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Abstract: The segmentation of floating algae is a hot topic in the field of marine environmental
research. Given the vastness of coastal areas and complex environments, algae detection models
must have both higher performance and lower deployment costs. However, relying solely on a single
Convolutional Neural Network (CNN) or transformer structure fails to achieve this objective. In this
paper, a novel real-time floating algae segmentation method using a distillation network (ADNet)
is proposed, based on the RGB images. ADNet can effectively transfer the performance of the
transformer-based teacher network to the CNN-based student model while preserving its lightweight
design. Faced with complex marine environments, we introduce a novel Channel Purification Module
(CPM) to simultaneously strengthen algae features and purify interference responses. Importantly,
the CPM achieves this operation without increasing any learnable parameters. Moreover, considering
the huge scale differences among algae targets in surveillance RGB images, we propose a lightweight
multi-scale feature fusion network (L-MsFFN) to improve the student’s modeling ability across
various scales. Additionally, to mitigate interference from low-level noises on higher-level semantics,
a novel position purification module (PPM) is proposed. The PPM can achieve more accurate weight
attention calculation between different pyramid levels, thereby enhancing the effectiveness of fusion.
Compared to CNNs and transformers, our ADNet strikes an optimal balance between performance
and speed. Extensive experimental results demonstrate that our ADNet achieves higher application
performance in the field of floating algae monitoring tasks.

Keywords: floating algae segmentation; distillation network; transformers; CNNs; marine
environmental

1. Introduction

The widespread presence of floating algae (Ulva prolifera and Sargassum) in the East
China Sea poses a serious threat to the marine ecological economy [1–3]. Firstly, the dense
growth of green algae obstructs the sunlight, impeding the photosynthesis of submerged
organisms and thereby disrupting the marine food chain. Additionally, the extensive
decay of floating algae leads to a notable deterioration of seawater quality, resulting in
economic losses in coastal aquaculture. Consequently, real-time monitoring and an early
warning system for coastal floating algae have become crucial in the development of the
circular marine economy [4–7]. The outbreak of green algae, influenced by various factors
such as sea breezes and ocean currents, exhibits significant randomness and fluidity in its
distribution. Hence, the monitoring system must satisfy stringent requirements in terms of
real-time responses, low deployment costs, and high detection accuracy. In comparison to
obtaining images from remote-sensing satellites, synthetic-aperture radar, or unmanned
aerial vehicles, surveillance cameras installed on ships and shores can offer more stable
monitoring, faster responses, and lower application costs. In this paper, we focus on
discussing the utility of surveillance RGB images in the algae monitoring task.
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Scholars initially employed traditional image processing methods for algae detection.
Pan et al. utilized spectral unmixing to estimate green algae area at sub-pixel levels
using real-world Geostationary Ocean Color Imager (GOCI) data [8] and synthetic data.
Qi et al. [9] addressed the detection and discrimination limits of macroalgae from the
perspective of multi-sensor measurements. Xing et al. [10] utilized multi-sensor, multi-
scale, and multi-temporal observations to detect large-scale green tide occurrences in
specific modes and locations. To address the mixed pixel effect in accurately determining
macro-algal coverage from satellite images with moderate and low spatial resolution, Cui
et al. proposed the linear pixel unmixing method [11]. To enhance the effectiveness of
manual feature design, Yang et al. [12] introduced machine learning methods for floating
algae detection. Podlejski et al. [13] built a machine learning model based on spatial
features to filter out false cases after the detection process. Although traditional methods
offer faster speed and lower deployment costs, they are susceptible to interference from
complex marine environments due to artificial features and fixed parameters, leading to
poor performance and generalization.

With the successful implementation of artificial intelligence technology across diverse
application fields, researchers are focusing on employing deep learning methods for algae
detection tasks. The commonly utilized techniques can be categorized into three groups:
object detection [14,15], semantic segmentation [16–18], and instance segmentation [19–21].
Object detection, renowned for its swift inference speed and economical deployment costs,
has gained widespread adoption in numerous domains. Park et al. [22] proposed to utilize
the you only look once (YOLO) [23] model for algal image detection, achieving a balance
between inference time and accuracy. Liu et al. [24] introduced an enhanced version of the
algae-YOLO approach, using the ShuffleNetV2 [25] as the backbone network to reduce the
parameter space.

However, the inherent limitation of these methods is that they cannot provide ac-
curate edge contour information for objects, which is crucial in a monitoring system. To
address this issue and meet the requirement for both contour and bounding box informa-
tion, researchers tend to explore instance segmentation methods. Wang et al. [26] initially
proposed the utilization of an instance segmentation framework for floating algae detection,
significantly enhancing accuracy through the introduction of the One-Shot Aggregation
Version (OSA) [27] and a dual-attention mechanism. Concurrently, Zou et al. proposed
AlgaeFiner [28], a high-quality approach designed to achieve precise segmentation of al-
gae targets in complex marine environments. However, a common challenge with these
methods is their slower inference speeds and higher deployment costs in online monitor-
ing applications. To address this limitation, scholars have begun exploring the semantic
segmentation theory in monitoring systems. Wang et al. [29] proposed an end-to-end
method that combines super-pixel algorithms with CNN models for algae segmentation
and classification. Furthermore, ERISNet [30], a convolutional and recurrent neural net-
work architecture, has been introduced to detect macroalgae along coastlines using remote
sensing data. To extract large-scale green tide information, a deep semantic segmentation
network named SRSe-Net [31] has been proposed. Based on the U-Net [32] structure,
Liu et al. [33] proposed harmful algal blooms net (HAB-Ne) to effectively capture con-
textual information of algae targets to improve segmentation accuracy. However, when
confronted with complex marine environments, traditional semantic segmentation methods
also encounter challenges in achieving an optimal balance between performance and speed.

The methods discussed above provide valuable insights into the challenges inherent in
the algae detection task from various angles. Nevertheless, a substantial disparity remains
between these methods and their practical implementation in online applications. This
paper endeavors to bridge this gap by exploring, through distillation theory, strategies for
effectively striking a balance between model detection performance and deployment cost
within the context of online algae detection applications.
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2. Materials and Methods
2.1. Semantic Segmentation Distillation

The distillation network is composed of a teacher model and a student model. The
teacher model typically adopts a transformer-based structure to provide robust perfor-
mance, while the student network employs a lightweight CNN-based structure to achieve
faster speed. During the training phase, the student network utilizes both ground truth
labels and teacher results to refine its training. In the deployment phase, only the stu-
dent network is used to obtain lower application costs. Yang et al. [34] proposed a novel
cross-image relational knowledge distillation (KD) method to transfer global pixel corre-
lations from the teacher to the student. Meanwhile, Dong et al. [35] introduced a novel
cross-model KD framework to enhance the segmentation performance for high-resolution
remote sensing images. A notable advancement in this domain is the single-branch CNN
with transformer segmentation network (SCTNet) [36], which utilizes Segformer [37] as
a teacher model to guide a lightweight CNN model. SCTNet has demonstrated superior
running speeds and performance in the cityscapes dataset, making it suitable for our algae
segmentation task. However, the original SCTNet structure still faces challenges in the
algae segmentation task regarding the following aspects: (1) The marine environment is
intricate and variable, featuring substantial interference. It remains uncertain whether
the anti-interference capability of the teacher network can be effectively transmitted to
the student network. (2) Algae targets on the sea surface exhibit huge scale differences,
necessitating the network to have a robust multi-scale feature learning capability. (3) The
construction of the student network requires simultaneously achieving faster speeds and
lower deployment costs. To address these challenges, we propose a real-time floating algae
segmentation network based on the distillation theory using RGB images, called ADNet,
designed to enhance performance while maintaining efficiency.

The RGB images captured from surveillance cameras on ships and shores are partic-
ularly susceptible to various interferences, including weather conditions, camera angles,
and similar targets, as illustrated in Figure 1. The original SCTNet structure solely relies
on convolutional blocks for constructing the student network. Although this approach
achieves faster speed and fewer parameters, the inherent limitations of CNN structures
in terms of modeling capabilities significantly impede the student;s ability to effectively
acquire robust features from the teacher network. To enhance the effectiveness and ro-
bustness of the algae distillation network, we introduce a lightweight channel purification
module (CPM) in the student structure. The CPM serves a dual purpose by enhancing
features related to algae targets while filtering out interference from background elements.
It aids the student network in obtaining more accurate semantic information from the
teacher network, thereby enhancing the efficacy of distillation. Moreover, the CPM does
not introduce any additional learning parameters, thus simultaneously addressing the first
and third challenges.

Faced with the second challenge of huge scale disparity in algae targets, we introduce
a novel lightweight multi-scale feature fusion network (L-MsFFN). L-MsFFN is designed
to enhance the student’s ability to model features across different scales. Compared to
existing feature fusion methods, L-MsFFN offers superior performance while maintaining
minimal computational overhead. Additionally, to mitigate inefficiencies between different
scale features in the pyramid, we propose the position purification module (PPM). By
substituting the dynamic parameter attention (DPA) [38] mechanism with the PPM during
the fusion stage, the PPM can offer accurate control of different pyramids on the final
segmentation performance, thereby improving the effectiveness of the distillation process.

The architecture of our proposed ADNet, presented in Figure 2, comprises a CNN-
based student network, a transformer-based teacher network, and a multi-scale distillation
module. Within the student network, the CPM is integrated at each end of the encoding
stage to enhance the modeling effectiveness. Simultaneously, the L-MsFFN is introduced
before the decoding stage to strengthen the fusion capability of algae targets. In the L-
MsFFN module, the PPM is proposed to address semantic disparities across different
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pyramid levels, thereby minimizing the modeling gap between the student and teacher
models. The teacher network incorporates the Segformer method to guide the student’s
learning process. Finally, the feature alignment module and the decoder distillation block
from the original SCTNet are retained in our ADNet.
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2.2. Channel Purification Module

In contrast to the segmentation tasks conducted on public datasets, algae segmentation
faces a unique challenge due to the intricate and dynamic environments in which it oper-
ates. This challenge requires the network to have strong anti-interference and robustness
simultaneously. However, our analysis reveals that the design structure of the original
SCTNet lacks specialization in both feature modeling and background anti-interference.
Consequently, the teacher network struggles to convey its modeling proficiency to the
student, resulting in a notable decline in distillation performance.
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In Figure 3, we present some results of the original SCTNet under different interference
environments. In the first two cases, influenced by factors such as shadows and fog, the
student erroneously identifies wind power facilities and vessels as algae targets, leading
to false positives. In the third case, it is obvious that the student fails to segment algae
objects situated in shadows, resulting in missed segmentation. Meanwhile, the teacher
network did not exhibit similar errors, thus indicating that the transformers possess the
ability to model features in complex environments. These results suggest that the feature
learning ability of the teacher network has not been effectively transmitted to the student.
Despite the SCTNet utilizing a robust transformer-based model to guide the student’s
learning, the inherent limitation of the CNN structure hampers this distillation process.
Consequently, the modeling capability of the student in the feature learning stage is not
sufficiently improved even with teacher guidance when faced with strong interference
factors. To address this, the CPM is proposed to strengthen the representation ability of the
student network; its structure is illustrated in Figure 4.

Assuming the input feature is denoted as fi ∈ H ×W ×C, where H, W, and C represent
the height, width, and number of channels of the feature map, respectively. Firstly, we
employ adaptive max pooling (AMP) and adaptive average pooling (AAP) operations to
model the response of real algae targets ( fm) and interference targets ( fa). Subsequently, the
softmax operation is applied to calculate the channel response weights on different branches.
The resulting weight coefficients are then multiplied with the input features to obtain the
corresponding weighted features for algae and other background elements. The calculation
processes can be formulated as follows:

fm = AMP( fi), fm ∈ 1 × 1 × C (1)

fa = AAP( fi), fa ∈ 1 × 1 × C (2)

f w
m = fi × so f tmax( fm), f w

m ∈ H × W × C (3)

f w
a = fi × so f tmax( fa), f w

a ∈ H × W × C (4)

In the enhancement branch, the addition operation is employed to obtain the response
weight f o

m, thereby amplifying the attention dedicated to algae targets in the feature map.
Conversely, in the purification branch, subtraction operations are utilized to eliminate the
background interference response f o

a from the input features, thereby mitigating the impact
of interference on the representation of algae features. Finally, the f o

m and f o
a are combined

through the weighted add operation (wm and wa) to yield the output of the CPM, denoted
as fo. The entire process is expressed as follows:

f o
m = fi + f w

m , f o
m ∈ H × W × C (5)

f o
a = fi − f w

a , f o
a ∈ H × W × C (6)

fo = wm × f o
m + wa × f o

a , fo ∈ H × W × C (7)

The innovation inherent in our CPM module lies in enhancing the feature response of
algae targets while simultaneously diminishing the weight of interfering elements, with
the goal of minimizing computational costs. The CPM module operates through a parallel
dual-branch design, consisting of the enhancement branch and the purification branch.
The purification branch models background information by incorporating average pooling
and feature subtraction operations to reduce the response weight of interfering targets.
Meanwhile, the enhancement branch employs maximum pooling to extract algae features
and utilizes the add operation to amplify these responses throughout the entire encoding
stage. Importantly, our CPM structure achieves this operation through computational logic,
thereby avoiding the introduction of any additional parameters. In Figure 5, we visualized
the attention heatmaps of the enhanced and purified branches during the prediction stage.
It can be observed that the enhanced branch has performed the amplification on all potential
algae targets in the scene, although there are instances of false enhancement. From the
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perspective of interference targets, the purification branch only retains the feature responses
confirmed as interest targets and excludes the responses that may be interferences. Finally,
by fusing the information from the two branches, the real floating algae targets receive
sufficient responses, and the responses of interfering targets have been suppressed.
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2.3. Multi-Scale Feature Fusion Module

The efficacy of the segmentation model is intricately tied to its ability to handle multi-
scale features. However, it is noteworthy that the student structure in the original SCTNet
lacks this capability, posing a significant limitation in the algae segmentation task. To
underscore this, we conducted a comparative analysis by computing the maximum and
minimum sizes of selected categories in both the cityscapes dataset and our floating algae
dataset, as depicted in Figure 6. The result reveals that scale differences within the same
category are prevalent in different tasks, particularly in our algae category, where the
discrepancy spans up to 960 times. Therefore, it is important to strengthen the feature
fusion ability across diverse scales in our distillation structure.

In SCTNet, the student network employed the dynamic position attention pyramid
pooling module (DAPPM) [36] to simultaneously augment receptive fields and integrate
multi-scale contextual information. However, the DAPPM primarily emphasizes the impact
of the highest-level feature during the decoding stage, underutilizing the contributions
from other pyramid layers. This limitation becomes serious in the results obtained from
both the teacher and student networks, as demonstrated in Figure 7. Specifically, in the
cityscapes dataset, the student network exhibits challenges in accurately segmenting both
large-scale (road category) and small-scale targets (person category). Similarly, in the
floating algae dataset, the interference caused by large algae targets in the image leads to
significant missed segmentation issues for small-sized algae located nearby.
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The above observations reveal several significant challenges in the original SCTNet
structure. Firstly, even within the same category, the features of large-sized targets in
the higher-level pyramid will overshadow the features of small-sized targets, resulting
in missed segmentation. The multi-scale feature fusion structure can ensure the student
network captures a more comprehensive representation of the floating algae data, thereby
enhancing the overall performance. Secondly, the teacher network, which is based on
the transformer structure, demonstrates superior performance in multi-scale modeling
compared to CNN-based structures. This advantage arises from self-attention’s ability to
model long-range dependencies. However, this multi-scale fitting capability is difficult for
the CNNs to replicate. Finally, relying solely on the highest-level semantics for decoding
has been proven inefficient in the algae distillation task. This design structure limits the
distillation performance, particularly when dealing with targets that exhibit significant
scale variations. The decoding features of the student network ought to incorporate multi-
dimensional feature information, rather than solely relying on high-level semantics.

Currently, significant advancements have been achieved in the field of multi-scale
fusion research, with multi-scale bidirectional feature pyramid network (Ms-BiFPN) [28]
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emerging as a standout performer in these approaches. Based on the bidirectional feature
pyramid network (BiFPN) [38] architecture, Ms-BiFPN facilitates efficient and seamless
modeling of multi-scale features by integrating the adaptive spatial-fusion block in the
instance segmentation task. However, the complex fusion processes inherent in both
Ms-BiFPN and BiFPN have restricted their practical application in our monitoring task.

To this end, we propose the L-MsFFN; its structure is depicted in Figure 8. Firstly,
we initiate a pruning process on the original BiFPN structure, selectively retaining only
essential fusion branches to mitigate unnecessary computational overhead. The original
BiFPN structure adopts a top-down, lateral jumping, and bottom-up design to maximize the
involvement of each pyramid layer in the feature fusion process, enriching the multi-scale
semantics. However, this densely connected nature also introduces redundant compu-
tations. Upon analyzing the impact of each fusion link in our algae distillation task, we
observe that the lateral jump connections have a negligible effect on performance, rendering
them unnecessary. Therefore, we eliminate these lateral skip connections in our L-MsFFN
structure. A more detailed discussion about the skip connections will be presented in the
experimental section. Additionally, we utilize the PPM as a replacement element for the
DPA in the original BiFPN. This substitution aims to narrow the semantic gaps across
different pyramid levels, thereby enhancing the effectiveness of the feature fusion process.
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Assuming the feature maps obtained during the encoding stage are p2 ∈ H
4 × W

4 × C,
p3 ∈ H

8 × W
8 × 2C, p4 ∈ H

16 × W
16 × 4C and p5 ∈ H

32 × W
32 × 8C. We initiate the top-down

fusion process with the following calculations:

p′4 = DownSample(p5) + p4 (8)

p′3 = DownSample
(

p′4
)
+ p3 (9)

p′2 = DownSample
(

p′3
)
+ p2 (10)

Here, DownSample represents the bilinear interpolation down-sampling operation.
In the bottom-up fusion process, each fusion line will be input into the PPM to calculate
the weight coefficients of each pyramid feature map at the same position. The calculation
processes are as follows:

p′′
3 = PPM(UpSample

(
p′2
)
, p′3, DownSample

(
p′4
)
) ∈ H

8
× W

8
× 2C (11)

p′′
4 = PPM(UpSample

(
p′′

3
)
, p′4, DownSample

(
p′5
)
) ∈ H

16
× W

16
× 4C (12)

p′′
5 = PPM(UpSample

(
p′′

4
)
, p′5) ∈

H
32

× W
32

× 8C (13)
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Here, UpSample represents the bilinear interpolation up-sampling operation. Finally,
input p′′

5 into the DAPPM to model semantics under different receptive fields.

2.4. Position Purification Module

In feature pyramids, it is essential to consider that lower-level features often contain
detailed yet noisy information, whereas high-level features encapsulate the abstract se-
mantics. Directly combining information across different scales can lead to significant
mutual interference because the noise present at lower levels may compromise the seman-
tics encoded at higher levels, resulting in the degradation of the network. To mitigate
this inconsistency, BiFPN employs the DPA mechanism to dynamically adjust the weight
relationship of pyramid features before performing fusion. While this approach is useful, it
is inefficient as excessive weight calculations significantly increase the computational over-
head at this stage. In contrast to the BiFPN’s theory, we recognize that high-level feature
maps carry valuable information about the algae targets, while low-level features often
contain interfering elements. Therefore, in our L-MsFFN, we adopt a direct fusion approach
in the top-down process, bypassing the need for DPA. This approach resembles the original
Feature Pyramid Network (FPN) structure, enabling faster fusion speeds. Simultaneously,
in the bottom-up process, we introduce the PPM as a replacement for DPA. The structure
of PPM is presented in Figure 9.
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Taking p3, p4 and p5 as example, the calculation process of PPM is as follows: Initially,
down-sampling and up-sampling operations are employed to transform the sizes of p3 and
p5 to p′3 ∈ H

16 × W
16 × 2C and p′5 ∈ H

16 × W
16 × 8C, respectively. Subsequently, convolution

operations are applied to p′3, p4, and p′5 individually to condense the number of channels
to one. Following this convolution, only one channel of information is retained for each
pyramid, obtaining the position response feature maps: pc

3, pc
4, and pc

5. The above processes
can be calculated as:

p′3 = DownSample(p3) (14)

p′5 = UpSample(p5) (15)

pc
3, pc

4, pc
5 = Conv2d

(
p′3
)
, Conv2d(p4), Conv2d

(
p′5
)

(16)

Here, Conv2d represents the 2D convolutional operation. Afterwards, the pc
3, pc

4, and
pc

5 are concatenated together, and the softmax operation is applied to calculate the weight
coefficients pw of different pyramid feature maps from the perspective of pixel dimension.
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The corresponding weight coefficients p1
w, p2

w and p3
w on each pyramid scale can be obtained

sequentially through the channel split operation.

pw = so f tmax(concat(pc
3, pc

4, pc
5)) (17)

p1
w, p2

w, p3
w = split(pw) (18)

Here, concat and split represents the concatenation and split operations. Finally, the
feature maps at each pyramid scale are sequentially multiplied by the corresponding
position weight coefficients p1

w, p2
w and p3

w to obtain the position-weighted feature map Po
5 ,

Po
4 and Po

3 . These are then added up to yield the final fusion result Po
4 of the PPM at the

fourth-level scale. The calculations are as follows:

Po
3 = p1

w × Conv2d
(

p′3
)

(19)

Po
5 = p3

w × Conv2d
(

p′5
)

(20)

Po
4 = p2

w × p4 + Po
3 + Po

5 (21)

The PPM accomplishes not only the dynamic balance across pyramid levels but
also obtains the attention calculation of different pyramid levels at the pixel granularity.
Compared to the original BiFPN, which only utilizes two dynamic parameters to represent
the entire feature map, PPM allows for more accurate weight coefficient calculation between
different scales. Additionally, the PPM exhibits lower computational complexity and higher
speed across all fusion methods. Figure 10 delineates the disparity between DPA and PPM.
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2.5. Distillation Loss

During the training stage, the distillation loss serves to quantify dissimilarities between
the student and teacher networks. In this study, we adopt the channel-wise distillation loss
(CWD) [36] as the training metric. CWD normalizes the activation layer of each channel
through a softmax operation, generating a probability map. Subsequently, KL divergence
is utilized to minimize the disparity between the teacher and the student network. CWD
has demonstrated superior distillation performance in dense prediction tasks, rendering it
well-suited for our floating algae distillation task.

The total loss function losstotal of our ADNet is divided into the encoding loss lossencoder
and the decoding loss lossdecoder, respectively. The calculation formula is as follows:

losstotal = lossencoder + lossdecoder (22)
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Specifically, in the encoding stage, feature distillation is individually applied to the
different pyramids p3, p4, and p5. In the decoding stage, we directly distill the decoded
feature maps from teacher and student networks.

φ(F) =
exp( F, k

τ )

∑W∗H
k=1 exp( F,k

τ )
(23)

lossencoder = ∑L=3
l=1 wl ×

τ2

C
× ∑C

c=1 φ(Te
l )× log(

φ
(
Te

l
)

θ(φ
(
Se

l
)
)
) (24)

lossdecoder = wd ×
τ2

C
× ∑C

c=1 φ
(

Td
)
× log(

φ(Td)

θ(φ(Sd))
) (25)

Here, φ(·) represents the softmax calculation, where exp denotes the natural exponen-
tial function. θ(·) serves to align the feature map size of the student network with that of the
teacher network, ensuring compatibility between the two networks. L signifies the number
of pyramid layers involved in the distillation process, with a value of 3 specified in our
paper. τ, a hyperparameter known as the distillation temperature, facilitates the student
network’s ability to better approximate the teacher’s distributions. In our paper, τ is set to
4. Te

l and Se
l represent the feature maps of the l-th pyramid layer in teacher and student,

respectively. Conversely, Td and Sd denote the feature maps derived from the decoding
stages of the teacher and student, respectively. wl and wd are weight hyperparameters that
modulate the impact of different distillation loss layers, ensuring a balanced contribution
to the overall distillation process.

2.6. Experiment Setups

In this study, both the training and testing phases were executed on an Intel Xeon
Gold 6330 CPU processor operating at 2.0 GHz (Intel, Santa Clara, CA, USA), accompanied
by four NVIDIA GeForce RTX 3090 GPUs, each with 24 GB of memory (NVIDIA, Santa
Clara, CA, USA). For the deployment phase, we employed an Intel i7-13700K processor
paired with a single NVIDIA GeForce RTX 3090 GPU as the detection server. Table 1
offers a detailed summary of the software utilized in this research, including its names and
version numbers.

Table 1. Summary of software names and version numbers.

Software Name Version Numbers

Ubuntu 18.04
CUDA 12.1
cuDNN 8.9.3
Python 3.8.5
Pytorch 1.13.1
MMCV 2.0.1

MMSegmentation 1.2.2
MMDeploy 1.3.1

Open Neural Network Exchange (ONNX) 1.15.0
ONNX-RunTime-GPU 1.8.1

TensorRT 8.6.1 post1

3. Results
3.1. Datasets

To evaluate the performance of ADNet, we collected RGB-image data from surveillance
cameras between April 2023 and August 2023, situated in Nantong and Yancheng in the
Jiangsu Sea area. The detailed locations of these surveillance cameras are presented in
Table 2. The dataset comprises 4500 labeled RGB images (Ulva prolifera) with a resolution
of 1920 × 1080. We partitioned 3500 images for training purposes, reserving 1000 for



J. Mar. Sci. Eng. 2024, 12, 852 13 of 32

validation and testing. The distribution of floating algae sizes in the dataset is depicted in
Figure 11. In practical applications, we utilize 16 channels of surveillance video data to
perform real-time detection and monitoring of floating algae along the coast of Jiangsu.

Table 2. Surveillance camera positions in our paper.

Index Camera Name Number of Cameras Longitude (◦N) Latitude (◦E)

1 Binhai North District H2#400 MW 2 34.4 120.3
2 SPIC Binhai South H3#300 MW 2 34.3 120.6
3 Jiangsu Rudong H5# 3 32.7 121.7
4 Jiangsu Rudong H14# 3 32.8 121.4
5 Three Gorges New Energy Jiangsu Dafeng 300 MW 2 33.3 121.1
6 Huaneng Jiangsu Dafeng 300 MW 2 33.1 121.4
7 Dafeng Wharf 2 33.2 120.8
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3.2. Evaluation of Model Performance

In this paper, we introduce several metrics to assess the performance of our distillation
network. These metrics include mean intersection over union (mIoU), inference time, FPS,
and the number of learnable parameters (Params). The calculation of mIoU is formulated
as follows:

mIoU =
1

N + 1∑N
i=0

pi, i

∑N
j=0 pi,j + ∑N

j=0 (pj, i − pi, i)
=

1
N + 1∑N

i=0
TP

FN + FP + TP
(26)

where N represents the total number of classes in our algae dataset, with N + 1 accounting
for the inclusion of a background category. The term pi,j represents the count of pixels
where the true label is i, but the predicted label is j. Similarly, the definitions of pj, i and pi, i
are analogous to that of pi,j. Furthermore, FPS is calculated by dividing the total inference
time of the testing images. Specifically, the inference time is determined as the sum of
individual inference times for each image, divided by the total number of images K. The

calculation of FPS is as follows: in f erence time = ∑K
i=0 Ii
K . Here, Ii is the inference time

for the i-th image. In addition, to provide a comprehensive evaluation of our network’s
performance in actual applications, particularly in terms of inference speed, we employed
two widely used model transformation techniques: ONNX and TensorRT (TRT).
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To assess the effectiveness of our proposed network, we conducted a comparative
analysis with various segmentation methods on the floating algae dataset. The detailed
training configurations and hyper-parameters for each model are provided in Table 3, and
the detailed comparison results are presented in Table 4. To ensure a fair comparison, all
models were evaluated on images with a resolution of 1024 × 1024 × 3. Meanwhile, we
applied consistent preprocessing and data augmentation techniques across all models,
including image normalization, random cropping, random brightness adjustments, and
random size variations. By leveraging these metrics and comparative analysis, we aim to
provide a thorough understanding of the strengths and weaknesses of different methods in
the field of floating algae monitoring tasks.

Table 3. Training configurations of different methods.

Method Name Backbone Name Learning Rate Iterations Batch Size

BiSeNetV2 BiSeNetV2 0.01 80,000 16

GCNet [39]
R-50 0.01 120,000 8
R-101 0.005 150,000 4

OCRNet [40]
HRNet-W18-Small 0.01 40,000 32

HRNet-W18 0.01 80,000 24
HRNet-W48 0.005 120,000 8

STDC [41]
STDC1 0.001 40,000 64
STDC2 0.001 40,000 64

Segformer

MIT-B0 0.01 80,000 16
MIT-B1 0.01 80,000 16
MIT-B2 0.01 120,000 12
MIT-B3 0.0005 150,000 8
MIT-B4 0.0001 160,000 8
MIT-B5 0.001 240,000 4

SCTNet

S-Seg50 0.01 80,000 16
S-Seg75 0.01 80,000 16
B-Seg50 0.01 120,000 16
B-Seg75 0.005 120,000 8
B-Seg100 0.005 120,000 8

ADNet

S-Seg50 0.01 80,000 16
S-Seg75 0.01 80,000 16
B-Seg50 0.01 120,000 16
B-Seg75 0.005 120,000 8
B-Seg100 0.005 120,000 8

In Table 4, the comparison results across different methods underscore the superior-
ity of transformer-based networks over their CNN-based counterparts. This observation
highlights the limitations of CNNs when confronted with complex marine environments.
Additionally, results obtained through the distillation method demonstrate higher mIoU
performance compared to those trained directly on datasets, providing evidence of the
efficacy of this theory. Simultaneously, from the perspective of the speed metric, CNN-
based networks exhibit shorter inference times compared to transformers, indicating the
computational cost constraints of the latter in practical deployment scenarios. The evalua-
tion of both segmentation performance and inference speed emphasizes the importance
of the distillation-based approach in actual application because this approach can achieve
an optimal balance between performance and speed. In summary, transformer-based
networks excel in performance, while CNN-based networks offer faster speed. The distilla-
tion method presents a promising avenue for improving performance while maintaining
reasonable speeds. For more intuitive comparison results, refer to Figures 12 and 13.
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Table 4. The comparison results of different methods.

Method
Name

Backbone
Name

Params
(MB)

mIoU
(%)

mIoU
FP16
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FPS
(Torch
CUDA)

Inference Time
(ms)

Torch
CUDA

TRT
CUDA
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CUDA
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CUDA

ONNX
CUDA
FP16
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CPU

BiSeNetV2 BiSeNetV2 14.12 40.4 39.9 98 10.2 8.1 7.2 12.2 10.7 17.1

GCNet
R-50 47.33 48.3 48.1 6 164.4 52.0 51.1 106.7 95.3 112.5

R-101 65.44 50.8 50.3 4 245.7 74.6 71.2 129.5 125.3 139.6

OCRNet

HRNet-W18-
Small 6.1 40.2 39.7 23 43.1 17.7 16.2 30.3 28.5 37.7

HRNet-W18 11.5 45.6 45.1 14 69.4 23.1 21.5 45.3 48.9 47.6
HRNet-W48 67.1 52.5 51.9 11 84.4 54.3 51.5 87.2 87.3 89.2

STDC
STDC1 8.2 38.2 35.4 120 8.3 3.9 3.8 17.5 14.9 19.2
STDC2 12.1 41.3 37.2 82 12.1 5.2 5.2 25.8 19.1 26.3

Segformer

MIT-B0 3.5 49.4 49.0 43 23.2 12.9 12.1 30.9 21.3 35.2
MIT-B1 13.1 51.8 51.5 32 30.4 17.3 16.5 31.4 20.5 35.7
MIT-B2 23.6 55.1 54.7 20 49.8 28.6 27.2 47.9 29.5 51.3
MIT-B3 42.5 59.7 59.6 13 72.3 42.2 41.7 70.1 39.5 79.8
MIT-B4 58.5 62.8 62.5 10 99.9 59.1 58.6 95.5 51.6 110.7
MIT-B5 78.2 64.9 64.7 8 118.7 71.8 70.2 115.3 59.8 135.9

SCTNet

S-Seg50 4.6 51.5 51.1 105 9.5 9.2 9.1 19.2 8.7 23.0
S-Seg75 4.6 53.7 53.2 97 10.3 9.4 9.5 19.3 9.9 22.9
B-Seg50 17.4 55.3 55.1 89 11.2 10.7 10.5 23.0 13.1 25.2
B-Seg75 17.4 57.2 56.8 74 13.5 12.3 12.6 24.1 13.8 26.2

B-Seg100 17.4 58.4 57.9 51 19.6 15.6 15.4 31.7 20.6 35.6

ADNet
S-Seg50 6.5 56.2 55.9 78 12.7 11.6 12.1 21.1 10.7 21.4
S-Seg75 6.5 57.9 56.8 76 13.1 12.3 12.6 20.5 11.2 22.1
B-Seg50 19.3 59.6 58.7 72 13.8 13.1 14.3 21.8 14.3 25.7
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Table 4. Cont.

Method
Name

Backbone
Name

Params
(MB)

mIoU
(%)

mIoU
FP16
(%)

FPS
(Torch
CUDA)

Inference Time
(ms)

Torch
CUDA

TRT
CUDA

TRT
CUDA
FP16

ONNX
CUDA

ONNX
CUDA
FP16

ONNX
CPU

ADNet
B-Seg75 19.3 61.3 60.6 61 16.3 14.2 14.2 26.4 18.3 29.6

B-Seg100 19.3 62.2 61.7 45 21.9 16.5 15.4 33.2 23.1 37.5

In the evaluation of the mIoU indices, Segformer, particularly its B5 configuration,
demonstrated superior performance, whereas STDC exhibited the lowest. Notably, when
guided by the Segformer teacher network, SCTNet-S-Seg50 exhibited a substantial improve-
ment compared to the unguided STDC2, achieving 12.4% improvement. This observation
proves the remarkable potential of distillation in enhancing the performance of segmenta-
tion networks. Furthermore, within the same network size, our refined ADNet structure
exhibited a notable advantage over the original SCTNet, averaging approximately 4%
higher in mIoU. The highest index achieved an impressive 62.2%, only trailing the teacher
network by 2.7%. This result can be attributed to the contributions of our proposed CPM
and L-MsFFN in enhancing the accuracy of floating algae segmentation in complex marine
environments. Importantly, ADNet achieved this performance boost without a significant
increase in the number of learnable parameters. In terms of speed performance, STDC
emerges as the fastest among the evaluated models, closely followed by SCTNet and AD-
Net. The integration of PPM and L-MsFFN into our ADNet led to a marginal reduction in
speed, approximately 3 milliseconds per frame, compared to the baseline SCTNet. Taking
the B-Seg100 backbone as an example, despite the ADNet exhibiting a 6 FPS decrease, it sig-
nificantly improved the mIoU indicators by 3.8%. This result demonstrates the effectiveness
of our proposed modules in enhancing performance with minimal computational overhead.

Regarding the module conversion methods, the TRT approach demonstrated superior
speed performance compared to the ONNX method. However, this speed advantage
comes with a trade-off in flexibility, as ONNX models offer the advantage of being directly
executable on the CPU device. Meanwhile, the FP16 model did not significantly enhance the
speed when used in the TRT conversion mode. Conversely, in the ONNX mode, adopting
the FP16 model can obtain a 30% improvement in speed. These findings provide a valuable
insight into the trade-offs between speed and flexibility in different model conversion
methods. Employing B-Seg100 within ADNet as an example, the execution time of the FP16
mode decreased by approximately 10 milliseconds compared to the FP32 mode, achieving
a notable 33% improvement. In addition, most segmentation methods can maintain their
performance in the FP16 mode, underscoring its adaptability in different deployment
modes. By capitalizing on both CPU and GPU resources, the mixed deployment mode
can offer a substantial cost reduction in applications by leveraging the capabilities of the
CPU resources during the inference process. This aspect is crucial in our real-time algae
monitoring task, as only one GPU is utilized to process sixteen videos in parallel during
the deployment phase.

In scenarios 1 to 3, we focus on assessing the segmentation performance when faced
with small algae targets amidst the backdrop of larger algae targets. This evaluation can
offer insights into the models’ ability to distinguish between different sizes of algae. Moving
on, scenarios 4 to 8 discuss the performance in complex environments, including sunlight
interference, sea waves, and foggy conditions. By evaluating the models’ responses to these
varying environmental factors, we can acquire an understanding of their adaptability and
robustness in actual applications. The above comparisons not only consider the models’
overall accuracy but also evaluate their stability in the presence of strong disturbances.
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In the initial set of scenarios, we can clearly observe that all models demonstrate
satisfactory performance on large targets, with no instances of missed detections. However,
upon closer inspection, SCTNet exhibits limitations for the small algae targets, revealing
issues with missing problems. This suggests that the prominent features of large targets
overshadow the response of smaller targets during the decoding phase. This limitation
becomes serious when dealing with multi-scale targets in a single image. To address
this challenge, we introduced the L-MsFFN in our ADNet. This module enables the low-
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level features of small targets to resonate with high-level semantics. Additionally, the
PPM module is introduced to eliminate the noise features at lower levels, thus preventing
them from contaminating the high-level information. Across scenarios 1 to 3, the ADNet
significantly enhances the recognition ability for small algae targets while maintaining
performance on large targets. This improvement demonstrates the effectiveness of the
proposed modifications in enhancing the overall capabilities of the distillation model.

In scenarios 4, 5, and 6, the algae features are overshadowed by strong interference on
the sea surface. This poses a significant challenge to networks, requiring them to effectively
extract algae features amidst such strong interference. However, despite the Segformer
network’s impressive performance, the student network of SCTNet still exhibits significant
issues. Furthermore, in scenarios 7 and 8, the original SCTNet encounters severe false
detection problems due to interference from similar color features on the sea surface. It
indicates that the potent feature modeling ability of the teacher network fails to transfer its
capabilities to the student network. Consequently, the limited modeling capability of the
student hinders its performance in complex marine environments. To address this issue, we
introduce the CPM, a module specifically designed to concurrently enhance algae features
and reduce interference features. As presented in Figure 14, the student trained using
our ADNet structure maintains a high true segmentation rate and a low false rate, even
in scenes with strong interference, demonstrating its superiority in handling challenging
marine scenarios.
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3.3. Ablation Study
3.3.1. The impact of CPM

In this section, we will discuss the impact of CPM on the distillation process for
floating algae recognition. To conduct a comprehensive analysis, we implemented the
following comparative strategies: First strategy: we completely removed the CPM from
the ADNet. Second strategy: we eliminated the feature enhancement branch (FEB) in the
CPM. Third strategy: we removed the interference purification branch (IPB) from the CPM.
Table 5 summarizes the comparative results obtained through these methods.

The comparison results in Table 5 reveal a significant performance decline when the
CPM is totally omitted in our ADNet during the feature encoding phase. Specifically, in the
case of the B-Seg100 structure, the absence of CPM leads to a decline of 2.4%. Furthermore,
when evaluating the individual contributions of the upper and lower branches in the CPM,
it becomes apparent that the IPB plays a more significant role than the FEB. For instance,
in the B-Seg100 structure, removing the IPB results in a 1.2% performance loss compared
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to removing the FEB. It underscores the importance of deafferent algae and interference
features in complex marine environments.

Table 5. The comparison results of different strategies in CPM.

Method Name Backbone Name Strategies mIoU (%)

ADNet

S-Seg50

w/o CPM 52.7
w/o FEB 54.1
w/o IPB 53.5
w/CPM 56.2

S-Seg75

w/o CPM 55.6
w/o FEB 56.7
w/o IPB 55.9
w/CPM 57.9

B-Seg50

w/o CPM 57.2
w/o FEB 58.8
w/o IPB 57.9
w/CPM 59.6

B-Seg75

w/o CPM 58.6
w/o FEB 60.4
w/o IPB 59.1
w/CPM 61.3

B-Seg100

w/o CPM 59.8
w/o FEB 61.5
w/o IPB 60.3
w/CPM 62.2

Figure 14 offers a visual comparison of segmentation results obtained from different
strategies. We can find that the FEB plays a pivotal role in bolstering the capabilities of
algae targets, while the IPB excels in mitigating the adverse effects of interference targets.
In the first scenario, despite the strong interference caused by sunlight reflection, the
model with FEB can successfully identify these algae targets. However, relying solely on
feature enhancement can also give rise to potential performance limitations, making the
student more prone to false positives. In the second and third scenarios, ADNet equipped
with the FEB module exhibited errors in results, which demonstrates that, without the
constraints imposed by the IPB, the modeling capabilities for distinguishing between algae
and interference features are significantly limited. The removal of interference and invalid
background information in the channel dimension can achieve an obvious performance
improvement in both the second and third scenes. Consequently, both feature enhancement
and purification are deemed crucial in the context of marine environments.

3.3.2. The Impact of Multi-Scale Feature Fusion

The efficacy of the algae segmentation task closely depends on the fusion capability
of multi-scale features. In our ADNet framework, the incorporation of the L-MsFFN
plays a role in striking an optimal balance between performance and efficiency. This
section endeavors to clarify the individual contributions of various fusion methods towards
floating algae segmentation performance. Firstly, we present an analysis that examines the
disparities between the L-MsFFN and BiFPN. Secondly, we will discuss the functionalities
of the PPM modules within the L-MsFFN and BiFPN, respectively. Lastly, we explore the
impact of the jumping connections in both the L-MsFFN and BiFPN architectures. Figure 15
illustrates the configurations of the BiFPN (minimal version) and L-MsFFN.
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In addition, to better illustrate the impact of the fusion module on the performance of
different algae sizes, we have refined the mIoU metric to incorporate specific size categories:
large mIoUL, medium mIoUM, and small mIoUS. The definitions of target sizes align with
the reference [29]. The calculations are as follows: mIoUL = 1

N+1 ∑N
i=0

pi, i

∑N
j=0 pi,j+∑N

j=0 (p j, i−pi, i

) ,

P ∈ AlgaeL. Here, P ∈ AlgaeL indicates that the connected domain encompassing the
current pixel pertains to a large algae target. The computation procedures for mIoUM and
mIoUS are analogous to that of mIoUL. The comprehensive results of these comparisons are
comprehensively presented in Tables 6 and 7. To facilitate a more intuitive understanding,
Figure 16 is referenced, utilizing B-Seg100 as an illustrative example.

Table 6. Comparison of different fusion methods.

Method Name Parameters (MB) FLOPs (G) Inference Time (ms)

SCTNet (Student) 17.4 17.5 6.7
BiFPN 0.14 (0.8%) 7.36 (42.1%) 3.2 (47.8%)

Ms-BiFPN 0.25 (1.4%) 7.42 (42.4%) 3.9 (58.2%)
L-MsFPN 0.50 (2.9%) 1.79 (10.2%) 1.5 (22.4%)
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In Table 6, using a 1024 × 1024 × 3 input as an example, we conducted a comparative
analysis of the computational performance of various fusion methods. Notably, while
there was no significant increase in trainable parameters for both BiFPN and Ms-BiFPN,
the adoption of the DPA calculation process in the BiFPN-based structure substantially
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heightened the computational demands, resulting in a notable decline in inference speed.
Directly integrating either Ms-BiFPN or BiFPN into our distillation network would entail
this stage accounting for over half of the entire network’s inference time.

Table 7. The comparison results of different feature fusion methods.

Network
Name

Backbone
Name Fusion Method PPM mIoU (%) mIoUL

(%)
mIoUM

(%) mIoUS (%) Inference
Time (ms)

ADNet

S-Seg50
L-MsFFN

√ 56.2 69.3 59.1 40.2 12.7
× 53.9 66.8 56.1 38.8 11.5

BiFPN
√ 56.1 69.8 60.3 38.2 22.1
× 54.3 67.6 56.4 38.9 19.2

S-Seg75
L-MsFFN

√ 57.9 69.5 61.1 43.1 13.1
× 55.3 66.8 59.4 39.7 11.7

BiFPN
√ 57.4 69.4 63.2 39.6 23.4
× 55.7 67.1 59.9 40.1 19.6

B-Seg50
L-MsFFN

√ 59.6 69.6 64.9 44.3 13.8
× 58.7 68.1 66.8 41.2 12.4

BiFPN
√ 60.2 70.1 68.1 42.4 24.8
× 58.6 68.3 66.2 41.3 20.4

B-Seg75
L-MsFFN

√ 61.3 70.2 65.8 47.9 16.3
× 59.9 69.8 66.7 43.2 14.1

BiFPN
√ 61.7 70.4 68.6 46.1 27.6
× 59.6 69.9 68.4 40.5 23.4

B-Seg100
L-MsFFN

√ 62.2 70.5 66.3 49.8 21.9
× 60.3 68.5 65.9 46.5 20.1

BiFPN
√ 62.1 70.7 67.1 48.5 33.1
× 60.5 69.2 66.4 45.9 29.2

The comparison results presented in Table 7 can yield the following noteworthy obser-
vations: Firstly, the PPM module, serving as a versatile component, exhibits remarkable
adaptability to both L-MsFFN and BiFPN frameworks. Secondly, replacing the DPA with
PPM in the BiFPN structure can achieve superior performance compared to L-MsFFN,
albeit with a slight compromise in inference speed. Lastly, without the PPM module, the
skip connections in the BiFPN structure demonstrate superior performance over L-MsFFN;
however, this advantage is attenuated upon the integration of the PPM module.

In contrast to the BiFPN structure, which utilizes a single parameter to capture at-
tention relationships between different pyramid levels, the PPM structure introduces a
pixel-level attention calculation approach for feature fusion. Employing the B-Seg75 struc-
ture as a benchmark, the BiFPN with PPM structure exhibits a notable 2.1% performance
improvement compared to the DPA approach. Notably, the PPM demonstrates a remark-
able 3.6% enhancement in small algae targets. This significant improvement suggests that
the PPM structure effectively addresses the challenges associated with small-sized algae
targets compared to the original DPA approach.

The utilization of finer-grained attention methods in the fusion stage enables the
model to accurately capture the distribution of algae targets. This capability is important
in the algae segmentation task because the occurrence of algae objects often presents a
combination of large and small targets. By incorporating the PPM module, the student
model effectively mitigates the suppression problem of small target responses that can
occur due to the dominance of large target features in the decoding stage. The segmentation
results presented in Figure 17 further demonstrate the improvements achieved by L-MsFFN
and BiFPN with the PPM structure. Conversely, a notable issue of missed segmentation
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can be observed when DPA is employed in the original BiFPN structure, highlighting the
limitations of the DPA approach in handling complex and diverse algae targets.
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In a horizontal comparison between the L-MsFFN and BiFPN structures, it is evident
that L-MsFFN exhibits superior performance in algae segmentation, particularly with
its faster inference speed. Using B-Seg100 as an example, L-MsFFN manages to reduce
inference speed by a noteworthy 7 ms while achieving a significant 1.7% improvement in
the mIoU compared to BiFPN. Additionally, as depicted in Figure 17, a notable issue of
missed segmentations arises when L-MsFFN lacks the PPM module. Meanwhile, when
comparing L-MsFFN and BiFPN without PPM modules, we found that L-MsFFN exhibited
a performance degradation of 0.3%. At the same time, we should note that adding skip
connections for small algae targets resulted in a performance decrease of 2.7%. It indicates
that skip connections have a beneficial effect on medium and large targets but have a
detrimental effect on small ones. Furthermore, skip connections inflate the computational
cost of the module, hindering real-time performance. Consequently, we made the decision
to eliminate skip connections in our L-MsFFN structure, achieving a balanced trade-off
between performance and speed.

3.3.3. The Impact of Distillation Branch Selection

The original SCTNet structure employed feature maps from the top two pyramid layers
for knowledge distillation, whereas our proposed ADNet utilized the last three layers. In
this section, we will discuss the impact of various pyramid distillation levels on distillation
performance. To achieve this, we conducted a comparative analysis involving six distinct
distillation structures, as shown in Figure 18, and the results are summarized in Table 8.
Through these evaluations, we aim to gain a deeper understanding of the factors that may
influence the effectiveness of algae distillation.

In Table 8, it is evident that strategy 2 yields the best performance in both SCTNet and
ADNet simultaneously, while strategy 6 exhibits the poorest performance. In strategy 1,
all layers in the pyramid participate in the distillation phase. This approach maximizes
the involvement of low-level semantic features during the feature decoding phase, thereby
enhancing the modeling capability of the student network. The segmentation results for
small targets indicate that both SCTNet and ADNet achieve their highest performance in
this strategy, reaching 48.2% and 52.6%, respectively. However, this method also encoun-
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ters challenges related to erroneous segmentation due to noise features in the low-level
pyramids, which block the student network’s capacity to model higher-level semantics,
ultimately leading to a performance decrease. Therefore, while strategy 1 shows promising
results for small targets, the overall performance is not optimal.
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Table 8. The comparison results of different feature distillation strategies.

Backbone Name Method Name Distillation Strategy mIoU (%) mIoUL
(%) mIoUM (%) mIoUS (%)

B-Seg100

SCTNet

1 57.3 63.1 60.6 48.2
2 59.2 67.5 64.5 45.9
3 58.4 67.8 63.6 43.8
4 56.1 68.2 59.9 40.2
5 53.7 65.4 54.2 41.5
6 52.1 63.9 50.7 41.7

ADNet

1 60.9 66.3 63.8 52.6
2 62.2 70.5 66.3 49.8
3 61.3 71.2 65.5 47.2
4 58.9 71.6 61.2 43.9
5 57.6 65.4 64.8 42.6
6 55.4 63.2 62.5 40.5

To achieve optimal segmentation performance across all algae sizes, it is critical to
strike a balance between low-level features and high-level semantics. Building upon
strategy 1, strategy 2 opts to omit the distillation of the lowest-level features, enabling the
student network to focus on the middle levels of the pyramid. It is widely recognized
that both the teacher and student models often contain a large amount of noise and
interference information at the lowest level of the pyramid. Distilling these features can
potentially damage the high-level valuable semantics, leading to a decrease in performance.
Conversely, the second-level features in the pyramid undergo further filtration while still
maintaining a responsive representation of small targets. Initiating distillation learning
from the second level allows the student network to simultaneously attend to both fine
details and abstract semantics across different scales. Illustrating this point, in the case
of SCTNet, incorporating features from the second layer enhances the performance from
58.4% to 59.2%, with a noteworthy 2.1% improvement for small algae targets. However, a
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reduction in the number of distillation layers, as exemplified in Strategies three and four,
leads to a significant performance decline in both SCTNet and ADNet. This underscores
the importance of selecting the appropriate distillation layers to maximize performance.
Additionally, Figure 11 also underscores the preponderance of small-sized algae targets in
our dataset.

In contrast to previous strategies that emphasized distillation of high-level features,
Strategies five and six prioritize learning low-level features. These approaches relinquish
the guidance from teacher networks on higher-level semantics. However, this shift results
in a significant decline in performance, as presented in Table 8. Taking ADNet as an
example, strategy 6 exhibits a notable 6.8% decrease in the mIoU compared to strategy 2.
Furthermore, despite the distillation network’s focus on learning low-level features, the
segmentation performance for small-sized algae also suffers a 9.3% decrease in the student
network. Figure 19 illustrates numerous false segmentations under Strategies five and
six, leading to a significant reduction in the mIoU metrics. This proves that an exclusive
focus on low-level pyramids has an adverse impact on the efficiency of algae distillation. It
becomes evident that a high-performance distillation strategy should effectively capture
both low-level details and high-level semantics in the algae distillation task. Therefore,
in our ADNet, we opt for strategy 2 as the implementation method, as it can achieve
superior performance.
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4. Discussion

In previous research, methods such as object detection, semantic segmentation, and
instance segmentation have been widely employed to detect algae targets on the sea sur-
face. In Figures 20 and 21, we present a comparison of performance and speed disparities
among these methods. For object detection and instance segmentation, we utilize the
COCO dataset, while semantic segmentation is evaluated using the cityscapes dataset. The
comparison results reveal that instance segmentation methods do not exhibit advantages
in terms of either performance or speed compared to object detection methods. Mean-
while, semantic segmentation models, which focus on segmenting targets within the same
category, can offer faster speeds and superior performance compared to instance segmen-
tation methods. Meanwhile, the speed of semantic segmentation approaches can achieve
approximately 20 frames per second (FPS) faster than instance segmentation theories. Con-
sequently, semantic segmentation techniques have emerged as the preferred choice for the
current floating algae detection task.

In Figure 21, CNN-based segmentation methods like STDC and DDRNet have shown
notable speed advantages; however, it is important to acknowledge that their performance
often falls behind transformer-based approaches like Segformer. Transformers, known
for their ability to capture long-range dependencies, demonstrated robust resilience to
interference even in complex environments. When confronted with the intricate and
dynamic marine conditions, the algae segmentation model must integrate these critical
capabilities inherent in transformer structures.
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To achieve this objective, we introduce the algae distillation method called ADNet
in this paper, aiming to attain performance comparable to the transformer-based models
on the CNN structures, while preserving its swift inference speed and low deployment
cost. In Figure A1 (Appendix A), we present the visualization results of various methods
in practical algae monitoring applications. It is evident that ADNet exhibits substantial
performance advantages compared to other methods. Moreover, from the perspective of
the speed dimension, as we discussed in the Results section, ADNet achieves performance
enhancement while maintaining the speed advantage, thereby attaining an optimal balance
between performance and speed.

However, our ADNet still faces several challenges, particularly in the following
aspects: Firstly, the performance of the teacher network directly influences the student
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network’s performance due to the distillation structure. Consequently, any incorrect
knowledge embedded in the teacher network can be seamlessly transmitted to the student
model without any filtering mechanism, ultimately leading to a decrease in the student’s
performance. As illustrated in Figure 22, we visually compare the segmentation results
of ADNet, Segformer, and OCRNet. These comparisons reveal that the teacher network’s
misidentifications can directly contribute to the errors in ADNet. Conversely, traditional
semantic segmentation models do not exhibit similar errors as their training solely relies
on the truth-labeled samples. In our ADnet structure, we directly analyze the feature
disparities between the teacher and student networks to regulate the student’s training
behavior. However, this process not only captures the correct features but also incorporates
the incorrect, harmful features from the teacher network. Meanwhile, ADNet introduces a
purification concept that selectively models the interference and multi-scale features from
the perspective of the student network. This purification concept can be further extended to
facilitate the selective learning of teacher features during the distillation process. Therefore,
we will explore a purification approach in our distillation structure that enables the student
to discerningly acquire knowledge from the teacher.

Additionally, although the incorporation of L-MsFFN and PPM in ADNet has achieved
improvements from the perspective of multi-scale modeling ability, notable performance
gaps persist between CNNs and transformers, particularly in the segmentation of small
algae objects. A comparative analysis of the performance between the teacher and the
student model on small targets, as presented in Figure 23, reveals that the teacher network,
with its transformer structure, exhibits superior detection capabilities. Due to the limitations
of CNNs in modeling multi-scale features during the encoding stage, ADNet still struggles
with missed detections. Segformer, by integrating high-resolution detailed features with
low-resolution abstract features within its attention framework, has achieved remarkable
improvements in the detection of small objects. This multi-scale modeling capability in the
feature extraction stage remains challenging for our ADNet to replicate because of CNNs’
limitations. Therefore, despite ADNet’s attempt to leverage the distillation method and
multiscale fusion module to forcibly constrain the CNNs to emulate the transformers, it
fails to obtain satisfactory performance on small targets. The integration of cost-effective
multi-scale modeling techniques with attention-based feature modeling methods is a crucial
research topic in the field of floating algae monitoring. Future endeavors should focus on
bridging these performance gaps and enhancing the overall accuracy and reliability of our
algae monitoring system.
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5. Conclusions

In this paper, a novel algae segmentation distillation network named ADNet is pro-
posed. In response to the challenges posed by complex marine environments, we introduce
the CPM to the student network. The CPM integrates the FEB and the IPB into a unified
framework. The FEB utilizes max-pooling operations to capture foreground algae features
against the surrounding background, while the IPB incorporates average-pooling opera-
tions to reduce interference responses. The segmentation results demonstrate that the CPM
module effectively enhances the response of algae targets while simultaneously dimin-
ishing the weight of interfering elements. Furthermore, the CPM achieves this operation
without increasing any learnable parameters.

Secondly, considering the huge scale variations of floating algae targets in RGB images
due to the cameras’ installation angles and positions, we propose the L-MsFFN. L-MsFFN
addresses the issue of large target features overshadowing smaller targets during the
decoding stage. Specifically, by eliminating skip connections in the original BiFPN structure,
the computational complexity of L-MsFFN is effectively reduced. Meanwhile, by replacing
the DPA with the PPM, L-MsFFN achieves pixel-level attention control across different
pyramid levels. Despite the incorporation of the CPM and L-MsFFN methods into the
student network simultaneously, ADNet does not exhibit a notable decrease in speed
compared to the original distillation network, demonstrating an optimal balance between
performance and speed in the floating algae monitoring system.

In summary, the main contributions of our ADNet are as follows:

(1) We introduce the distillation theory into the floating algae monitoring task in complex
marine environments.

(2) A novel channel purification module named CPM is proposed to simultaneously
enhance algae semantics while purifying interference features.

(3) We propose a lightweight multi-scale feature fusion network, termed L-MsFFN, to
enhance the modeling capability of multi-scale features, reducing the scale-capturing
gap between the transformers and CNNs.

(4) A novel position purification module, termed PPM, is introduced to replace the
conventional DPA approach during the fusion stage, enhancing the effectiveness and
accuracy of L-MsFFN in controlling features across different pyramids.

(5) Extensive experimental results demonstrate that our ADNet can achieve state-of-the-
art performance compared to other methods in the floating algae segmentation task.

Author Contributions: Methodology, L.W.; software, L.W.; validation, J.X.; formal analysis, J.X.; data
curation, L.W.; writing—original draft preparation, J.X.; writing—review and editing, L.W.; project
administration, J.X. All authors have read and agreed to the published version of the manuscript.
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