, µ, ∗) and so is complete. All hypotheses of
Theorem 1 hold true, so we get the conclusion.

If P1 = P2 = χ, we get a fixed point theorem as a corollary as following.

Corollary 7 ([30]). Consider a complete non-Archimedean fuzzy metric space (χ, µ, ∗) and a
self-mapping g on χ. Assume the existence of ς ∈ Z and a lower semi-continuous function ϕ
such that

ς

(
1

µ(gp, gq, t)
− 1 + ϕ(gp) + ϕ(gq),

1
µ(p, q, t)

− 1 + ϕ(p) + ϕ(q)
)
≥ 0

for all p, q ∈ χ.
Then g has a unique fixed point p∗ ∈ χ, with ϕ(p∗) = 0.

Corollary 8. Consider a complete non-Archimedean fuzzy metric space (χ, µ, ∗) and a self-mapping
g on χ. Suppose there exists a lower semi-continuous function ϕ such that

r.
(

1
µ(p, q, t)

− 1 + ϕ(p) + ϕ(q)
)
≥

(
1

µ(gp, gq, t)
− 1 + ϕ(gp) + ϕ(gq)

)
for all p, q ∈ χ.
Then g has a unique fixed point p∗ ∈ χ, with ϕ(p∗) = 0.
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Example 3. Consider the space χ as the set of real numbers R. Define a fuzzy metric function
µ on R that measures the similarity between two real numbers. This function can be defined as
µ(p, q, t) = e−t|p−q|, where t is a parameter controlling the sensitivity of the metric.

Let g : R → R be a self-mapping: for example, g(x) = x
2 .

Next, define the function ϕ : R → R as ϕ(x) = |x|. This function is clearly continuous.
Now, let us check if the corollary applies. The inequality condition of the corollary becomes:

r ·
(

1
µ(p, q, t)

− 1 + ϕ(p) + ϕ(q)
)
≥

(
1

µ(gp, gq, t)
− 1 + ϕ(gp) + ϕ(gq)

)
.

Using the definitions of g and ϕ, this becomes:

r ·
(

et|p−q| − 1 + |p|+ |q|
)
≥ et| p

2 −
q
2 | − 1 +

∣∣∣ p
2

∣∣∣+ ∣∣∣ q
2

∣∣∣.
Hence, all the stipulations of the preceding corollary substantiate the derived conclusion.

5. Application to Fuzzy Fractional Differential Equations

In this section, we consider the following initial value problem:{
CDα,γΥ(ρ) = ψ(ρ, Υ(ρ)), ρ ∈ [0, 1]

Υ(0) = 0.
(12)

where CDα,γ is the tempered Caputo fractional derivative of order α ∈]0, 1[, with γ > 0,
and ψ is a continuous function satisfying

|ψ(ρ, a )− ψ(ρ, b)| ⩽ (ln(r) + 1)Γ(α + 1)|a − b| (13)

for all ρ ∈ [0, 1], a, b ∈ χ and r ∈ (0, 1].

The set µ is defined by
µ(a, b, t) = e−t∥a−b∥∞ ,

and ϕ : χ −→ χ is defined by
ϕ(x) = ∥x∥∞.

Now, for a continuous function Υ : R+ −→ R, the tempered Caputo fractional
derivative and integral of order α ∈]0, 1[ and γ ⩾ 0 are defined by

CDα,γΥ(ρ) =
e−γρ

Γ(1 − α)

∫ ρ

a
(ρ − s)−α d

ds
(eγsΥ(s)), ds

and
Iα,γΥ(ρ) =

1
Γ(α)

∫ ρ

a
(ρ − s)α−1e−γ(ρ−s)Υ(s)ds,

which verifies the following properties:

CDα,γIα,γΥ(ρ) = Υ(ρ)

Iα,γCDα,γΥ(ρ) = Υ(ρ)− Υ(a).

In the following, consider the set

χ′
µ = χ′

µ(a) =
{

b ∈ χ : ∃λ = λ(b) > 0 such that
1

µ(a, b, t)
− 1 < +∞

}
.

Let us denote a set of real-valued functions defined on [0, 1] by

χ = {a| a : [0, 1] → R},
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and
χ′ = {a| a : [0, 1] → R; a(0) = 0} ⊂ χ.

Thus, for problem (12), we take the following triangular fuzzy metric space:

χ∗
µ = χ′

µ ∩ χ′ =
{

a ∈ χ′
µ : a(0) = 0

}
.

We will now provide certain lemmas that can be employed to establish the existence
and uniqueness of the solution to problem (12).

Lemma 2. Consider Υ(ρ) as the solution to Equation (12) if and only if

Υ(ρ) =
1

Γ(α)

∫ ρ

0
(ρ − s)α−1e−γ(ρ−s)ψ(s, Υ(s))ds.

Proof. Composing problem (13) by Iα,γ on two sides, we obtain

Υ(ρ) =
1

Γ(α)

∫ ρ

0
(ρ − s)α−1e−γ(ρ−s)ψ(s, Υ(s))ds.

As follows, define the function

G(Υ(ρ)) = 1
Γ(α)

∫ ρ

0
(ρ − s)α−1e−γ(ρ−s)Υ(s)ds, (14)

where ρ ∈ [0, 1], Υ ∈ χ∗
µ.

Lemma 3. If the function ψ(ρ, Υ(ρ)) yields conditions (13), then G maps χ∗
µ into itself, i.e., G :

χ∗
µ −→ χ∗

µ.

Proof. Let us start by selecting any Υ ∈ χ∗
µ, with Υ(0) = 0. To establish that GΥ ∈ χ∗

µ, we
need to demonstrate that G is a mapping from χ∗

µ to χ∗
µ. Initially, as Υ(0) = 0, it follows

that GΥ(0) = 0, implying GΥ ∈ χ′. For a function ψ(ρ, Υ(ρ)) that verifies (13), we have for
all Υ ∈ χ∗

µ:

|GΥ(ρ)− GΥ(0)| ⩽ 1
Γ(α)

∫ ρ

0
(ρ − s)α−1

∣∣∣e−γ(ρ−s)ψ(s, Υ(s))
∣∣∣d s

⩽
Γ(α + 1) ln(r)∥Υ∥∞

Γ(α)

∫ ρ

0
(ρ − s)α−1

∣∣∣e−γ(ρ−s)
∣∣∣d s

⩽
Γ(α + 1)(ln(r) + 1)∥Υ∥∞

Γ(α)

[
ρα

α

]
⩽ (ln(1) + 1)∥Υ∥∞ ⩽ ∥Υ∥∞.

Thus, for all ρ ∈ [0, 1],

∥GΥ∥∞ ⩽ ∥Υ∥∞

et∥GΥ∥∞ ⩽ et∥Υ∥∞ ,
1

e−t∥GΥ∥∞
⩽

1
e−t∥Υ∥∞

1
e−t∥GΥ∥∞

− 1 ⩽
1

e−t∥Υ∥∞
− 1

1
µ(GΥ, 0, t)

− 1 ⩽
1

µ(Υ, 0, t)
− 1 ⩽ ∞.

Hence, GΥ ∈ χ′
µ, implying GΥ ∈ χ∗

µ.
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Theorem 4. Examine the mapping G : χ∗
µ −→ χ∗

µ defined by (14). Assuming that the function
ψ(ρ, Υ(ρ)) satisfies (13), then problem (12) possesses a unique solution.

Proof. To begin, let us demonstrate that G satisfies corollary 7. For any Υ1, Υ2 ∈ χ∗
µ, and

ρ ∈ [0, 1], we observe

|GΥ1(ρ)− GΥ2(ρ)|

⩽
1

Γ(α)

∫ ρ

0
(ρ − s)α−1

∣∣∣e−γ(ρ−s)[ψ(s, Υ1(s))− ψ(s, Υ2(s))]
∣∣∣d s

⩽
Γ(α + 1)(ln(r) + 1)∥Υ1 − Υ2∥∞

Γ(α)

∫ ρ

0
(ρ − s)α−1

∣∣∣e−γ(ρ−s)
∣∣∣d s

⩽
Γ(α + 1)(ln(r) + 1)∥Υ1 − Υ1∥∞

Γ(α)

[
ρα

α

]
⩽ (ln(r) + 1)∥Υ1 − Υ2∥∞.

Thus, for all r ∈ (0, 1] and t > 0, we have

∥GΥ1 − GΥ2∥∞ ⩽ (ln(r) + 1)∥Υ1 − Υ2∥∞

et∥GΥ1−GΥ2∥∞ ⩽ rt∥Y1−Y2∥∞ et∥Υ1−Υ2∥∞

et∥GΥ1−GΥ2∥∞ ⩽ ret∥Υ1−Υ2∥∞

1
e−t∥GΥ1−GΥ2∥∞

⩽
r

e−t∥Υ1−Υ2∥∞

1
e−t∥GΥ1−GΥ2∥∞

− 1 ⩽
r

e−t∥Υ1−Υ2∥∞
− 1

1
µ(GΥ1,GΥ2, t)

− 1 ⩽ r
(

1
µ(Υ1, Υ2, t)

− 1
)

. (15)

On the other, we have for all ρ ∈ [0, 1] and r ∈ (0, 1]:

ϕ(GΥ) = sup
ρ∈[0,1]

∣∣∣∣ 1
Γ(α)

∫ ρ

0
(ρ − s)α−1e−γ(ρ−s)Υ(s)ds

∣∣∣∣
⩽ (ln(r) + 1)∥Υ∥∞ ⩽ r∥Υ∥∞

which means that

ϕ(GΥ1) + ϕ(GΥ2) ⩽ r(∥Υ1∥∞ + ∥Υ2∥∞) = r(ϕ(Υ1) + ϕ(Υ2)). (16)

Consequently, from (15) and (16) for all Υ1, Υ2 ∈ χ∗
µ, ρ ∈ [0, 1], and r ∈ (0, 1], we get

r·
(

1
µ(Υ1, Υ2, t)

− 1 + ϕ(Υ1) + ϕ(Υ2)

)
⩾

(
1

µ(GΥ1,GΥ2, t)
− 1 + ϕ(GΥ1) + ϕ(GΥ2)

)
.

Consequently, we conclude from corollary 3.2 that G has a unique fixed point in χ∗
µ, i.e.,

problem (12) possesses a unique solution.

6. Conclusions

In this study, we established the existence and uniqueness of the best proximity point
within the domain of non-Archimedean modular metric spaces through the employment
of simulation functions. The non-Archimedean metric modular, structured as a parame-
terized collection of classical metrics, ensures the fulfillment of some essential properties.



Symmetry 2024, 16, 627 15 of 16

Furthermore, we showcased the transferability of analogous theorems from modular metric
spaces to the derivation of best proximity point outcomes in triangular fuzzy metric spaces.
The practical significance of our findings was further exemplified through specific illus-
trative examples, the elucidation of consequences, and an insightful application to fuzzy
fractional differential equations. Through rigorous analysis and demonstration, our re-
search offers valuable insights into the theoretical underpinnings and practical implications
of proximity point theory across diverse metric space frameworks.
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